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ABSTRACT

We propose SParsity-ADaptive Equalization (SPADE), a novel
approach to reduce the effective number of multiplications
in sparse inner products by adaptively skipping multiplica-
tions that have little to no effect on the result. We apply
SPADE to beamspace linear minimum mean square error
(LMMSE) spatial equalization in all-digital millimeter-wave
(mmWave) massive multiuser multiple-input multiple-output
(MU-MIMO) systems. We propose a SPADE-based ar-
chitecture that mutes insignificant multiplications to offer
power savings. We use simulation results with line-of-sight
(LoS) and non-LoS mmWave channel models to demonstrate
that SPADE-LMMSE performs on par with state-of-the-art
beamspace equalizers in terms of bit error-rate, while requiring
significantly lower preprocessing complexity.

1. INTRODUCTION

Millimeter-wave (mmWave) communication [1,2] and massive
multiuser (MU) multiple-input multiple-output (MIMO) [3]
are two core technologies of fifth-generation (5G) and beyond
5G wireless systems. While mmWave communication pro-
vides access to large portions of unused bandwidth, it suffers
from high propagation losses [4]. MU-MIMO [3] is able to (i)
compensate for the high propagation losses via fine-grained
beamforming and (ii) support simultaneous communication
with multiple user equipments (UEs) in the same frequency
band. However, the large number of basestation (BS) antennas
combined with the high baseband sampling rates create new
challenges for mmWave massive MU-MIMO hardware design.

While hybrid digital-analog architectures [5, 6] can reduce
the hardware complexity, all-digital architectures with low-
resolution data converters [7–9] and low-resolution baseband
processing [10] achieve higher spectral efficiency, provide
more flexibility, and simplify radio-frequency (RF) circuitry
and baseband processing [11, 12]. However, to reduce the
complexity and power consumption of baseband processing in
all-digital BS designs, novel algorithms and architectures are
necessary. Fortunately, mmWave channels typically consist of
only a few dominant propagation paths [1, 4], which can be
exploited to simplify BS design [13–18]. Concretely, by taking
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a spatial discrete Fourier transform (DFT) over the antenna
array, which converts the antenna domain into beamspace do-
main, one can drastically simplify some of the most complex
baseband processing tasks, including channel estimation [18]
and spatial equalization [19–21]. Existing beamspace equal-
izers either suffer from a notable performance degradation
compared to antenna domain spatial equalizers [20] or result
in high preprocessing complexity [21].

1.1. Contributions

We propose SParsity-ADaptive Equalization (SPADE), a novel
scheme to reduce the effective number of multiplications in
sparse inner products. SPADE compares the entries of the
two vectors and adaptively skips scalar multiplications which
have negligible impact on the final result. When applied to
beamspace linear minimum mean square error (LMMSE)
equalization, SPADE offers significant reductions in the
number of multiplications, without increasing the preprocess-
ing complexity of LMMSE. We propose an architecture for
SPADE-LMMSE that adaptively mutes multiplications to
reduce power consumption. Furthermore, we use simulations
with line-of-sight (LoS) and non-LoS mmWave channels to
demonstrate that SPADE performs on par with the state-of-
the-art beamspace equalization algorithms.

1.2. Notation

Boldface lowercase and uppercase letters represent column
vectors and matrices, respectively. For a matrix A, the trans-
pose and Hermitian transpose are AT and A

H, respectively, the
kth column is denoted by ak, and the Frobenius norm is kAkF .
For a vector a, the kth entry is denoted by ak, the real and
imaginary parts are denoted by a

R and a
I , respectively, and

the `1-norm and `f1-norm are defined as kak1 , maxk |ak|
and kakf1 , max{kaRk1, kaIk1}, respectively [22]. The
N ⇥N identity and the unitary N ⇥N discrete Fourier trans-
form (DFT) matrices are denoted by IN and FN , respectively.

2. BACKGROUND

2.1. Antenna-Domain and Beamspace System Models

We focus on an all-digital mmWave massive MU-MIMO up-
link system as depicted in Figure 1. We assume frequency-flat
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Fig. 1. Beamspace massive MU-MIMO uplink system with a
sparsity-adaptive equalization (SPADE) receiver.

channels in which U single-antenna user equipments (UEs)
transmit information simultaneously to a B-antenna bases-
tation (BS) in the same frequency band. We model the an-
tenna domain received signal vector ȳ 2 CB at the BS as
ȳ = H̄s+ n̄, where H̄ 2 CB⇥U is the uplink channel matrix,
s 2 SU is the vector of the UEs’ data symbols taken from a dis-
crete constellation set S (e.g., 16-QAM) with Es , E

⇥
|su|2

⇤
,

u = 1, . . . , U . The noise vector n̄ 2 CB has i.i.d. circularly-
symmetric complex Gaussian entries with variance N0. The
average receive signal-to-noise ratio (SNR) at the BS is defined
as SNR , EskH̄k2

F
/(BN0).

In what follows, we consider mmWave propagation condi-
tions with a B-antenna uniform linear array (ULA). To obtain
the beamspace input-output relation, one applies a spatial
DFT [23] to the received antenna-domain vector ȳ as follows:

y = FBȳ = Hs+ n. (1)

Here, y = FBȳ is the beamspace receive vector, H = FBH̄

is the (typically sparse) beamspace channel matrix, and n is the
beamspace noise vector with the same statistics as the antenna-
domain noise vector n̄. Since the beamspace DFT must be
computed for every receive vector ȳ, a practical system would
rely on streaming fast Fourier transforms (FFTs) [23].

To see why the beamspace transform sparsifies mmWave
channel matrices, consider the following plane-wave model
for the antenna-domain channel vector h̄u of the uth UE [24]:

h̄u =
P

L�1
`=0 ↵`ā(�`). (2)

Here, L stands for the number of propagation paths , ↵l 2 C
is the channel gain of the `th propagation path, and

ā(�`) =
⇥
1, ej�` , ej2�` , . . . , ej(B�1)�`

i
, (3)

where the spatial frequency �` is determined by the `th path’s
incident angle to the ULA. Since L is small for line-of-sight
(LoS) mmWave channels, taking a DFT hu = FBh̄u reveals
the sparse structure of such channel vectors, i.e., most of the
vector’s energy is concentrated on the entries of hu associated
with the spatial frequencies �`.

2.2. Beamspace LMMSE Equalization

Linear data detection consists of two phases: (i) preprocessing,
which is performed only once per channel coherence interval

and produces a U ⇥B equalization matrix W
H and (ii) spatial

equalization, which is performed at baseband sampling rate
(for each received signal vector y) in order to obtain estimates
of the transmitted symbol vectors according to ŝ = W

H
y. In

what follows, we focus on beamspace LMMSE equalization
for which the equalization matrix is given by

W
H =

⇣
H

H
H+ N0

Es
IU

⌘�1
H

H. (4)

In order to support high-bandwidth communication at mmWave
frequencies, the spatial equalization stage must be carried
out at extremely high baseband sampling rates. Hence, to
keep power consumption within reasonable bounds, efficient
methods to calculate ŝ = W

H
y must be deployed in practice.

2.3. Existing Sparsity-Exploiting Spatial Equalizers

In recent years, a number of sparsity-exploiting beamspace
equalization methods have been proposed [19–21]. All of
these methods exploit the fact that for sparse beamspace chan-
nel matrices H, the associated LMMSE equalization matri-
ces WH tend to be sparse as well. This observation enables
design of beamspace equalization algorithms that produce
sparse equalization matrices W̃

H with a given density coef-
ficient � , kW̃Hk0/(BU), where kW̃k0 is the number of
nonzero entries of W̃. Such sparsity-exploiting spatial equal-
izers reduce the number of multiplications required when cal-
culating ŝ = W̃

H
y, which reduces power consumption and/or

implementation complexity. Among such methods, the entry-
wise orthogonal matching pursuit (EOMP) proposed in [21]
achieves the highest sparsity (lowest �) and hence highest
complexity reduction during spatial equalization. EOMP and
related algorithms, however, considerably increase the com-
plexity of preprocessing, resulting in inefficient circuitry. We
next propose SPADE-LMMSE, a novel sparsity-adaptive spa-
tial equalization method that competes with EOMP in terms of
complexity reduction during spatial equalization while directly
using the conventional LMMSE equalization matrix (4) which
means that the preprocessing complexity does not increase.

3. SPADE: SPARSITY-ADAPTIVE EQUALIZATION

Consider the inner product of two B-dimensional real-valued
vectors hw,yi =

P
B

b=1 wbyb. Intuitively, if B is large, then
we can skip partial products wbyb of small magnitude, without
incurring a large relative error in the result, assuming that the
exact result is bounded away from zero. However, we cannot
eliminate partial products based on their magnitude, as this
requires actually performing the multiplication. Therefore, we
propose to set thresholds for the absolute values of the two
operands wb and yb, and skip (or mute) multiplications if the
absolute values of both operands are below their respective
thresholds. The same approach can be extended to complex-
valued case, noting that each complex-valued inner product can
be decomposed into four real-valued inner products. Since for
mmWave channels, the rows wH

u
, u = 1, . . . , U of beamspace



LMMSE matrices WH in (4) and the receive vectors y exhibit
sparsity, a large number of partial products when computing
ŝu = w

H

u
y, u = 1, . . . , U , will be small; hence, a large num-

ber of multiplications can be skipped—this is the general idea
behind SPADE. In order to simplify hardware implementation
of SPADE, we propose to use two fixed thresholds ⌧y 2 R and
⌧w 2 R, for the real and imaginary parts of all entries of the
receive vector y and the equalization matrix W

H, respectively.

3.1. Setting the SPADE Thresholds

The thresholds ⌧y and ⌧w are used to trade arithmetic preci-
sion for reduction in the effective number of multiplications.
Setting these thresholds close to zero will result in high preci-
sion, but will increase the number of active multiplications. In
contrast, setting these thresholds to large values will result in
precision loss, but will lower the number of active multiplica-
tions. To improve the effectiveness of SPADE, we propose the
following techniques:

1) Since we use a single threshold ⌧y for all the entries of y,
and the statistics of y change dynamically, we propose to
determine a fixed threshold ⌧ 0

y
and then set ⌧y = kykf1⌧ 0

y
in

order to incorporate fluctuations of y into ⌧y .

2) Since we use a single threshold ⌧w for all the entries of WH,
we scale the rows wH

u
, u = 1, . . . , U , so that their `f1-norms

are equal. Such a row-scaling scheme was proposed in [10]
to reduce the dynamic range of the entries of equalization
matrices. For SPADE, we scale the rows of the LMMSE
equalization matrix according to V

H = diag(↵)WH such
that the rows v

H
u

, u = 1, . . . , U, of the scaled matrix V
H

satisfy kvukf1 < 1. This can be accomplished by ↵u =
1/(kwH

u
kf1 + "), where " > 0 is a small constant that ensures

that kvukf1 is just below one. With this approach, estimates
of the transmit vector are computed as ŝ = diag(↵)�1

V
H
y,

which corresponds to post-multiplying the uth entry of VH
y

by 1/↵u for u = 1, . . . , U . The threshold ⌧w is applied to the
entries of the scaled matrix V

H.

3.2. SPADE-Based Architecture

Figure 2 shows a high-level architecture of a fully-unrolled
beamspace LMMSE equalizer employing SPADE to adap-
tively mute multipliers. We emphasize that in high-bandwidth
mmWave systems with multi-GHz baseband sampling rates,
fully-unrolled architectures become a natural choice to deliver
the desired throughput while minimizing data buffering and
control overhead [23]. In Figure 2, the LMMSE preprocessing
block receives beamspace channel estimates and computes VH

once per channel coherence interval. This block also performs
the comparison of real and imaginary entries of VH with ⌧w
and provides the comparison bits to the SPADE-based equal-
izer block. The FFT block takes the antenna domain received
vectors ȳ and produces the beamspace domain vectors y, along
with the comparison bits for each real and imaginary part of en-
tries of y with ⌧y . The fully-unrolled matrix-vector multiplica-
tion engine comprises U inner product engines, each consisting
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Fig. 2. High-level architecture of a SPADE-LMMSE equalizer
(top) with mutable multiplier (MM) details (bottom).

of B processing elements (PEs). Each PE is a complex-valued
multiplier with four real-valued mutable multipliers (labeled as
“MM”), whose internal architecture is depicted in Figure 2. At
the beginning of each channel coherence interval, the weight
registers of the PEs are loaded with the entries of VH and the
comparison bits provided by the LMMSE preprocessing block.
Then, for each beamspace receive vector coming from the FFT
block, each MM conditionally disables the registers before and
after the multiplier if the comparison bits indicate that both
operands have absolute values smaller than their thresholds.
Consequently, such a matrix-vector multiplication engine adap-
tively saves power by nulling the switching activity of unused
multipliers—this will reduce the dynamic power consumption.
For correct functionality, the output of each muted multiplier
must be set to zero, which is implemented by the AND gate
at the output of each MM as shown in Figure 2. The number
of muted multipliers depends on the sparsity of y and v

H
u

,
u = 1, . . . , U , which is determined by the channel conditions.
For example, as shown in Section 4, in a system with B = 128
BS antennas and U = 16 UEs with LoS channel conditions, it
is possible to mute 80% of the multiplications while incurring
no more than 0.1 dB SNR loss at an uncoded bit-error-rate
(BER) of 1%.

We reiterate that LMMSE preprocessing is carried out only
once per channel coherence interval and the spatial FFT can be
implemented efficiently using the fully-unrolled multiplierless
architecture proposed in [23]. However, the matrix-vector
multiplication engine must operate constantly and at baseband
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(a) LoS, B = 128, U = 16
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(b) Non-LoS, B = 128, U = 16
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(c) LoS, B = 128, U = 32
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(d) Non-LoS, B = 128, U = 32

Fig. 3. Trade-off between SNR operating point at 1% uncoded BER and multiplier activity rate.

sampling rate, which emphasizes the importance of saving
power consumption in the spatial equalization block.

4. SIMULATION RESULTS

To evaluate the performance-complexity trade-off offered by
SPADE-LMMSE, we provide simulation results in Figure 3.
We consider a mmWave massive MU-MIMO basestation with
a B = 128 antenna �/2-spaced ULA and 16-QAM transmis-
sion from U 2 {16, 32} single-antenna UEs. We carried out
Monte-Carlo simulations with LoS and non-LoS channels gen-
erated by the QuaDRiGa mmMAGIC UMi model [25] at a
carrier frequency of 60 GHz. The UEs are placed randomly in
a 120� sector within 10m to 110m from the BS array, with a
minimum of 1� angular separation. We use power control so
that the variation in receive power of UEs is limited to ±3 dB.
For channel estimation, we used pilot-based least squares (LS)
followed by BEACHES [18]. We simulated the uncoded BER
for (i) conventional antenna domain LMMSE equalization, (ii)
EOMP-based beamspace equalization with density coefficient
� ranging from 10% to 90%, and (iii) beamspace SPADE-
LMMSE with different values for the threshold pair (⌧ 0

y
, ⌧w).

The values of the threshold pair (⌧ 0
y
, ⌧w) corresponding to each

simulated point of the SPADE-LMMSE curves in Figure 3 are
obtained via a 2-dimensional grid search over a range of plau-
sible candidates and picking the Pareto-optimal parameters.

4.1. Comparison with EOMP

Figure 3 shows the SNR operating point required to achieve an
uncoded BER of 1% versus the fraction of active multipliers
(which coincides with the density coefficient � of EOMP). We
see that the performance of SPADE-LMMSE is very close to
EOMP, meaning that for a given fraction of active multipliers,
they both achieve an uncoded BER of 1% at similar SNRs. We
also see that SPADE-LMMSE and EOMP require fewer active
multipliers for LoS channels than for non-LoS channels. For a
negligible SNR loss (compared to antenna domain LMMSE),
up to 80% of multipliers can be muted in a 128 ⇥ 16 LoS
scenario, whereas about 50% can be muted for a non-LoS sce-
nario. Note that the SNR operating point required to achieve
an even lower uncoded BER of 0.1% behaves very similarly,
but is omitted due to space constraints.

A key advantage of SPADE-LMMSE over EOMP is the
fact that EOMP requires external control of the density coeffi-
cient � dependent on the channel conditions to avoid a large
SNR loss. In contrast, SPADE-LMMSE can simply use the
same pair of threshold values (⌧ 0

y
, ⌧w) while automatically

adapting to the required number of multipliers based on the in-
stantaneous channel conditions. For example, in the 128⇥ 16
LoS setting, choosing ⌧ 0

y
= 1/2 and ⌧w = 1/20 results in

an SNR gap of only 0.25 dB with respect to antenna domain
LMMSE equalization while requiring only 17% active multi-
pliers. The same threshold parameters in the non-LoS setting
results in an SNR gap of less than 0.15 dB while requiring only
45% active multipliers. Another key advantage is that SPADE
simply uses conventional LMMSE preprocessing whereas the
preprocessing complexity of EOMP is considerably higher.
Using the complexity expressions provided in [21], the pre-
processing complexity of EOMP—measured in terms of the
number of real-valued multiplications—is about 15⇥ higher
than that of conventional LMMSE for a B = 128 BS antenna
and U = 16 UE system with density factor � = 20%.

5. CONCLUSIONS

We have proposed SParsity-ADaptive Equalization (SPADE),
a novel spatial equalization approach that adaptively reduces
the number of multiplications based upon the instantaneous
channel conditions. SPADE offers the following advantages:
(i) the preprocessing complexity is the same as the conven-
tional LMMSE equalization, (ii) the performance degradation
with respect to antenna-domain equalization is negligible for
suitably chosen thresholds, and (iii) the method adaptively
reduces complexity and lowers power based on the instanta-
neous channel conditions. For LoS and non-LoS mmWave
massive MU-MIMO channel models, we have demonstrated
that SPADE performs on par with EOMP [21], but requires
significantly lower preprocessing complexity. We emphasize
that SPADE is not only suitable for spatial equalization in
mmWave massive MU-MIMO systems, but finds potential use
in many other applications that carry out approximate sparse
matrix-vector products. A hardware implementation of the
proposed SPADE-LMMSE is ongoing work.
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