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Abstract—We consider a family of vector dot products that
can be implemented using sign changes and addition operations
only. The dot products are energy-efficient as they avoid the
multiplication operation entirely. Moreover, the dot products
induce the `1-norm, thus providing robustness to impulsive
noise. First, we analytically prove that the dot products yield
symmetric, positive semi-definite generalized covariance matrices,
thus enabling principal component analysis (PCA). Moreover, the
generalized covariance matrices can be constructed in an Energy
EFficient (EEF) manner due to the multiplication-free property of
the underlying vector products. We present image reconstruction
examples in which our EEF PCA method result in the highest
peak signal-to-noise ratios compared to the ordinary `2-PCA and
the recursive `1-PCA.

Index Terms—Principal Component Analysis (PCA), `1-norm
kernel, robust PCA, multiplication-free methods.

I. INTRODUCTION

In data analysis problems with a large number of input
variables, dimension reduction methods are very useful to
reduce the size of the input by decreasing the complexity of
the problem while sacrificing negligible accuracy. Principal
Component Analysis (PCA) and related methods are widely
used in data analysis field as dimension reduction techniques
[1]–[4]. In most problems, the lower dimensional subspaces
that are obtained using the eigenvectors effectively capture
the nature of the input data structure. As a result, PCA can
be also used in a variety of applications including novelty
detection [5], [6], data clustering [7]–[13], denoising [14]–[17]
and outlier detection [18]–[21].

Although the conventional PCA based on the regular dot-
product and the `2-norm has successfully solved many prob-
lems, it is sensitive to outliers in data because the effects of the
outliers are not suppressed by the `2-norm. It turns out that `1-
PCA is more robust to outliers and it can be iteratively solved
in O(NrK−K+1) for D dimensional vectors, where N is the
number of data vectors, 1 ≤ K < r = (rank of the N × D
data matrix) [22]. Therefore, researchers proposed iterative
methods to compute `1-PCA to achieve robustness against
outliers in data [22], [23]. The recursive `1-PCA method
requires some parameters to be properly adjusted. On the other
hand, the proposed kernel based approach does not need any
hyperparameters to be adjusted. This is because we construct
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a sample covariance matrix using the kernel and obtain the
eigenvalues and eigenvectors to define the orthogonal linear
transformation instead of solving an optimization problem.

We recently introduced a family of operators related with
`1-norm to extract features from image regions and to de-
sign Additive neural Networks (AddNet) in a wide range
of computer vision applications [24]–[27]. We call the new
family of operators Energy-Efficient (EEF) operators because
they do not require any multiplications which consume more
energy compared to additions and binary operations in most
processors. Instead of a multiplication, the operators use the
sign of multiplication and either sum the absolute values of
operands, or calculate the minimum or maximum of operands.
When we construct dot-product like operations from the EEF
operators they induce the `1-norm. Details of the EEF-operator
are provided in Section II.

In this paper, we define three multiplication-free dot prod-
ucts and construct the corresponding multiplication-free co-
variance matrices. The fact that the underlying dot product
is not an ordinary Euclidean inner product implies that the
covariance matrix is not necessarily symmetric and positive
semi-definitive. Nevertheless, we analytically prove that two
of our vector products yield symmetric and positive semi-
definite covariances. Correspondingly, we find the eigenvalues
and eigenvectors of the matrices as in regular `2-PCA. The
resulting eigenvectors are orthogonal to each other and one can
perform orthogonal projection onto the subspace formed by
the eigenvectors to reduce the dimension, perform denoising
and other similar PCA applications used in data analysis. In
addition, the dot products defined by the operators can be com-
puted without performing any multiplications. Consequently,
the matrices of the new kernels can be computed in an energy
efficient manner because the new kernels are based on sign
operations, binary operations and additions.

II. ENERGY-EFFICIENT (EEF) VECTOR PRODUCTS

In this section, we motivate and introduce the family of
multiplication-free dot products and establish their relationship
to the `1-norm.

A. Motivation

Let w = [w1 · · ·wn]
T ∈ RD×1 and x = [x1 · · ·xn]

T ∈
RD×1 be two D-dimensional column vectors. The standard



Euclidean inner product is defined as

〈w,x〉 = wTx ,
D∑
i=1

wixi (1)

Note that because the product 〈·, ·〉 induces the `2-norm in the
sense that for any x, we have 〈x,x〉 = ‖x‖2 =

∑D
i=1 |xi|2.

The D multiplication operations that appear in the inner
product Eq. (1) may be costly in terms of energy consumption
and time. The existence of multiplications are also undesirable
in the presence of outliers: For example, if a component is an
outlier with a relatively large magnitude, multiplication will
further amplify its effect, making the result of the inner product
unreliable. In this context, it has been recently observed that
in many applications, `1-based methods outperform `2-based
methods thanks to their better resilience against outliers or
impulse-type noise. These observations motivate us to define
the new dot products that induce the `1-norm. The new dot
products should avoid multiplications both for the sake of
computational and energy efficiency as well as robustness.

B. Multiplication-Free (MF) Dot Products

In this work, we will evaluate the performance of three
different MF operators, described in what follows. Given a
real number a ∈ R, let

sign(a) =


−1, a < 0,

0, a = 0,

1, a > 0,

(2)

denote the sign of a. Unlike [26] where we define sign(0) = 1
or sign(0) = −1 to take advantage of bit-wise operations, we
utilize the standard signum function for better precision here.

First, we introduce our original MF dot product [24], [25].
It is defined as

wT ⊕mf x =
D∑
i=1

sign(wixi)(|wi|+ |xi|) (3)

Note that the only multiplication operations that appears in
Eq. (3) correspond to sign changes and can be implemented
with very low complexity. For this reason, we do not count
the sign changes towards multiplication operations and thus
call Eq. (3) an MF dot product. It can easily be verified that
the product in Eq. (3) induces a scaled version of `1-norm as

xT ⊕mf x =

n∑
i=1

|xi|+ |xi| = 2‖x‖1 (4)

Notice that the original MF dot product conducts scale of
2, we are seeking another `1-norm based method without any
scaling. We then define a min-based MF dot product:

wT � x ,
D∑
i=1

sign(wixi)min(|wi|, |xi|). (5)

and its variation:

wT �m x ,
D∑
i=1

1 (sign(wi) = sign(xi))min(|wi|, |xi|) (6)

Here, 1(·) is the indicator function. The variant is related
to the XX similarity measure [28]. In Eq. (6), components
of opposite sign sign(wi) 6= sign(xi) have no contribution
towards the dot product, while in Eq. (5), they contribute as a
subtractive term. Both of them induce `1-norm as

xT � x =
n∑

i=1

min(|xi|, |xi|) = ‖x‖1 (7)

xT �m x =
n∑

i=1

min(|xi|, |xi|) = ‖x‖1 (8)

Vector dot products described above can be extended to
matrix multiplications as follows: Let W ∈ Rn×m and X ∈
Rn×p be arbitrary matrices. We then define

WT⊕X ,


wT

1 ⊕ x1 wT
1 ⊕ x2 . . . wT

1 ⊕ xp

wT
2 ⊕ x1 wT

2 ⊕ x2 . . . wT
2 ⊕ xp

...
...

. . .
...

wT
m ⊕ x1 wT

m ⊕ x2 . . . wT
m ⊕ xp

 (9)

where ⊕ ∈ {⊕mf ,�,�m}, wi is the ith column of W for
i = 1, 2, . . . , m and xj is the jth column of X for j =
1, 2, . . . , p. In brief, the definition is similar to the matrix
production WTX by only changing the element-wise product
to element-wise MF-operation or element-wise min-operation.

III. ROBUST PRINCIPAL COMPONENT ANALYSIS

Suppose that we collect members of a D-dimensional
dataset {x1, . . . ,xN} to a D×N matrix X = [x1 x2 ... xN ] ∈
RD×N . The well-known `2-PCA method relies on investigat-
ing the eigendecomposition of the sample covariance matrix

C = XXT . (10)

We have omitted normalization by the number of elements N
of the dataset as it will not change the final eigenvectors and
the order of eigenvalues. Elementary linear algebra guarantees
that C has non-negative eigenvalues (i.e. C is positive semi-
definite) and thus the eigenvector corresponding to the ith
largest eigenvalue becomes the ith principal vector.

In this work, we propose to investigate the analogue of
Eq. (10) for MF operators. In other words, we consider the
eigendecomposition of

A = X⊕XT , (11)

where ⊕ ∈ {⊕mf ,�,�m}. Matrix A is called as MF-
covariance matrix. Note that the ordinary matrix product in
Eq. (10) is replaced by the MF product in Eq. (11). On the
other hand, since A is no longer constructed using `2-products,
it is not guaranteed to be symmetric or positive semi-definite.
Still, we have the following result.

Theorem 1. Let ⊕ ∈ {�,�m}. Then, A = X ⊕ XT is
symmetric and positive semi-definite for any X.

The proof can be found in the appendix. In particular, the
theorem shows that � and �m describe Mercer-type kernels.



Algorithm 1 Algorithm for L1 PCA using MF operators

Input: X = [x1 x2 ... xN ] ∈ RD×N

Output: W ∈ RD×K

1: Construct the MF covariance matrix A of X based on Eq.
(11).

2: [W,D] = eigs(A,K)
3: return W.

Comment: Step 2 represents eigendecomposion of A and
returns a subset of diagonal matrix D of K largest
eigenvalues and matrix W whose columns are the cor-
responding right eigenvectors, so that AW = WD.
Compared with the conventional L2-PCA Algorithm, we
can see that the only difference is at Step 1. We replace
the standard covariance matrix by the multiplication-free
covariance matrix.

Theorem 1 paves the way for extending PCA to multiplication-
free operators � and �m, as shown via Algorithm 1.

The conclusions of Theorem 1 does not hold for the ⊕mf

operator. A counterexample is provided by the dataset x1 =
[1 2]T , x2 = [−1−2]T , which yields a generalized covariance
matrix A = [ 2 6

6 8 ] with a negative determinant, and thus not
positive semi-definite.

IV. EXPERIMENTAL RESULTS

In this section, we carry out an image reconstruction and
denoising experiment using the EEF kernel based PCAs, `2-
PCA and the recursive `1-PCA to illustrate the robustness of
the EEF kernel introduced in Section III. Image reconstruction
example is the same as the experiment in [22]. The source
code of [22] is available in [29], so we only set the tolerance
parameter of the recursive `1-PCA method as 1 × 10−8 as
suggested by the author P. Markopoulos. For convenience, we
name our method based on Eq. (3) as ”MF-`1”-PCA, method
based on Eq. (5) as ”min-`1-PCA-1” and method based on Eq.
(6) as ”min-`1-PCA-2”, respectively, in Table I and Table II.

In the first row of Fig. 1, we have three 128×128 = 16384
”clean” gray-scaled images (I ∈ {0, 1

255 , ...,
255
255}

128×128). We
assume that the image I is not available but we have N = 10
occluded versions I1, I2, ..., I10, are available as shown in the
second row of Fig. 1a and Fig. 1b. The occluded images are
created by partitioning the original image I into sixteen tiles
of size 32×32 and replacing three arbitrarily selected tiles by
32×32 gray-scale-noise patches. The noise patches are in the
uniformly random distribution in the interval (0, 1).

In the second experiment, we add salt and pepper noise
to images and restore the original images using various PCA
methods. We assume that the image I is not available but we
have N = 10 corrupted versions I1, I2, ..., I10, are available as
shown in the third column (Fig. 1c) and the forth column (Fig.
1d) of Fig. 1, respectively. The corrupted images are created
by adding salt and pepper noise to the original image I with
noise density 0.1. In other words, this affects 10% pixels by
making them either 0 or 1 assuming that the image pixel values
are in the range of [0, 1].

(a) Statue 1 (b) Cat (c) Pikachu (d) Car

Fig. 1: Samples of image reconstruction results. Images in
each columns are ordered as the original image (1st row), the
noise patches occluded image (2nd row, 1st and 2nd columns)
or salt-and-pepper noise corrupted image (2nd row, 3rd and
4th columns), results of `2-PCA (3rd row), recursive `1-PCA
(4th row), MF-`1-PCA (5th row), min-`1-PCA-1 (6th row) and
min-`1-PCA-2 (7th row), respectively.

We perform PCA on the set of V = [v1 v2 ... v10], where
vi = vec(Ii), i = 1, 2, ..., 10, is the vector form of Ii. In this
way, we obtain the eigenvector matrix W ∈ R16384×2 of the
covariance or the MF-covariance matrices of (V − v̄). Then,
we recover the image I as

v̂i = WWT (vi − v̄) + v̄ (12)

Î = mat(̂v)i (13)



TABLE I: PSNR (dB) of Image Reconstruction Results of Noise Patches

Images Noisy Image L2-PCA Recursive L1-PCA [22] MF-L1-PCA Min-L1-PCA-1 Min-L1-PCA-2

Lenna 16.7629 22.1631 24.7089 24.8434 24.7535 26.0864
Statue 1 17.6746 26.6841 26.8580 27.0726 28.1158 27.6244
Statue 2 16.8727 24.6482 25.0187 25.0195 24.9855 24.9843
Earth 14.9133 22.1300 21.7362 21.8622 22.3728 23.5439
Pikachu 15.2871 18.8648 22.7063 22.7091 22.8233 23.3173
Flower 16.3968 21.2211 24.4147 24.4805 24.6941 24.6062
Orange 15.7715 23.5939 23.6927 23.7039 24.4659 25.1322
Cat 16.9120 24.7980 24.8240 24.8706 24.6083 24.6245
Food 15.9369 22.7220 23.8487 23.8629 23.7767 24.0548
Car 15.4178 23.1472 23.3687 23.2191 23.6331 23.6324
Cobra 16.8129 22.3284 25.0985 25.1166 25.2137 24.7121
River 17.2655 24.5775 25.2324 25.4168 24.9636 24.9636
Butterfly 16.6592 24.3993 24.9096 24.8675 24.9390 27.2313
Bridge 15.6619 22.2344 22.9112 23.0056 22.7037 22.7037

Average 16.3104 23.1080 24.2378 24.2893 24.4321 24.8012

TABLE II: PSNR (dB) of Image Reconstruction Results of Salt and Pepper Noise

Images Noisy Image L2-PCA Recursive L1-PCA [22] MF-L1-PCA Min-L1-PCA-1 Min-L1-PCA-2

Lenna 15.4380 24.5958 24.9956 25.0011 27.4015 26.8035
Statue 1 15.9694 25.6774 25.7857 25.7881 28.4256 27.3701
Statue 2 15.6564 24.8093 25.3118 25.3079 27.3624 26.7524
Earth 13.9172 19.8308 22.6834 22.6611 24.0921 24.0921
Pikachu 15.0674 23.8277 24.1352 24.1562 24.8679 24.6878
Flower 15.5086 24.4801 24.9658 24.9929 26.6930 27.0417
Orange 14.5181 21.8783 23.5725 23.5578 23.5971 26.3117
Cat 15.4272 24.5837 24.7230 24.7408 25.9535 25.5513
Food 15.1661 24.2062 24.3647 24.3428 25.2575 24.6552
Car 14.9950 23.6471 24.1611 24.1658 26.0886 26.0886
Cobra 15.5983 20.8556 25.1478 25.1371 26.4361 25.9094
River 15.5659 24.8450 25.1635 25.2141 26.8476 25.8904
Butterfly 14.9599 23.4908 24.4593 24.4333 25.0181 24.8584
Bridge 14.7112 22.7575 23.7324 23.7341 24.2897 24.0655

Average 15.1785 23.5347 24.5144 24.5166 25.8808 25.7199

where v̄ ∈ R16384×1 is the mean value of [v1 v2 ... v10],
0.5 or 0, Ii is an arbitrary occluded image, and mat(·) is the
inverse transform of vec(·) that reshapes a vector back to the
matrix form. We calculate v̂i in the method that returns the
largest peak signal-to-noise-ratio (PSNR).

PSNR between the reconstructed image Î and the original
image I as the following equations is used for evaluation in
Table I and Table II:

MSE = mean((̂I− I)2), (14)

PSNR = 10log10(
peakval2

MSE
), (15)

where (·)2 is the element-wise square and “peakval” is the
peak signal value. The higher the value of PSNR is, the better
the reconstruction result is.

Our experiment is summarized in Algorithm 2. Results
of these PCA methods are shown in Fig. 1 for four test
images and their statistics are provided in Table I and Table
II. Although which method works the best depends on the
images, our three methods return larger PSNR than `2-PCA
and the recursive `1-PCA in both experiments, and the two
min-`1-PCAs are better than the MF-`1-PCA, globally. For
example, the min-`1-PCA produces about 1.4dB better than

the recursive `1-PCA in the salt-and-pepper noise removal
experiment.

Algorithm 2 Image Reconstruction Experiment

Input: N corrupted images I1, I2, ..., IN ∈ RD×D.
Output: Reconstructed image Î.

1: for i = 1, 2, ..., N do
2: vi = vec(Ii) ∈ RD2×1;
3: end for
4: V = [v1 v2 ... vN ] ∈ RD2×N ;
5: v̄ = 0,0.5 or mean(V) ∈ RD2×1;
6: Run PCA on (V − v̄) to obtain K-dominant eigenvector

matrix W = [w1 w2 ... wK ] ∈ RD2×K ;
7: v̂i = WWT (vi − v̄) + v̄ ∈ RD2×1;
8: Î = mat(v̂i) ∈ RD×D;
9: return Î.

Comment: In this experiment, N = 10, D = 128 and K =
2. Function mean(·) is the mean of each row, so it returns
a column vector. Function vec(·) reshapes a matrix into
the column vector form, and function mat(·) is its inverse
transform that reshapes a column vector back to the matrix
form. (V− v̄) is defined as [v1 − v̄ v2 − v̄ ... vN − v̄].



We also compared the computational cost of the PCA
algorithms to reconstruct an image in MATLAB. As it is
shown in Table III, `2-PCA is the fastest algorithm, while
our proposed kernel methods are slightly slower than `2-
PCA but significantly faster than the recursive `1-PCA. The
recursive `1-PCA is the slowest because it obtains the result
by recursion, while `2-PCA and our three methods return the
result straight-forwardly. The reason why our kernel PCAs run
a little slower than `2-PCA is that, the time to construct an MF-
covariance matrix is slightly slower compared to the sample
covariance matrix, which is optimized in MATLAB. The
computational cost of eigenvalue-eigenvector computations are
the same in both `2-PCA and the proposed kernel-PCAs.

TABLE III: Computational cost in seconds

Image Size L2-PCA Recursive L1-PCA [22] Our PCAsa

32× 32 0.02 3.57 0.02
48× 48 0.07 4.80 0.09
64× 64 0.21 6.50 0.25
80× 80 0.49 8.04 0.50
96× 96 1.03 10.81 1.10
112× 112 1.81 14.02 1.91
128× 128 3.24 20.38 3.38

a Proposed kernel PCAs are comparable to the regular PCA.
Due to space limitation, we list them in one column.

V. CONCLUSION

In this paper, we proposed three new robust PCA methods.
We have reached the following conclusions: (i) Proposed novel
kernel methods are more energy-efficient than `2-PCA because
their Gram matrices are computed without any multiplication
operations. (ii) They do not suffer from outliers in the data
as in `2-PCA because they are based on the `1-norm. (iii)
They do no require any hyper-parameter optimization as in
the recursive `1-PCA [22] because their Gram matrices are
straightforward to compute as described in Eq. (11).

We compared the new kernel-based methods with the `2-
PCA and the recursive `1-PCA on an image reconstruction
and salt-and-pepper noise removal tasks and found out that our
min-`1-PCAs return the largest PSNR among these methods
in most scenarios.
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APPENDIX

Let x,y ∈ RN . We define the min-operator ⊕ : RN×RN 7→
R as following

x⊕ y :=
N∑
i=1

sgn(xiyi)min(|xi|, |yi|) (16)

In the following we will show that the operator ⊕ defines a
valid kernel K(x,y). A symmetric function K : RN ×RN 7→
R is a kernel iff

N∑
i=1

N∑
j=1

aiajK(xi,xj) ≥ 0 (17)

for any reals ai, aj and for any vectors xi,xj ∈ RN . In our
case, we are interested in proving that K(xi,xj) = xi ⊕ xj

satisfies Eq. 17.
Define a matrix K ∈ RN×N such that Kij =

sgn(xixj)min(|xi|, |xj |). Proving that K(., .) is a valid kernel
is equivalent to proving that the matrix K is positive semi-
definite.

We will use the following facts to construct our proof that
⊕ is a kernel:

Theorem 2 (Schur product theorem). [30] Let A,B ∈ RN×N

be two positive semi-definite matrices, then their Hadamard
product (A�B)ij := AijBij is also positive semi-definite.

Lemma 1. [28] R. Nader, A. Bretto, B. Mourad and H.
Abbas. “On the Positive Semi-definite Property of Similarity
Matrices.” Theoretical Computer Science Let x ∈ RN be a
strictly positive vector. Then the matrix Aij := min(xi, xj) is
positive semi-definite.

Our claim is the following:

Corollary 2.1. Let x ∈ RN . Then the matrix Kij :=
sgn(xixj)min(|xi|, |xj |) is positive semi-definite.

Proof. The matrix Kij can be written as hadamard prod-
uct between matrix Bij = sgn(xi)sgn(xj) and Aij =
min(|xi|, |xj |), the matrix B is a (rank-one) positive semi-
definite matrix since it can be written as sgn(x)sgn(x)T . The
matrix A is positive semi-defnite according to Lemma 1.
The Hadamard product K = A �B is positive semi-definite
according to Theorem 1. Thus the ⊕ operator defines a valid
kernel.


