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SMUL-FFT: A Streaming Multiplierless
Fast Fourier Transform

Seyed Hadi Mirfarshbafan, Sueda Taner, and Christoph Studer

Abstract—Beamspace processing is an emerging paradigm

to reduce hardware complexity in all-digital millimeter-wave

(mmWave) massive multiple-input multiple-output (MIMO)

basestations. This approach exploits sparsity of mmWave chan-

nels but requires spatial discrete Fourier transforms (DFTs)

across the antenna array, which must be performed at the

baseband sampling rate. To mitigate the resulting DFT hard-

ware implementation bottleneck, we propose a fully-unrolled

Streaming MUltiplierLess (SMUL) fast Fourier Transform (FFT)

engine that performs one transform per clock cycle. The proposed

SMUL-FFT architecture avoids hardware multipliers by restrict-

ing the twiddle factors to a sum-of-powers-of-two, resulting

in substantial power and area savings. Compared to state-of-

the-art FFTs, our SMUL-FFT ASIC designs in 65 nm CMOS

demonstrate more than 45% and 17% improvements in energy-

efficiency and area-efficiency, respectively, without noticeably

increasing the error-rate in mmWave massive MIMO systems.

I. INTRODUCTION

Millimeter-wave (mmWave) communication [1], [2] promises
significantly increased data-rates due to the availability of
large contiguous frequency bands. Massive multiuser multiple-
input multiple-output (MU-MIMO) [3] is a key technology
to combat the high path loss of mmWave propagation [2]
while enabling simultaneous communication with multiple user
equipments (UEs) in the same frequency band. The higher
baseband sampling rates needed to support larger bandwidths
at mmWave frequencies, combined with the large number of
antennas in massive MU-MIMO, result in new challenges for
analog and digital hardware design.

A. Fast Fourier Transforms for Beamspace Processing
MmWave channels typically comprise only a few dominant

propagation paths [1], [2], making them sparse in the beamspace
domain [4]–[9]. Beamspace processing exploits this sparsity
to reduce the computational complexity of baseband process-
ing [10]–[12]. This approach, which is described in detail in
Section II-A, calls for spatial discrete Fourier transforms (DFTs)
operated at the baseband sampling rate in order to convert
the received signals at the antenna array into the beamspace
domain—in high-bandwidth mmWave communication systems,
billions of spatial DFTs must be computed per second.
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The literature describes a plethora of results on efficient
DFT implementations based on the well-known fast Fourier
transform (FFT) [13]. FFT architectures generally fall into four
categories [14]: (i) iterative architectures, which require the
smallest area but result in the lowest throughput and highest
latency, (ii) serial pipelined architectures, which can process
one complex sample per clock cycle, (iii) parallel pipelined
architectures, which process multiple complex samples per
clock cycle, and (iv) fully-unrolled architectures, which achieve
the highest throughput by processing a full vector every clock
cycle. While the bulk of research on FFT designs focuses
on serial and parallel pipelined architectures, see e.g., [15]–
[18], fully-unrolled architectures attracted less attention but
appear to be the most suitable for beamspace transforms—see
Section III-B for a detailed discussion. We note that analog
beamspace transforms have been proposed in [19], but recent
studies have shown that all-digital architectures using digital
transforms can be advantageous in practice [20], [21].

B. Contributions
We propose a fully-unrolled Streaming MUltiplierLess

(SMUL) FFT architecture suitable for mmWave massive MU-
MIMO beamspace transforms. We restrict the twiddle factors
so that their real and imaginary parts have at most two nonzero
digits in the canonical signed digit (CSD) representation, which
enables the use of constant multipliers that comprise of at
most one adder and two arithmetic shifts.1 To further improve
energy- and area-efficiency, we deploy a specialized fixed-
point number scaling schedule and bitwidth growth profile. In
addition, our MATLAB-based Verilog generator automatically
produces SMUL-FFT designs for different system parameters.
We provide ASIC implementation results in 65 nm CMOS and
compare our designs to state-of-the-art Spiral-FFTs [26].

C. Notation
Boldface lowercase letters represent vectors and uppercase

letters represent matrices. The transpose of a matrix A, is
denoted by A

T. For a vector a, the kth entry is ak = [a]k, and
the element-wise pth power is a

�p. The `2-norm of a is kak2
and the Frobenius norm of A is kAkF . The B ⇥B identity
matrix is denoted by IB and the unitary DFT matrix by F.

II. BACKGROUND

A. Beamspace Massive MU-MIMO Processing
We consider a mmWave massive MU-MIMO system as

depicted in Figure 1, in which a basestation (BS) equipped
1While multiplierless FFT designs have been explored in the past [22]–[25],

only serial or parallel pipelined architectures have been considered.
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Fig. 1. Beamspace processing in mmWave massive MU-MIMO systems.

with a B-antenna uniform linear array (ULA), communicates
with U single-antenna UEs. Let H 2 CB⇥U denote the channel
matrix and s 2 CU the vector of symbols transmitted by the U
UEs. Then, the antenna domain received vector at the BS for
a frequency-flat channel is modeled as y = Hs + n, where
n 2 CB is the AWGN. By applying a DFT to the antenna-
domain vector y, we obtain the beamspace domain vector

ŷ = Fy = Ĥs+ n̂, (1)

where the matrix Ĥ = FH and vector n̂ = Fn are the
beamspace channel matrix and noise vector, respectively.

Using the commonly adopted plane-wave approximation for
mmWave frequencies, the channel vectors associated with each
UE in the antenna domain can be modeled as [27]

h =
L�1X

`=0

↵`a(�`), a(�)=[ej0�, ej1�, . . . , ej(B�1)�]T. (2)

Here, L denotes the total number of arriving paths, ↵` 2 C is
the channel gain of the `th path, and a(�`) is the complex-
valued sinusoid vector, where �` 2 [0, 2⇡) is determined by
the `th path’s angle-of-arrival. If the number of paths L is
small compared to BS antenna array size B, which is the
case in mmWave massive MIMO [6], then the beamspace
channel vector ĥ = Fh of each UE will be sparse; this enables
low-complexity baseband processing algorithms, such as data
detectors and channel estimators [10]–[12], [28].

B. Discrete Fourier Transform (DFT)
The critical ingredient of beamspace algorithms is the spatial

DFT. The DFT of a vector y 2 CB is given by [29]:

[ŷ]k =
1p
B

B�1X

n=0

[y]nW
kn
B , k = 0, 1, . . . , B � 1. (3)

Here, W kn
B = exp (�j2⇡kn/B) are the twiddle factors and

j2 = �1. Equivalently, we can write ŷ = Fy, where F is the
unitary DFT matrix, whose (k, n)th entry is 1p

B
W kn

B .

III. SMUL-FFT: STREAMING MULTIPLIERLESS FFT
A. Quantizing Twiddle Factors to Sum-of-Powers-of-Two

To avoid the need for hardware multipliers for twiddle factor
multiplication, we design an approximate set of twiddle factors
whose CSD representation consists of 5 digits with at most
2 nonzero digits [22]. For example, the CSD representation
[1, 0, 0, 0,�1] corresponds to 1 · 20 + (�1) · 2�4 and has two
nonzero digits. We note that the CSD representation minimizes
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Fig. 2. Quantized twiddle factors: red cross markers are the exact twiddle
factors, blue circles are the alphabet of complex numbers with a maximum of
two nonzero digits in CSD representation of each real and imaginary part.

the number of nonzero digits compared to other number
representations [30]. We define ⌦ as the set of complex numbers
within a ring around the unit circle, i.e., 1� � < |z|< 1 + �,
8z 2 ⌦ with � = 0.2, whose real and imaginary components
have a 5 digit CSD representation with at most 2 nonzero
digits. The first quadrant of such a set is shown in Figure 2.

Let G(·) : CB ! CB⇥B be a function whose output for u 2
CB , is G(u) = 1p

B

⇥
u
�0,u�1, · · · ,u�(B�1)

⇤
. In particular, for

w 2 CB with wk = W k
B , G(w) = F. Our aim is to find

a vector w̃ 2 ⌦B that gives the best approximate DFT via
F̃ = G(w̃). A straightforward approach would be to map
each W k

B to its closest neighbor in ⌦ according to w̃k =
arg minz2⌦|W k

B � z|. This naïve approach, however, is sub-
optimal. Instead, we propose to find a DFT matrix F̃ that
minimizes the normalized mean-square error (NMSE) in the
transform of random vectors x 2 CB defined as

NMSE ,
E
h
kF̃x� Fxk22

i

E[kFxk22]
=

kF̃� Fk2F
kFk2F

. (4)

Here, the last equality holds for the following two relevant
distributions for x: (i) zero-mean complex Gaussian vectors,
i.e., x ⇠ CN (0, ⇢2IB), and (ii) complex-valued sinusoids with
a random phase, i.e., x = a(�) where � ⇠ Unif(0, 2⇡).

To design F̃, we successively quantize each twiddle factor.
First, we find the worst four twiddle factors with the largest
distance from their nearest neighbors in ⌦ and quantize them
one-by-one. Then, we use a greedy approach to choose which
twiddle factor to quantize next based on minimizing the NMSE.
Suppose we wish to quantize wb. Then, w̃b is the minimizer
of the NMSE among wb’s four nearest neighbors in ⌦, which
are the elements that are closest to wb in Euclidean distance.

Our simulations for B 2 {32, 64, 128, 256} show that our
quantization strategy decreases the NMSE by at least 0.9 dB
up to 1.5 dB compared to the naïve approach of individually
quantizing the twiddle factors to their nearest neighbor in ⌦.

B. SMUL-FFT Architecture Details

1) Fully-Unrolled Radix-4 Architecture: For the beamspace
transform in (1), the input vectors are generated at baseband
sampling rate fs, which can require billions of transforms per
second in mmWave applications. A fully-unrolled pipelined
architecture offers the highest possible throughput and lowest
latency, while eliminating the need for reorder buffers, twiddle
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Fig. 3. High-level architecture of a 16-point SMUL-FFT showing the butterfly
units (BUs). The yth butterfly in the xth stage is denoted by SxNy.
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Fig. 4. Internal architecture of a SMUL-FFT radix-4 butterfly.

factor memories, and control circuitry, thereby achieving the
highest efficiency in terms of energy per transform and area
per throughput—see the end of Section V for more details.
An example of the 16-point SMUL-FFT architecture with two
stages consisting of radix-4 butterflies is depicted in Figure 3.
If B is an even power of two, SMUL-FFT consists of log4 (B)
stages with B/4 radix-4 butterflies; if B is an odd power of
two, then SMUL-FFT consists of B/2 radix-2 butterflies in
the first stage and blog4 (B)c stages of B/4 radix-4 butterflies.

2) Scaling Schedule and Bitwidth-Growth Profile: Figure 4
depicts the architecture of a radix-4 butterfly, comprising four
complex adders/subtractors and three twiddle units (labeled
TU). In each 4-input adder, the bitwidth of the adder’s output
increases by two bits. Therefore, to prevent overflow, the
bitwidth of each radix-4 stage must grow by two bits, summing
to log2 B bits overall. Alternatively, in each stage, we can scale
down the results of the additions/subtractions in all butterflies
by 2s, where s 2 {0, 1, 2}, in which case the output of that
stage will require 2� s bits more than its inputs, given that
s least significant bits (LSBs) are truncated. Note that in the
case of s > 0, the truncation of s LSBs may degrade accuracy.
We used simulations to determine the optimal combination of
scaling schedule and bitwidth growth profile that incurs no
noticeable performance loss, while minimizing silicon area.

3) Decimation-In-Frequency (DIF): As shown in Figure 3,
we use a DIF architecture [29], which simplifies signal routing
as we progress through the stages towards the end of the
SMUL-FFT. Since the output bitwidth of each stage is larger
than or equal to the bitwidth of its inputs, it is beneficial to
have simpler routing in stages with larger bitwidth.
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(a) LoS channels.
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(b) NLoS channels.
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(c) LoS channels.
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(d) NLoS channels.

Fig. 5. BER and NMSE simulation results of a mmWave massive MU-MIMO
system with B = 256 and U = 16, for LoS and NLoS channels.

4) Automatic Verilog Generation: In order to facilitate the
design of SMUL-FFTs, we developed a MATLAB script that
automatically generates Verilog code for the following set of
parameters: FFT size, input bitwidth, scaling schedule, and
bitwidth growth profile. Since the twiddle factors inside each
butterfly are fixed in a fully-unrolled architecture, no memory
elements for twiddle factor storage are needed.

General-purpose complex-valued multiplication is typically
realized by four real-valued multipliers and two adders.
However, since the SMUL-FFT implements each real-valued
twiddle factor multiplication with at most one adder (or
subtractor) and two shift operations, each complex twiddle
unit (TU) inside the radix-4 butterfly (as shown in Figure 4)
implements multiplication by the quantized complex-valued
twiddle factor with at most six adders/subtractors and arithmetic
shift operations. Furthermore, since the twiddle factors are
constant and these arithmetic shifts are simply wire selections,
avoiding any hardware overhead.

IV. SIMULATION RESULTS

To evaluate the performance of our SMUL-FFT with the
proposed set of twiddle factors, we consider a mmWave massive
MU-MIMO system in which U = 16 single-antenna UEs
transmit 16-QAM symbols to a B = 256 antenna ULA BS
with �/2 antenna spacing. We consider line-of-sight (LoS)
and non-LoS (NLoS) channels generated by the QuaDRiGa
mmMAGIC UMi model [31] at a 60 GHz carrier frequency.
The UEs are randomly placed in a 120� sector within the range
of 10m–110m, with a minimum angular separation of 1�.

We simulate the uncoded bit error rate (BER) of the EOMP
sparsity-exploiting beamspace detector [12] using only � = 1/4
of all B beams. We perform pilot-based channel estimation
followed by BEACHES [4], a beamspace channel vector
denoising algorithm. For FFT, we consider (i) SMUL-FFT
with 9 bits per real and imaginary component for the inputs
and 11 bits for the outputs, (ii) Spiral-FFT with 10-bit inputs
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TABLE I
ASIC IMPLEMENTATION RESULTS AND COMPARISON IN TSMC 65 NM CMOS FOR VARIOUS FFT SIZES.

Design SMUL-FFT Spiral-FFT

FFT size B 32 64 128 256 32 64 128 256

Input/output bitwidtha 9/10 9/11 9/11 9/11 10/10 11/11 11/11 11/11
Clock frequency [MHz] 750 500 500 500 938 938 833 833
Core area [mm2] 0.22 0.32 0.91 2.03 0.34 0.72 2.06 4.08
Power consumption [W]b 0.14 0.21 0.57 1.35 0.3 0.73 1.92 4.02
Latency [clock cycles] 18 18 20 20 17 16 25 22
Area-efficiency [mm2/(G transforms/s)] 0.29 (80%) 0.64 (84%) 1.82 (73%) 4.06 (83%) 0.36 0.76 2.47 4.89
Energy-efficiency [nJ/transform] 0.18 (56%) 0.41 (53%) 1.14 (49%) 2.7 (56%) 0.32 0.77 2.3 4.82

aBitwidth per real and imaginary part to achieve similar performance as a floating-point FFT (see Section IV).
bExtracted with stimuli from postlayout simulation in the typical-typical process corner at 25�C and nominal voltage of 1.2 V.

and outputs, and (iii) Spiral-FFT with 11-bit inputs and outputs.
In the Spiral-FFT code generator [26], the input and output
bitwidths are equal and the outputs of each radix-4 stage are
either scaled down by 4 and truncated or left unscaled, which
can result in overflow. We used the scaled version for Spiral,
as the unscaled version incurred a significant performance loss,
due to the overflow. Since no bit-true software model for the
Spiral-FFT is available, we used HDL simulation to obtain the
output corresponding to each input vector.

Figures 5(a) and (b), show the BER versus signal-to-noise
ratio (SNR) for LoS and NLoS channels, respectively, where we
include the conventional antenna-domain linear minimum mean
square (LMMSE) detector as a baseline. The number of integer
and fraction bits for the inputs of each FFT design are optimized
via simulations. We observe in Figure 5, that the SMUL-FFT
with 9-bit inputs and 11-bit outputs closes the performance gap
to a floating-point FFT, while the Spiral-FFT requires 11-bit
inputs and outputs to achieve similar performance. The main
reason is the conservative scaling schedule of the Spiral-FFT
which loses performance by scaling down results of each stage
and truncating the LSBs. In Figure 5 (c) and (d), we show
the NMSE (defined in (4)) for the SMUL-FFT and Spiral-
FFT, with the same parameters as in Figure 5 (a) and (b). We
see that the SMUL-FFT with 9-bit inputs and 11-bit outputs,
achieves lower NMSE than the Spiral-FFT with 11-bit inputs
and outputs for LoS and NLoS channels.

V. ASIC IMPLEMENTATION RESULTS

We now provide ASIC implementation results for the
proposed SMUL-FFT and compare them to Spiral-FFT de-
signs [26], which we chose as our baseline for the following
reasons. First, Spiral-FFTs achieve state-of-the-art hardware-
efficiency, on par with that of Xilinx FFT IPs [32], [33].
Second, as discussed at the end of this section, fully-unrolled
FFT architectures achieve the highest energy-efficiency and
maximum throughput, making them particularly suitable for
mmWave massive MIMO systems operating at very high
sampling rates. To the best of our knowledge, only Spiral-
FFT enables us to generate fully-unrolled architectures. Third,
to enable a fair comparison, we need to optimize the key
architecture parameters (signal bitwidths, scaling schedule,
radix, etc.) for each design—this is not practicable for the
majority of existing, custom-designed FFT implementations.

Table I provides the implementation results for SMUL-FFT
and Spiral-FFT designs for B 2 {32, 64, 128, 256} in 65 nm

TSMC. For each design, we performed an area-delay sweep
to identify the clock frequency that minimizes the area-delay
product, which we report in Table I as the clock frequency. For
each design, we use the smallest input/output bitwidth pair that
results in no noticeable performance loss compared to a floating-
point FFT (cf. Section IV). All area and power consumption
results in Table I are extracted after the layout stage. For the
power consumption, we used node switching activity extracted
from postlayout simulation with realistic stimuli generated
using NLoS channels and the simulation setup described in
Section IV. Since the SMUL-FFT and Spiral-FFT are streaming
fully-unrolled architectures, their throughput is equal to fclk
million vectors per second, where fclk is the clock frequency
in MHz.2 Since Spiral-FFTs achieve a higher clock frequency
than our designs, to enable a fair comparison in Table I, we
provide area-efficiency in terms of area divided by throughput
and energy-efficiency in terms of the energy per transform.
To facilitate this comparison, we provide percentage values in
parentheses for SMUL-FFT, which are obtained by dividing the
energy- and area-efficiency numbers of SMUL-FFT columns,
by the corresponding numbers from the Spiral-FFT columns.

From Table I, we see that the SMUL-FFT requires 17%
to 27% lower area for the same throughput compared to the
Spiral-FFT, and offers power savings ranging from 44% to
51%. The area and power savings of SMUL-FFT come in
part from the fact that twiddle factor multiplications in SMUL-
FFT are realized by adders and shifters instead of dedicated
multipliers, and in part from better scaling schedule which
allows for smaller input bitwidth to achieve the same (and
often better) performance compared to Spiral-FFT.

In order to demonstrate that the fully-unrolled architecture
achieves superior energy-efficiency, we also implemented
parallel pipelined versions of the Spiral-FFT with streaming
width of four complex samples per clock cycle. A 256-point
Spiral-FFT with streaming width of four, achieves a clock
frequency of 625MHz, occupies 0.78mm2, and consumes
250mW. Since 256/4 = 64 clock cycles are required to
complete a 256-point FFT with this architecture, the energy
consumed per transform is 25.6 nJ, which is 5⇥ higher than
that of the fully-unrolled Spiral-FFT—this confirms that fully-
unrolled pipelined architectures offer the highest efficiency.

2We note that the implementations in Table I achieve relatively high clock
frequencies for a 65 nm CMOS process, which is a result of fine-grained
pipelining and relatively low bitwidths (i.e., 9 bits to 11 bits). The higher clock
frequency of the Spiral-FFT designs is due to more aggressive pipelining.
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VI. CONCLUSIONS

Beamspace processing in all-digital mmWave massive MU-
MIMO wireless systems requires high-throughput DFT engines
to transform B-dimensional vectors at the baseband sampling
rate. For such applications, we have proposed an efficient, fully-
unrolled Streaming MUltiplierLess (SMUL) FFT, by designing
an approximate set of twiddle factors whose CSD representation
has 5 digits with no more than 2 nonzero digits. This strategy
enables multiplication by real/imaginary parts of the quantized
twiddle factors to be realized with at most one adder/subtractor
and trivial shift operations. Our simulation results demonstrate
that the proposed SMUL-FFT achieves near floating point error-
rate performance in mmWave massive MU-MIMO systems.
Furthermore, ASIC implementation results in 65 nm CMOS
demonstrate that the proposed SMUL-FFT consumes nearly
50% less energy per transform compared to the state-of-the-
art Spiral-FTT designs [26]. Therefore, the proposed SMUL-
FFT greatly mitigates the DFT implementation bottleneck in
mmWave beamspace processing.

There exist many avenues for future work. Concretely, the
design of beamspace transforms for two-dimensional or non-
uniform antenna arrays, distributed or cell-free massive MIMO
systems, hybrid analog-digital architectures, and downlink
processing are interesting open research problems.
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