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ABSTRACT

Although the Cenozoic Indo-Asian col-
lision is largely responsible for the forma-
tion of the Tibetan plateau, the role of pre-
Cenozoic structures in controlling the timing 
and development of Cenozoic deformation 
remains poorly understood. In this study 
we address this problem by conducting an 
integrated investigation in the northern fore-
land of the Tibetan plateau, north of the Qil-
ian Shan-Nan Shan thrust belt, NW China. 
The work involves field mapping, U-Pb 
detrital-zircon dating of Cretaceous strata 
in the northern foreland of the Tibetan pla-
teau, examination of growth-strata relation-
ships, and construction and restoration of 
balanced cross sections. Our field mapping 
reveals multiple phases of deformation in the 
area since the Early Cretaceous, which was 
expressed by northwest-trending folding and 
northwest-striking thrusting that occurred 
in the early stages of the Early Cretaceous. 
The compressional event was followed imme-
diately by extension and kinematically linked 
right-slip faulting in the later stage of the 
Early Cretaceous. The area underwent gen-
tle northwest-trending folding since the late 
Miocene. We estimate the magnitude of the 
Early Cretaceous crustal shortening to be 
∼35%, which we interpret to have resulted 
from a far-field response to the collision 
between the Lhasa and the Qiangtang ter-
ranes in the south. We suggest that the subse-
quent extension in the Early Cretaceous was 

induced by orogenic collapse. U-Pb dating of 
detrital zircons, sourced from Lower Creta-
ceous sedimentary clasts from the north and 
the south, implies that the current foreland 
region of the Tibetan plateau was a topo-
graphic depression between two highland 
regions in the Early Cretaceous. Our work 
also shows that the Miocene strata in the 
foreland region of the northern Tibetan pla-
teau was dominantly sourced from the north, 
which implies that the rise of the Qilian Shan 
did not impact the sediment dispersal in the 
current foreland region of the Tibetan pla-
teau where this study was conducted.

INTRODUCTION

One of the important questions with regard 
to the development of the Tibetan plateau is 
whether its current high topography was con-
structed entirely during the Cenozoic Indo-Asian 
collision (e.g., England and Houseman, 1986; 
Tapponnier et al., 2001; Wang et al., 2008) or a 
superposed result of Cenozoic and pre-Cenozoic 
crustal shortening (e.g., Murphy et al., 1997). 
The first scenario predicts the Qilian Shan of 
northernmost Tibet was a lowland in the Creta-
ceous, with an elevation similar to that of a typi-
cal stable craton at an elevation of ∼500 m (e.g., 
England and Houseman, 1986); its current high 
topography did not appear until the late Ceno-
zoic after ca. 20–15 Ma (e.g., Tapponnier et al., 
2001). The second scenario implies that parts of 
the Tibetan plateau could have been higher than 
the average elevation of a typical craton because 
the region experienced multiple tectonic events 
related to subduction, ocean closure, and terrane 
collision during the development of the Tethys 
orogenic system (Murphy et al., 1997; Jolivet 
et al., 2001; Kapp et al., 2003, 2007; Li et al., 

2019a, 2020a; Zhao et  al., 2020). Although 
the hypothesis of a proto-plateau in southern 
Tibet has been carefully investigated (Murphy 
et  al., 1997; Kapp et  al., 2003), the possibil-
ity that the northern Tibetan plateau may have 
also been a highland region immediately prior 
to the Cenozoic Indo-Asian collision has never 
been thoroughly investigated. Yet, the existence 
of such a proto-highland region in northern 
Tibet has important implications for the current 
understanding of the relationship between the 
Tibetan-plateau formation and climate change 
in Asia (e.g., Raymo and Ruddiman, 1992; 
Licht et al., 2014). It also has implications for 
mass-balance calculations and estimates of total 
crustal shortening for the Cenozoic construc-
tion of the Tibetan plateau (e.g., van Hinsbergen 
et  al., 2011; Yakovlev and Clark, 2014; Zuza 
et al., 2016).

The northern margin of the Tibetan plateau is 
marked by the northwest-trending Qilian Shan 
that hosts the early Paleozoic Qilian orogen 
(Fig. 1) (e.g., Şengör and Natal’in, 1996a; Yin 
and Harrison, 2000; Heubeck, 2001; Stampfli 
and Borel, 2002; Yin et al., 2007; Stampfli et al., 
2013; Xiao et al., 2015; Wu et al., 2016, 2020a, 
2020b; Zuza and Yin, 2016; Zuza et al., 2018). 
Because the Qilian Shan is the site of the early 
Paleozoic orogen (e.g., Şengör and Natal’in, 
1996b; Yang et al., 2002; Yin and Harrison, 2000; 
Xiao et al., 2009; Song et al., 2013; Zuza et al., 
2018) and a Cenozoic thrust belt (Yin et al., 2002, 
2008a, 2008b; Zuza et al., 2016, 2019), previ-
ous geologic research has focused exclusively 
on the timing and processes of these two most 
dominant geologic events in the region (e.g., Yin 
and Harrison, 2000; Gehrels et al., 2003a, 2003b; 
Yin, 2010). With a few exceptions (e.g., Vincent 
and Allen, 1999; Jolivet et al., 2001; Chen et al., 
2003; Gehrels et  al., 2011), the intervening 
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Figure 1. (A) Tectonic map of the Tethyan and the Paleo-Asian orogenic systems (modified from Wu et al., 2016, 2017). UHP—ultra 
high pressure. KQD—Kunlun-Qinling-Dabie suture; NQS and SQS—North and South Qilian sutures; NQGS, CQGS, and SQGS—
North, Central, and South Qinling sutures; JS—Jinsha suture; BN—Bangong-Nujiang suture; IT—Indus-Tsangpo suture. QKT—
Qaidam-Kunlun terrane; SGT—Songpan-Ganzi terrane; QTT—Qiangtang terrane; LST—Lhasa terrane; CQLT—Central Qilian 
terrane. KF—Karakorum fault; ARSZ—Ailao Shan-Red River shear zone; ATF—Altyn Tagh fault. ATR—Altyn Tagh Range. (B) 
Sketched fault tectonic map of the Qilian Shan-Nan Shan Range and its adjacent regions (modified from Gao et al., 2013; Zuza 
et al., 2016; Wu et al., 2017). HC—Hexi Corridor; NQLF—North Qilian fault; LYF—Liyuanpu fault; LSF—Longshou Shan fault. 
Underlying base map is from www.geomapapp.org (Ryan et al., 2009).
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history between the early Paleozoic Qilian orog-
eny and Cenozoic construction of the northern 
Tibetan plateau remains poorly understood. For 
example, it is unclear if the region was deformed 
repeatedly in response to the tectonic develop-
ment of the Tethyan and Paleo-Asian orogenic 
systems north and south of the Qilian Shan since 
the end of the Qilian orogeny and the onset of the 
Indo-Asian collision (Yin and Nie, 1996; Şengör 
and Natal’in, 1996b; Yin and Harrison, 2000). 
In this work, we address this issue by examin-
ing the structural and stratigraphic relationships 
of a Cretaceous sequence overlain by Miocene 
strata. Our detailed field observations allow us to 
decompose the total deformation magnitude of 
the Cretaceous strata into Cretaceous and Ceno-
zoic components. We show below that the Lower 
Cretaceous strata experienced a compressional 
event and an extensional event in the Cretaceous, 
followed by a Miocene compressional event. Our 
provenance analysis assisted by U-Pb dating of 
detrital zircon suggests that the Lower Creta-
ceous sediments were sourced from the north and 
the south, which implies that the current foreland 
region of the northern Tibetan plateau was a topo-
graphic depression between two highland regions 
in the Early Cretaceous. Our work also shows 
that the Miocene strata in the foreland region of 
the Tibetan plateau was dominantly sourced from 
the north, which implies that the rise of the Qil-
ian Shan did not impact the sediment dispersal in 
the current foreland region of the Tibetan plateau 
where this study was conducted.

REGIONAL GEOLOGY

The Qilian Shan marks the northern margin of 
the Tibetan plateau and hosts the early Paleozoic 
Qilian orogen composed of basement and supra-
crustal rocks of the North China craton and early 
Paleozoic oceanic-arc and mélange complexes 
(Pan and Xiao, 2015; Chen et al., 2019a). Some 
authors considered the Qilian orogen to have 
been generated by accretionary processes (Yin 
and Nie, 1996; Yin and Harrison, 2000; Song 
et al., 2006, 2007, 2013, 2014; Xiao et al., 2009; 
Yang et al., 2010; Chen et al., 2010, 2019a; Pan 
and Xiao, 2015), whereas others show that the 
apparent multi-terrane architecture of the orogen, 
the basis for the accretionary-orogen hypothesis, 
is a result of Cenozoic thrust duplication of a 
single arc-over-continent subduction zone (Yin 
et al., 2007). The Qilian Shan region experienced 
Middle to Late Triassic compression (Chen et al., 
2019a, 2019b), possibly in response to the clo-
sure of the Paleo-Tethyan ocean along the south-
ern margin of the East Kunlun Shan (Chen et al., 
2012, 2015; Wu et al., 2016). Two discrete phases 
of extension have also been documented in the 
area, one in the Early Jurassic and another in the 

Early Cretaceous (Chen et al., 2003; Li, 2003; 
Chen et al., 2014a; Cheng et al., 2019b). These 
extensional events were expressed by the forma-
tion of extensional and transtensional basins and 
rapid cooling of fault-bounded footwall rocks 
(Vincent and Allen, 1999; Chen et al., 2003; Yin 
et al., 2008a, 2008b; Zuza et al., 2016).

The early Paleozoic orogen was reactivated in 
the Cenozoic by the development of the Qilian 
Shan-Nan Shan thrust belt between the North 
China craton in the north and the Qaidam basin 
in the south (Figs. 1–3) (Yin and Harrison, 2000; 
Chen et al., 2003; Wu et al., 2016; Zuza and Yin, 
2016; Zuza et  al., 2016, 2018, 2019; Zhang 
et al., 2017a; Li et al., 2019a, 2021; Lin et al., 
2019; Yu et al., 2019). Restoration of balanced 
cross sections across the Qaidam basin and 
the Qilian Shan-Nan Shan thrust belt indicates 
>250–350 km of Cenozoic N-S shortening has 
been occurred in the region (Yin et al., 2008a, 
2008b; Zuza et al., 2016). The Qilian Shan-Nan 
Shan thrust belt are kinematically linked with 
east-trending left-slip faults and northwest-
trending right-slip faults interpreted as a result 
of a clockwise rotation (Zuza and Yin, 2016). 
Cenozoic shortening strain is higher (>50%) 
along the northern margin of the Qilian Shan-
Nan Shan thrust belt and lower (>30%–35%) in 
the thrust belt interior (Zuza et al., 2016). Below, 
we describe the stratigraphy and structural geol-
ogy in a foreland region north of the Qilian Shan 
based on our own field studies and the incorpora-
tion of existing work.

STRATIGRAPHY

Our study area (Figs. 3, 4, and 5) exposes rocks 
with ages ranging from the Ordovician to the Mio-
cene (Figs. 5 and 6; BGGP, 1971, 1973; BGQP, 
1968). Ordovician rocks are composed of meta-
sandstone, slates, phyllite, schists, mafic volcanic 
rocks, chert, limestone, and marble; Silurian strata 
are mainly meta-greywacke; Devonian strata are 
dominantly volcanic, pyroclastic, and siliciclastic 
rocks; and Carboniferous–Permian units are bio-
clastic and siliceous limestone and fluvial sedi-
ments. Triassic and Jurassic strata in the study 
area are composed of conglomerates, sandstones, 
siltstones, shale, and coal seams (Fig. 3).

The Lower Cretaceous Xinminpu Formation 
(K1xm) consists of sandstone, siltstone, and mud-
stone above a basal layer of pebbly sandstone 
and conglomerate (Fig. 6; BGGP, 1971, 1973). 
We divide the Xinminpu Formation (K1xm) into 
the lower (K1xma) and upper (K1xmb) members 
(Fig. 6). The lower member (K1xma) consists of 
six sub-units (Fig. 6). Sub-unit 1 (K1xma1) is a 
sequence of purple-red and yellow-green con-
glomerate, glutenite, sandstone, and siltstone 
interlayered with argillaceous siltstones. Sub-

unit 2 (K1xma2) comprises pink and gray-green 
conglomerate, sandstone, argillaceous siltstone, 
and mudstone. Sub-unit 3 (K1xma3) is composed 
of grayish-white, gray-green, yellow-green, and 
ash-brown pebbly sandstone, sandstone, argil-
laceous siltstone, and mudstone. Sub-unit 4 
(K1xma4) is a section of brick-red, yellow-green, 
gray-green, gray-brown, yellow, and orange 
mudstones. Sub-unit 5 (K1xma5) consists of light-
yellow, yellow-green, and purple-red glutenite, 
mudstone, pebbly sandstone, and siltstone. Sub-
unit 6 (K1xma6) consists of purple-red and earth-
yellow conglomerate, sandstone, and mudstone. 
The upper member of the Xinminpu Formation 
(K1xmb) consists of two sub-units (Fig. 6). The 
lower sub-unit (K1xmb1) consists of gray-green, 
taupe, and purple-red pebbly sandstone, gluten-
ite, sandstone, and siltstone. The upper sub-unit 
(K1xmb2) comprises brick-red, gray-green, and 
yellow-green sandstone, siltstone, silty mud-
stone, and mudstone.

The Miocene sequence (N1), which is uncon-
formably on top of the Cretaceous and pre-
Cretaceous strata (Figs.  3, 6, and 7), is com-
posed of reddish pebbly sandstone, sandstone, 
sandy mudstone, and argillaceous siltstone 
(BGGP, 1971, 1973). The Pliocene unit (N2) is a 
sequence of interbedded siltstones and conglom-
erates (Liu et al., 2011). Quaternary units in the 
study area can be divided into alluvial, diluvial, 
aeolian, lacustrine, swamp, and chemical depos-
its (Fig. 3).

STUCTURAL GEOLOGY

Folds

Major folds involving Cretaceous strata are 
the Daoshan anticline, the Aoheshan syncline, 
and the Hongshan anticlinorium. The Daoshan 
anticline is an open and asymmetric fold with 
its northeast limb dipping more steeply than its 
southwest limb. It trends S30°E and plunges 24°. 
The core of the fold consists of conglomerate, 
glutenite, sandstone, and siltstone of the lower 
member of the Cretaceous Xinminpu Formation 
(K1xma1) (BGGP, 1971, 1973). The northeastern 
limb has been eroded away, and the remaining 
part of the fold indicates a wavelength of ∼7 km.

The Aoheshan syncline (Figs. 4, 5, and 8) is 
an open and symmetric fold with limbs dipping 
at 35°–45°. The fold hinge line trends S58°E and 
plunges 14°. The fold axial trace can be traced 
for >9 km. The core of the syncline consists of 
unit K1xma5 and the limbs of the syncline con-
sists of unit K1xma6 (the youngest stratigraphic 
unit involved) in its southeast edge. The wave-
length of the fold is ∼7 km.

The Hongshan anticlinorium consists of 
several superimposed folds including a major 
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anticline. The folds trend from east to south-
east and south due to curved axial planes. 
The averaged fold hinge orientation trends 
S62°E and plunges 12°. The involved strata 
are mainly the lower member of the Xinminpu 
Formation. Locally, smaller parasitic folds 
with an average fold wavelength of ∼150 m 
are present in unit K1xmb (Fig. 9). The smaller 
folds trend ∼290°, and their limbs dip gently 
at 15°–30°.

An anticline involving Miocene strata (N1) 
trends S21°W and plunges 12°. It is an asym-
metric fold superimposed on older Cretaceous 
folds (Figs. 5, 10B, and 11). The northwestern 
fold limb dips ∼13°, whereas the southeastern 
fold limb dips 44°–55°.

Faults

The study area exposes the Liyuanpu, Lan-
heba, Gaoerwan, Hongshan, Nianpangou, 
Aohe, and Qijiataizi faults (Fig. 5). The north-
west-striking Liyuanpu fault dips 70°–80° NE. 
It truncates the Lower Cretaceous Xinminpu 
Formation (Fig. 5). The fault extends >80 km 
and merges with the North Qilian thrust at its 
southeastern end (Figs. 1B and 3). The Liyuanpu 
fault and folds in Cretaceous strata are covered 
by Miocene deposits (N1) (Figs. 5 and 10). Sev-
eral branches of the Liyuanpu fault system are 
mapped in the study area, which include the 
Gaoerwan, Donghe, and Lanheba faults (Figs. 4 
and 5). The Liyuanpu fault system truncates the 

Yumushan thrust and nappe system (Chen et al., 
2019b) (Fig. 3). The total displacement along the 
Liyuanpu fault is unknown.

The Lanheba fault is a branching struc-
ture of the Liyuanpu fault (Figs.  4, 5, 10A, 
and 10B), striking ∼320° and dipping 75° to 
N50°E. The fault can be traced for ∼5.5 km. 
Right-separation of a marker bed for ∼70 m 
occurs along the fault (Figs.  10A and 10B). 
Farther southeast, the magnitude of right-sep-
aration along the fault increases from ∼150 m 
to ∼900 m, and finally reaching to ∼1.3 km. 
The fault manifests as a thrust fault, resulting 
in strata thickening in unit K1xma2. The west-
northwest–striking Gaoerwan fault is also a 
branching structure of the Liyuanpu fault, 

Figure 2. Simplified geologic map of the northern Qilian Shan and surrounding regions in NW China—showing simplified fault system 
and distribution of zircon U-Pb granitoid ages. Modified from China Geological Survey (2004). NQLB—North Qilian Orogenic Belt; 
CQLB—Central Qilian Orogenic Belt; SQLB—South Qilian Orogenic Belt (Early Paleozoic). Strata systems: Qh—Holocene; Qp—Pleis-
tocene; N—Neogene; E—Paleogene; K—Cretaceous; J—Jurassic; T—Triassic; P—Permian; C—Carboniferous; D—Devonian; S—Silu-
rian; O—Ordovician; Є—Cambrian; Pt—Proterozoic. Faults: JTF—Jinta fault; SYEF—South Yin’e fault; NQLF—North Qilian fault; 
LSF—Longshou Shan fault; NZF—North Zongwulong Shan fault; HYF—Haiyuan fault; TJF—Tianjing Shan fault. U-Pb age data are 
from: [1] Wang et al. (2020); [2] Zhang et al. (2021); [3] Tang (2015); [4] Zhang et al. (2017b); [5] Liu et al. (2016); [6] Zhou et al. (2016); [7] 
Duan et al. (2015); [8] Qin (2012); [9] Wei et al. (2013); [10] Xue et al. (2017); [11] Liu et al. (2017b); [12] Wang et al. (2019); [13] Chen et al. 
(2014b); [14] Wu et al. (2010); [15] Gehrels et al. (2003b); [16] Wu et al. (2006); [17] Xiong et al. (2012); [18] Zuza et al. (2018); [19] Gong 
et al. (2012); [20] Fu et al. (2020); [21] Song et al. (2013); [22] Tseng et al. (2009); [23] Hu et al. (2005); [24] Liao et al. (2014); [25] Zhang 
et al. (2018); [26] Yu et al. (2018); [27] Shi et al. (2015). Location of Figure 3 is shown with red rectangle.
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Figure 3. Geological map of the study area in the northern Qilian Shan, around the Yumu Shan, NW China, showing location of A–B 
sections in Figure 4. Modified from BGGP (1971, 1973), BGQP (1968), and Chen et al. (2019b). Q4—Holocene; Q3, Q2, and Q1—Upper, 
Middle, and Lower Pleistocene; N2—Pliocene; N1—Miocene; E—Paleogene; K1—Lower Cretaceous; J—Jurassic; T—Triassic; P—
Permian; C2 and C1—Upper and Lower Carboniferous; D—Devonian; S3, S2, and S1—Upper, Middle, and Lower Silurian; O3, O2, 
and O1—Upper, Middle, and Lower Ordovician; Є—Cambrian. CMF—Changma fault; NQLF—North Qilian fault; NYMF—North 
Yumushan fault; SYMF—South Yumushan Fault; LSF—Longshoushan fault; LYF—Liyuanpu fault; SNF—Sunan fault; DGF—
Dagengzi fault; XGF—Xiaogengzi fault; YMK—Yumu klippe. Location of Figure 4 and Figure 5A is shown as a red rectangle.
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which displays a right-separation of ∼1.0 km 
(Figs. 4 and 5).

The Hongshan fault extends for ∼6 km, 
strikes ∼285°, and dips 60°–70° to the north 
(Figs. 4, 5, 10C, and 10D). The fault juxtaposes 
the upper member of the Xinminpu Formation 
(K1xmb) in the hanging wall over the lower 

member of the same formation (K1xma3) in 
the footwall. The Nianpangou fault is a south-
dipping thrust juxtaposing lower member of the 
Xinminpu Formation (K1xma) in the hanging 
wall over the upper member of the same forma-
tion (K1xmb) in the footwall. The thrust strikes 
∼N22°W and dips 65°SW.

The Aohe fault is a NE-dipping oblique 
left-slip reverse fault (Figs. 4 and 5). It places 
unit K1xma3 in the hanging wall over unit 
K1xmb2 in the footwall. The Qijiataizi fault is 
an inferred NW-dipping thrust, and its trace 
is covered by Miocene sediments (N1; Figs. 4  
and 5).

Figure 4. Google-Earth image of the Liyuanpu region in the intersection of the northern Qilian Shan and the southern Hexi Corridor, NW 
China (based on Google Earth image). LYF—Liyuanpu fault; LHF—Lanheba fault; HSF—Hongshan fault; NPF—Nianpangou fault; 
AHF—Aohe fault; QJF—Qijiataizi fault; GEF—Gaoerwan fault; DF—Donghe fault. AHS—Aoheshan syncline; DSA—Daoshan anticline; 
HSA—Hongshan anticlinorium.
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Figure 5. (A) Geological map of the Liyuanpu region, NW China, based on structural interpretation of Google-
Earth image and field observations. Modified from Chen et al. (2019b). Q4—Holocene; Q3—Upper Pleistocene; N1—
Miocene; K1—Lower Cretaceous; P—Permian; C2—Upper Carboniferous; S—Silurian; O3—Upper Ordovician. 
LYF—Liyuanpu fault; LHF—Lanheba fault; HSF—Hongshan fault; AHF—Aohe fault; QJF—Qijiataizi fault; 
NPF—Nianpangou fault; GEF—Gaoerwan fault; DF—Donghe fault. AHS—Aoheshan syncline; DSA—Daoshan 
anticline; HSA—Hongshan anticlinorium. Localities of detrital zircon samples (S1–S13; see Table 1) are shown with 
circles. (B) Geological cross section (profile C–D) across the right lateral strike-slip Liyuanpu fault (LYF) and major 
folds in NE direction, showing relationships among faults and folds developed in the region.
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Growth Strata

Growth strata in sub-unit K1xma3 (Fig.  6) 
are exposed across the southeastern limb of 
the Hongshan anticlinorium. The growth-strata 
relationship is expressed by the shallowing of 
the fold limb dip from 63° stratigraphically 
upwards to 7° over a stratigraphic thickness of 
∼300 m (Fig. 11). Field observations also reveal 
a gradual decrease in grain size from coarse-
grained sandstones at the bottom of the K1xma3 
to fine-grained mudstones at the top (Fig. 6). 
Sub-units K1xma1 and K1xma2 of the Xinminpu 
Formation display parallel lamination and par-
allel bedding, which we interpret as pre-growth 
deposits.

Balanced Cross Section and Restoration

Our detailed mapping allows us to construct 
a balanced cross section (Fig.  5). Using the 

method outlined in Bally et al. (1966) and Dahl-
strom (1969) and the models of fault related folds 
by Suppe (1983), we restored the cross section 
(Fig. 12) through line balancing of a Cretaceous 
marker bed along section C–D in Figure 5. The 
restoration yields a total shortening of ∼7.1 km 
and a shortening strain of ∼35% (Figs. 12A and 
12E). Note that the overlying Miocene strata are 
only mildly folded. Together with the observed 
growth-strata relationship mentioned above, the 
estimated shortening was mainly generated in 
the Cretaceous.

DETRITAL ZIRCON 
GEOCHRONOLOGY

Sample Collection and Description

We collected 12 samples from the Lower 
Cretaceous strata and one sample from the Mio-
cene strata for U-Pb detrital zircon dating and 

provenance analyses. The samples, numbered 
S1 through S13, are listed in Table 1. Sample 
locations on the geological map and in the strati-
graphic column are shown in Figures 5A and 6, 
respectively. Representative petrographic views 
of the samples under the microscope are pro-
vided in Figure 13.

Sample S1 is a massive and medium-coarse-
grained lithic quartz sandstone from the Mio-
cene strata (N1). It consists of quartz (72%), feld-
spar (3%), lithic clasts (15%), cementing calcite 
(7%) and clay minerals (2%), and pores (1%) 
(Fig. 13A). The sample is poorly sorted and the 
clasts are angular.

Sample S2 is a massive coarse-grained 
gravel-bearing lithic sandstone from the middle 
to upper section of the upper member of the 
Xinminpu Formation (K1xmb2). It is comprised 
of quartz (20%), potassium feldspar (20%), pla-
gioclase (14%), lithic fragments (22%; mainly 
mudstone, quartzite, and chert), cement materi-
als (10%), matrix clay minerals (4%), and grav-
els (8%; mainly quartzite) (Fig. 13B). It is poorly 
sorted and the clasts are poorly rounded.

Sample S3 is a massive medium-grained 
lithic quartz sandstone from unit K1xma5. It 
consists of quartz (56%), plagioclase and potas-
sium feldspar (10%), lithic clasts (20%), calcite 
(8%), matrix (6%), and pores (Fig. 13C). The 
lithic clasts are mainly phyllite and mudstone. 
The sample is poorly sorted and the clasts 
poorly rounded.

Sample S4 is a massive coarse-grained gravel-
bearing lithic sandstone from unit K1xma4. It 
is too fragile for making thin sections. Visual 
examination indicates its modal composition 
is dominated by quartz, plagioclase, potassium 
feldspar, and cementing calcite and clay miner-
als. Gravels are mainly quartzite, and lithic clasts 
are mudstone, quartzite, and chert.

Sample S5 is a massive medium-coarse-
grained quartz-dominated sandstone from unit 
K1xma3. It is comprised of quartz (74%), feld-
spar (3%), and lithic clasts (12%), cementing 
calcites and clay minerals (10%), and pores (1%) 
(Fig. 13D). The lithic clasts are mainly quartzite, 
phyllite, and mudstones. It is moderately sorted 
and rounded.

Sample S6 is a massive medium-coarse-
grained quartz sandstone from unit K1xma3. It 
consists of 80% quartz, 3% feldspar, 7% lithic 
clast, and 10% interstitial materials (Fig. 13E). 
It is poorly sorted and rounded. Pyrite framboids 
can be observed under the microscope.

Sample S7 is a massive fine–medium-grained 
feldspar-rich lithic sandstone from unit K1xma3. 
It is composed of 60%–65% quartz, 5%–10% 
plagioclase and potassium feldspar, 20%–25% 
lithic clasts, and 11%–20% interstitial materi-
als (Fig. 13F). Lithic clasts are slates, phyllite, 

Figure 6. Stratigraphic frame-
work of Lower Cretaceous 
Xinminpu Formation (K1xm) 
and Miocene (N1) strata in the 
Liyuanpu region, NW China. 
Typical lithologies are repre-
sented by photographs. Layer 
localities of detrital zircon sam-
ples are also shown.
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chert, siltstone, rhyolite, granite, basalt, and 
mica. It is poorly to moderately rounded, and 
poorly sorted. The sample is weakly sericitized 
and kaolinized.

Sample S8 is a massive muddy micritic lime-
stone collected from unit K1xma2. It consists 
mainly of micritic calcites (83%) and iron-rich 
mud (12%), with minor sparry calcite (3%) and 
silt-sized quartz (2%) (Fig. 13G). The micritic 
calcite is organic-rich, whereas the sparry cal-
cites are present along fractures 0.05–0.1 mm 
wide. Pyrites are distributed in the mud matrix.

Sample S9 is a coarse-grained gravel-bearing 
lithic sandstone from unit K1xma2. It consists 
of 55%–60% quartz, 1%–5% plagioclase and 
potassium feldspars, 25%–30% lithic clasts, 
5%–10% gravel-sized debris, and 10%–15% 
calcite cements and clay-rich interstitial matrix 
materials (Fig.  13H). Lithic clasts are slates, 
phyllite, chert, rhyolite, andesite, and altered 
basalt. Gravel-sized clasts are mainly metamor-
phosed silty sandstone. The sample is weakly 
sericitized and kaolinized.

Sample S10 is a massive medium-grained 
lithic sandstone from unit K1xma2. It consists of 
32% quartz, 8% plagioclase, 50% lithic clasts, 
4% micritic cements, and 6% clay-rich matrix 
(Fig. 13I). It is poorly sorted and rounded. Lithic 
clasts are mainly silty mudstone and rare chert.

Sample S11 is a massive silty mudstone col-
lected from unit K1xma2. It consists of 92% clay 
minerals, 3% sericites, and 5% silt-sized quartz 
grains (Fig. 13J).

Sample S12 is a massive medium–fine-
grained lithic feldspathic sandstone from unit 
K1xma1. It consists of 40% quartz, 23% plagio-
clase, 24% lithic clasts, 6% cements, 6% matrix 
clay minerals, and 1% detrital biotite, muscovite, 
and secondary minerals (Fig. 13 K). It is poorly 
to moderately rounded and poorly sorted. Sparry 
calcites occur as fracture fills. Lithic clasts are 
mainly mudstone fragments.

Sample S13 is a massive coarse-grained lithic 
quartz sandstone collected from unit K1xma1. It 
consists of 80%–85% quartz, 1%–5% potassium 
feldspar, 15%–20% lithic clasts, 2%–8% inter-

stitial materials (Fig.  13L), and a small num-
ber of gravel-sized clasts (2.0–2.5 mm). Lithic 
clasts are rhyolite, tuff, slate, quartzite, chert, and 
sparry limestone. Gravel-sized clasts are rhyolite 
and quartzite. The interstitial materials are fine-
grained clay minerals and calcite cements. It is 
moderately rounded and well sorted. The sample 
is weakly kaolinized.

Sample Preparation and Analytical 
Methods

Detrital zircons were extracted from the sam-
ples through roller crushing and grinding, heavy 
mineral separation and hand picking under bin-
ocular microscope. They were mounted in epoxy 
resin, solidified, and then polished and ground 
to approximately half of the thickness until their 
cores were fully exposed. Zircons were exam-
ined both in reflected and transmitted light, and 
imaged by cathodoluminescence (CL) (Fig. 14), 
to characterize their internal microstructures and 
to target sites.

BA

BA

Figure 7. (A) Geological cross section along profile A–B across the northern Qilian Shan, showing the development of the Yumu Shan thrust 
and nappe system (YMTS). (B) Structural interpretation of the deep seismic reflection profile NQL-2016 across the North Qilian Shan. 
Modified from Chen et al., 2019b. Strata systems and faults are the same as in Figures 2 and 3. See location and abbreviations in Figure 3. 
TWTT—two-way travel time.
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Zircon U-Pb isotope analyses were con-
ducted by laser ablation–multicollector–induc-
tively coupled plasma–mass spectrometry 
(LA-MC-ICP-MS) with Neptune X-Series II 
multi-receiving plasma mass spectrometer 
(ThermoFisher), at the Tianjin Geological 
Survey Center, China Geological Survey. The 
analyses involve zircon ablation with a New 
Wave FX laser (operating at a wavelength of 
193 nm) using a spot diameter of 35 μm (Hu 
et al., 2015a). Details of the instrument param-
eters and analytical procedures are provided 
by Li et al. (2009). Zircon standard 91500 and 
standard glass NIST610 were used as external 
standards for fractionation correction of U-Pb 
isotopes and trace elements, respectively. Each 
set of time-resolved data consists of ∼20–30 s 
of blank analysis and 50 s of sample analysis. 
Data processing, which involved selections of 

sample and blank signals, instrument sensitiv-
ity drift corrections, and calculations of ele-
ment concentrations, and U-Pb isotopic ratios, 
was completed using software ICPMSDataCal 
(Liu et al., 2008). ISOPLOT/Ex_ver3 (Ludwig, 
2003) was used for age calculation.

U-Pb Detrital Zircon Ages

CL images show that the shape and size of 
the zircons are variable (Fig. 14). Most of the 
zircons are rounded, typical for detrital zircon 
grains in sedimentary rocks. A total of 90–110 
zircon grains were selected randomly from each 
sample, and only analyses of 90%–100% con-
cordant were included in the statistical analy-
ses for age spectra. U-Pb ages were calculated 
using 206Pb/238U ratios for zircons ≤1000 Ma 
and 207Pb/206Pb ratio for zircons >1000 Ma. The 

analytical data are reported in Supplementary 
Tables S1–S131, shown on U-Pb concordia dia-
grams (Fig. 15) and age spectra (Fig. 16), and 
summarized in Table 1.

Sample S1. Detrital zircons are prismatic to 
sub-rounded shaped with 50–180 μm in size. 
A total of 103 grains were analyzed, with 12 
discordant ages (concordant <90%) excluded. 
Their Th/U ratios range from 0.03 to 3.98. U-Pb 
ages are grouped around the main peak at ca. 
265 Ma, and minor peaks at ca. 427 Ma and ca. 
367 Ma (Figs. 15A and 16A). The youngest zir-
con age is 257 ± 3 Ma.

1Supplemental Material. U-Pb isotope dating results 
for the detrital zircons from sample S1-S13. Please 
visit https://doi​.org/10.1130/GSAB.S.14489154 
to access the supplemental material, and contact 
editing@geosociety.org with any questions.

A

B

Figure 8. Field photographs of the Aoheshan syncline (AHS) developed in Unit A of the Lower Cretaceous. (A and B) are original photo-
graph and interpreted structure, respectively. Taken at the position of 38°58′27.9″N and 100°2′28.6″E, near a main gate of the Zhangye 
Danxia National Geopark, NW China.
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Sample S2. Detrital zircons are sub-rounded 
and 40–140 μm in size. 92 spots were analyzed, 
and 11 points (<90% concordant) were excluded. 
Th/U values range from 0.06 to 5.85. The U-Pb 
ages are clustered mostly at ca. 408 Ma and ca. 
280 Ma, with minor clusters at ca. 807 Ma, ca. 
932 Ma, and ca. 1884 Ma. The youngest age is 
258 ± 3 Ma (Figs. 15B and 16B).

Sample S3. Detrital zircons are sub-rounded 
and 60–190 μm in size. 109 spots were analyzed, 
and one discordant point (<90% concordant) 
was excluded. The Th/U values range from 0.03 
to 1.67. The main age clusters are at ca. 274 Ma 
and ca. 413 Ma, while two minor clusters are at 
ca. 1744 and ca. 2470 Ma. The youngest age is 
239 ± 3 Ma (Figs. 15C and 16C).

Sample S4. Detrital zircons are sub-rounded 
and 75–180 μm in size. 98 spots were analyzed, 
and two spots were excluded because they 
are <90% concordant. The Th/U values are 
0.08–1.77. The ages are mainly clustered at ca. 
266 Ma and ca. 442 Ma, with minor clusters at 

ca. 1864 and ca. 2582 Ma. The youngest age is 
246 ± 2 Ma (Figs. 15D and 16D).

Sample S5. Detrital zircons are long colum-
nar to sub-rounded, with 65–175 μm in size. 99 
spots were analyzed and 15 discordant points 
(<90% concordant) were excluded. The Th/U 
values range from 0.12 to 3.78. U-Pb ages are 
mainly clustered at ca. 402 Ma and ca. 279 Ma, 
with a minor cluster centered at ca. 1946 Ma. The 
youngest zircon age is 241 ± 3 Ma (Figs. 15E 
and 16E).

Sample S6. Detrital zircons are short colum-
nar to sub-rounded and 50–180 μm in size. 99 
spots were analyzed and none were excluded. 
The Th/U values are 0.09–1.91. The main age 
clusters are at ca. 286 Ma and ca. 473 Ma, and 
minor clusters are at ca. 981 and ca. 1870 Ma, 
respectively. The youngest age is 268 ± 3 Ma 
(Figs. 15F and 16F).

Sample S7. Detrital zircons are prismatic to 
sub-rounded and 65–190 μm in size. 101 spots 
were analyzed, with 10 spots excluded as <90% 

concordant. The Th/U values are 0.18–1.70. 
The main age clusters are at ca. 277 Ma and 
ca. 432 Ma, and minor ones are at ca. 1846 and 
ca. 2488 Ma. The youngest age is 237 ± 2 Ma 
(Figs. 15G and 16G).

Sample S8. Detrital zircons are short columnar 
to sub-rounded and 45–135 μm in size. 98 spots 
were analyzed and 13 analyses were excluded 
because of <90% concordant. Their Th/U values 
are 0.002–2.77. The main age clusters are at ca. 
438 Ma and ca. 277 Ma, and minor clusters are 
at ca. 752 Ma, ca. 957 Ma, and ca. 2486 Ma. The 
youngest age is 233 ± 2 Ma (Figs. 15H and 16H).

Sample S9. Detrital zircons are prismatic to 
sub-rounded and 75–245 μm in size. A total of 
101 spots were analyzed, among which seven 
spots were excluded because of <90% con-
cordant. Their Th/U values are 0.17–2.42. The 
main age clusters are at ca. 280 Ma and ca. 
427 Ma, and minor age clusters are centered at 
ca. 931 and ca. 1841 Ma. The youngest age is 
233 ± 2 Ma (Figs. 15I and 16I).

A B

D E

C

Figure 9. Folds developed in Unit B of the Lower Cretaceous, north to the Hongshan Anticlinorium (HSA), Liyuanpu region, NW China. 
(A) Original and (B) interpreted photographs of the anticline in the north, and (D) original and (E) interpreted photographs of the syncline 
in the south. Relationship between the anticline and syncline are shown in panel C. Location is at 38°56′30.6″N and 100°4′6.4″E.
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Sample S10. Detrital zircons are long colum-
nar to sub-rounded and 70–200 μm in size. 
89 spots were analyzed, of which three were 
excluded. The Th/U values are 0.04–3.90. 
The main age clusters are at ca. 468 Ma and 
ca. 279 Ma, and the minor age clusters are at 
ca. 807 Ma, ca. 967 Ma, ca. 2011 Ma, and ca. 
2505 Ma. The youngest age is 258 ± 3 Ma 
(Figs. 15J and 16J).

Sample S11. Detrital zircons are long colum-
nar to sub-rounded and 45–180 μm in size. 101 
spots were analyzed, with 12 spots excluded. 
The Th/U values are 0.05–13.43. The main age 
clusters are at ca. 435 Ma and ca. 297 Ma, and a 
minor cluster at ca. 974 Ma. The youngest age is 
255 ± 3 Ma (Figs. 15 K and 16 K).

Sample S12. Detrital zircons are long colum-
nar to sub-rounded and 40–170 μm in size. A 
total of 104 spots were analyzed, with two spots 
excluded. The Th/U values are 0.04–1.63. The 
main age clusters are at ca. 304 Ma, ca. 274 Ma, 
ca. 343 Ma, and ca. 442 Ma, and a minor clus-
ter at ca. 1872 Ma. The youngest zircon age is 
244 ± 2 Ma (Figs. 15L and 16L).

Sample S13. Detrital zircons are prismatic 
to sub-rounded and 70–190 μm in size. A total 
of 100 spots were analyzed, and eight discor-
dant analyses were excluded. Their Th/U values 
are 0.12–2.24. The main age clusters are at ca. 
291 Ma and ca. 423 Ma, and minor clusters are at 
ca. 1775 Ma, ca. 1933 Ma, and ca. 2534 Ma. The 
youngest zircon age is 246 ± 3 Ma (Figs. 15 M 
and 16 M).

DISCUSSION

The new geologic map created in this research 
provides the tightly constrained field relationship 
between the formation of folds and the develop-
ment of growth strata in the Cretaceous unit. The 
newly acquired U-Pb detrital zircon ages allow 
a detailed provenance analysis of the Cretaceous 
and Miocene strata from which the samples were 
collected. Below, we discuss the implications of 
our findings.

Previous work shows that the early Paleozoic 
Qilian orogen in northern Tibet was reactivated 
during the Cenozoic Indo-Asian collision by 

the development of thrusting and strike-slip 
faulting (Zuza et al., 2016, 2018, 2019; Li et al., 
2021). Deformation recorded in the Cretaceous 
strata in the northern Tibetan plateau and its 
foreland region may have occurred during the 
onset of the Indo-Asian collision or even before 
(Frost et al., 1995; Dupont-Nivet et al., 2004). 
We propose a three-stage model for the tectonic 
deformation of the study area in the Cretaceous 
and Cenozoic based on the following interpre-
tations. (1) The angular unconformity between 
the Miocene and the Cretaceous strata (Figs. 7 
and 11) implies a protracted erosion and pene-
planation process from the Late Cretaceous 
(i.e., after the deposition of the Lower Creta-
ceous strata) to the end of Paleogene when the 
Miocene strata were deposited. In this interpre-
tation, folding in the Lower Cretaceous strata 
occurred prior to the interpreted peneplanation 
event. (2) The occurrence of growth strata in 
unit K1xma3 indicates folding during the depo-
sition of the Early Cretaceous in the study area. 
(3) The local presence of the upper member 
of the Xinminpu Form (K1xmb), and drastic 

A B

DC

Figure 10. Field photographs of typical faults developed in the Liyuanpu region, NW China. (A) Original and (B) interpreted photograph 
of the Lanheba fault (LHF), which branches off the major right-lateral strike-slip Liyuanpu fault (LYF) at a small angle (Fig. 5) (photo 
taken at 38°58′10.5″N and 100°1′42.9″E). The strike-slip fault system is unconformably covered by shallowly dipping Miocene sedimentary 
rocks (N1). (C) Original and (D) interpreted photographs of the Hongshan fault (HSF), which is a steep north-dipping normal fault that cuts 
Lower Cretaceous rocks (taken at 38°55′54.8″N and 100°5′42.6″E).
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contrast in the tightness of folds in the Creta-
ceous and Miocene strata requires a significant 
shortening event in the study area prior to the 
Miocene, consistent with our growth-strata 
relationship. (4) The occurrence of normal 
faulting at the time between the deposition of 
the upper and lower member of the Xinminpu 
Formation (Figs.  10C and 10D) suggests an 
extensional origin for the deposition of the 
upper member. The three-stage tectonic model 
is shown in Figure 12 and detailed below.

Stage 1. Early Cretaceous Folding and 
Thrust faulting

We infer that the sub-unit K1xma3 (Fig.  6) 
as a set of growth strata were deposited in 
the piedmont depression as a response to the 
development of the Daoshan anticline and the 
Hongshan anticlinorium during the earlier Early 
Cretaceous. Major folds, such as the Daoshan 
anticline, the Aoheshan syncline (Fig. 8), and 
the Hongshan anticline were created during 
NE-SW compression during the development 
of the growth strata (Fig. 11). Coeval with this 
folding was the development of the Yumushan 

thrust and nappe system and Yumushan klippe 
documented by an earlier study (Figs. 3 and 7; 
Chen et  al., 2019b). Possible thrust-induced 
basins in the Early Cretaceous may include the 
Pingshanhu basin deposited prior to ca. 129 Ma 
(Shao et  al., 2019) north to the Longshou 
Shan thrust.

We suggest that the Early Cretaceous com-
pressional event in the study area of northern-
most Tibet and its foreland occurred during the 
final closure of the Bangong-Nujiang ocean and 
continued convergence between the Lhasa and 
Qiangtang terranes (Kazmin, 1991; Kapp et al., 
2003; Volkmer et  al., 2007; Metcalfe, 2013; 
Li et al., 2019c; Tang et al., 2020; Zhao et al., 
2017; Ma et  al., 2018; Lai et  al., 2019; Cao 
et al., 2019; Chen et al., 2020; Li et al., 2020b). 
Li et al. (2019b) suggested the final closure of 
the Bangong-Nujiang ocean and the initial col-
lision between the Lhasa and the Qiangtang 
terranes occurred at 152–150 Ma. Accelerated 
exhumation and crustal thickening was initiated 
at ca. 150 Ma in the southern Qiangtang terrane 
(Zhao et al., 2017, 2020). Paleomagnetic stud-
ies indicate that the Lhasa-Qiangtang collision 
may have occurred at ca. 145 Ma (Ma et  al., 

2018). Early Cretaceous basin evolution in the 
northern Lhasa terrane implies the timing of the 
initial Lhasa-Qiangtang collision at ca. 122 Ma 
(Lai et al., 2019) or before ca. 119 Ma (Li et al., 
2020b). The above timing is consistent with the 
age of compressional deformation in our study 
area (Fig. 17A).

Stage 2A. Post-folding Early Cretaceous 
Normal Faulting

Our field mapping and field observations 
show that the WNW-striking Hongshan fault 
is a normal fault developed during the later 
stage of the Early Cretaceous. Its orientation 
indicates approximately N-S extension. The 
strike of this fault is generally parallel to the 
trend of the other known Cretaceous exten-
sional basins in the Qilian Shan foreland (i.e., 
the Hexi Corridor), which include the Early 
Cretaceous grabens and half-grabens in the 
Cretaceous Jiuquan, Minle, Chaoshui, and 
Pingshanhu basins (Vincent and Allen, 1999; 
Li, 2003; Chen et  al., 2014a; Cheng et  al., 
2019b; Shao et al., 2019). Detrital zircon U-Pb 
dating revealed the formation of grabens and 

A

B

Figure 11. Growth strata developed in Unit A of the Lower Cretaceous Xinminpu Formation, in the south limb of the Hongshan Anticlino-
rium (taken at 38°55′12.2″N and 100°5′8.9″E), Liyuanpu region, NW China. (A and B) are original photograph and interpreted structure, 
respectively. The growth strata are covered by Miocene sedimentary rocks (N1) with gentle dips.
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A

B

C

D

E

Figure 12. Restoration and kinematic reconstruction of the cross section shown in Figure 5 (see Fig. 5 for abbreviations). The 
strata have been divided into Pre-Cretaceous (PreK), Units A and B of the Lower Cretaceous Xinminpu Formation (K1xma–
K1xmb), Miocene (N1), and Holocene (Q4). (A) Undeformed restoration of the balanced section (see location in Fig. 5A), with 
original section length of 20.2 km. (B) Development of folds and thrusts in the earlier stage of Early Cretaceous. (C) Develop-
ment of right-lateral strike-slip faults (e.g., LYF) and normal faults in the later stage of Early Cretaceous, followed by ero-
sion during the Late Cretaceous and Paleogene. (D) Gently folding since Miocene, followed by erosion since Pleistocene and 
sedimentation in Holocene. (E) Present-day deformed-state cross section as shown in Figure 5. Total shortening strain in this 
model is 7.1 km or ∼35.1% strain.
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TABLE 1. SUMMARY OF DETRITAL ZIRCON U-Pb DATING OF LOWER CRETACEOUS AND MIOCENE 
SEDIMENTARY ROCK SAMPLES FROM THE LIYUANPU AREA, NW CHINA

No. Sample no. Stratum
layer

GPS position Elevation 
(m)

Lithology Mineral 
assemblage

Peak ages 
(Ma)

Youngest 
age (Ma)Lat (°N) Long (°E)

S1 SQL2017-404-2 N1 38°58′24.0″ 100°2′17.9″ 1737 Lithic quartz sandstone Qz + Lf + Fs 265, 367, 427 257
S2 QL2017-4-4 K1xmb2 38°56′27.8″ 100°4′43.1″ 1736 Gravel-bearing lithic sandstone Qz + Lf + Kfs + Pl 280, 408, 807, 932, 1884 258
S3 QL0921-7-1 K1xma5 38°56′19.7″ 100°6′49.9″ 1712 Lithic quartz sandstone Qz + Lf + Pl 274, 413, 1744, 2470 239
S4 QL2017-36-1 K1xma4 38°55′38.7″ 100°6′56.7″ 1698 Gravel-bearing lithic sandstone Qz + Lf + Fs 266, 442, 1864, 2582 246
S5 SQL2017-419-1 K1xma3 38°58′5.0″ 100°1′17.2″ 1795 Lithic quartz sandstone Qz + Lf + Fs 279, 402, 1946 241
S6 QL2017-28-1 K1xma3 38°55′12.2″ 100°5′8.9″ 1784 Lithic quartz sandstone Qz + Lf + Fs 286, 473, 981, 1870 268
S7 QL2018007-1 K1xma3 38°55′45.22″ 100°2′5.4″ 1808 Lithic sandstone Qz + Lf + Fs 277, 432, 1846, 2488 237
S8 SQL2017-425-1 K1xma2 38°57′00″ 100°3′46.4″ 1745 Micritic limestone Mi + Ia 292, 438, 752, 957, 2486 233
S9 QL2018021-1 K1xma2 38°55′8.67″ 100°4′46.91″ 1730 Gravel-bearing lithic sandstone Qz + Lf + Fs 280, 427, 931, 1841 233
S10 QL2017-8-1 K1xma2 38°56′28.3″ 100°3′28″ 1797 Lithic sandstone Qz + Lf + Pl 279, 468, 807, 967, 2011, 2505 258
S11 SQL2017-410-1 K1xma2 38°58′11.5″ 100°1′46.1″ 1749 Silty mudstone Cl + Qz + Ms 297, 435, 974 255
S12 QL2017-12-1 K1xma1 38°56′7.4″ 100°2′55.1″ 1823 Lithic feldspathic sandstone Qz + Lf + Pl 274, 304, 343, 442, 1872 244
S13 QL2018060-1 K1xma1 38°53′13.84″ 100°2′52.23″ 1927 Lithic quartz sandstone Qz + Lf + Fs 291, 423, 1775, 1933, 2534 246

Notes: Qz—quartz; Fs—feldspar; Lf—lithic fragment; Mi—micrite; Ia—Iron argillaceous; Kfs—K-feldspar; Pl—plagioclase; Cl—clay mineral; Ms—muscovite.
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Figure 13. Photomicrographs of sedimentary rocks from Miocene (A) and Lower Cretaceous (B–L) in the Liyuanpu region, NW 
China. (A) S1—SQL2017-404-2; (B) S2—QL2017-4-4; (C) S3—QL0921-7-1; (D) S5—SQL2017-419-1; (E) S6—QL2017-28-1; 
(F) S7—QL2018007-1; (G) S8—SQL2017-425-1; (H) S9—QL2018021-1; (I) S10—QL2017-8-1; (J) S11—SQL2017-410–1; (K) 
S12—QL2017-12-1; (L) S13—QL2018060-1. Except plane polarized light for samples S8 and S11, the others are all under crossed 
polarized light. Qz—Quartz; Cal—Calcite; Kfs—K-feldspar; Pl—Plagioclase; Cly—Clay minerals; Vc—Volcanic debris.
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half-grabens in the Pingshanhu basin was on-
going at ca. 129 Ma (Shao et al., 2019). The 
Yagan metamorphic core complex north of our 
study area occurred at 129–126 Ma (Zheng and 
Zhang, 1994). Continental basalts with ages 
of 120–102 Ma indicate Early Cretaceous 

extension in the Hexi Corridor and Alxa block 
(Tang et al., 2012; Hui et al., 2020). The Cre-
taceous extensional event may explain earlier 
observed apatite fission-track cooling ages at 
124 ± 11 Ma from Triassic granite samples 
in the Qilian Shan (Qi et al., 2016; Li et al., 

2019a, 2020a). Finally, an extensional event at 
ca. 100 Ma was reported in the eastern Altyn 
Tagh range during the development of east-
striking Lapeiquan detachment fault (Chen 
et al., 2003). We suggest that the extensional 
event may have been induced by gravitational 
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L

Figure 14. Cathodoluminescence images of representative detrital zircons 
from the Miocene (sample S1) and Lower Cretaceous (samples S2–S13) sam-
ples, Liyuanpu region, NW China, with individual laser ablation–multicollec-
tor–inductively coupled plasma–mass spectrometry U-Pb spot ages.
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collapse of a thickened continental lithosphere 
in northern Tibet.

Stage 2B. Cretaceous Right-Slip Duplex 
Development

According to the regional structural rela-
tionship, the Liyuanpu fault postdates the 
Yumushan thrust and nappe system (Chen 
et  al., 2019b). Its inferred right-slip faulting 
may have been coeval with extension along 

the Hongshan fault (Fig. 12C). The Liyuanpu, 
Lanheba, Aohe and Qijiataizi faults that bound 
the Hongshan anticlinorium display a strike-
slip duplex-like fault network, which is similar 
with the strike-slip duplex in northern Altyn 
Tagh (Cowgill et al., 2000). Right-slip faulting 
may have caused the distortion of the earlier 
folds, which may explain why the fold axis of 
the Aoheshan syncline changes its trend along 
the fold trace (Fig. 18). Regionally, the Hexi 
Corridor was proposed to have been bounded 

by dextral motion of the North Qilian and 
Longshou Shan fault systems in Early Creta-
ceous (Vincent and Allen, 1999).

Stage 3. Folding of Miocene Strata

The Cenozoic Indo-Asian collision affected 
vast regions of Asia from the Himalaya in the 
south to Lake Baikal in the north over a distance 
of more than 4000 km in the north-south direc-
tion (Molnar and Tapponnier, 1975; Tapponnier 

Figure 15. Laser ablation–mul-
ticollector–inductively coupled 
plasma–mass spectrometry 
U-Pb concordia diagrams for 
detrital zircon samples from 
Miocene (sample S1) and 
Lower Cretaceous (samples 
S2–S13) samples, Liyuanpu re-
gion, NW China.
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et al., 1990; Molnar, 1998; Yin and Harrison, 
2000; Zhao et al., 2006; Clark et al., 2010; Yin, 
2010; Najman et al., 2010; Wu et al., 2014; Hu 
et al., 2015b; Xu et al., 2016; Xiao et al., 2017; 
Wang et al., 2018; Colleps et al., 2020). Dur-
ing the initial of the Indo-Asian collision, the 
South Qilian and Nan Shan thrust belt started 
its activities along its southern margin against 
the Qaidam basin (65–50 Ma), and the left-slip 
Altyn Tagh fault was initiated at ca. 49 Ma (Yin 
et  al., 2002, 2008a, 2008b). The basal sedi-
ments in the Qaidam basin (i.e., Lulehe For-
mation) are generally interpreted to be Eocene, 
which suggests thrust loading along its margins 
by the early Cenozoic (e.g., Chang et al., 2015; 
Ke et al., 2013; Yin et al., 2008a; Ji et al., 2017; 
Cheng et  al., 2019b), although others have 
argued for an Oligocene-Miocene age for this 
formation (e.g., Wang et al., 2017). Apatite He 
cooling ages suggest that the southern margin 
of the Qaidam basin may have begun to rise 

at ca. 35 Ma (Clark et al., 2010). The interior 
of the Qilian Shan-Nan Shan thrust belt expe-
rienced exhumation in the early Cenozoic (Li 
et al., 2020a), and detrital thermochronology 
from the northern foreland supports Eocene 
exhumation of parts of the Qilian Shan (An 
et al., 2020). The Qilian Shan-Nan Shan thrust 
belt expanded outward with the initiation of 
tranpressional deformation associated with the 
Haiyuan fault at ca. 17–16 Ma, including initia-
tion of the North Qilian thrust system (George 
et al., 2001; Wang et al., 2016; An et al., 2018; 
Lin et al., 2019; Li et al., 2019a, 2020a). The 
lack of the Upper Cretaceous and Paleogene 
strata in our study area indicates a period of 
tectonic quiescence from the Late Cretaceous 
to the middle Miocene (Li et al., 2019a). The 
formation of broad and gentle folds in the Mio-
cene strata (N1) may be the result of the most 
recent northward expansion of the Qilian Shan-
Nan Shan thrust belt.

Source Areas of Cretaceous and Miocene 
Strata

Detrital zircon age spectra of the Lower Cre-
taceous strata (samples S2–S13 in Fig. 16 and 
Table 1) are dominated by two age clusters at 
442–423 Ma and 297–266 Ma. The lack of detri-
tal zircon ages of 0.8–0.9 Ga from the plutonic 
rocks of the interior part of the Qilian Shan-Nan 
Shan thrust belt (Zuza et al., 2018) led us to sug-
gest that main source areas for the Cretaceous 
strata are from the region to the north, affected 
by the development of the Paleo-Asia orogenic 
system and the northern margin of the Qilian 
Shan-Nan Shan thrust belt. This suggestion is 
consistent with paleocurrent data derived in the 
Liyuanpu area, which implies Lower Cretaceous 
sediments were derived from both the Qilian 
Shan in the south and the Longshou Shan in the 
north (Vincent and Allen, 1999). The Alxa area 
to the north exposes Middle Ordovician–Early 

Figure 15. (Continued)
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Devonian granitoids with ages of 461–441 Ma 
and 432–397 Ma (Fig.  2; Zhang and Gong, 
2018; Wang et al., 2020). The Qilian Shan area 
exposes granitoids of ca. 500–420 Ma (Fig. 2; 
Xu et al., 1999; Gehrels et al., 2003a, 2003b, 
2011; Wu et al., 2006, 2017; Cheng et al., 2019a; 
Liu et  al., 2019). The Permian (297–266 Ma) 

detrital zircon in the Cretaceous strata may 
have been derived from the late Paleozoic–early 
Mesozoic Badain Jaran magmatic arc in the Alxa 
area where Late Carboniferous–early Triassic 
(289–269 Ma) plutons are exposed (Fig. 2; Geng 
and Zhou, 2012; Chen et al., 2013; Zheng et al., 
2014; Zhang et al., 2015; Shi et al., 2016; Liu 

et al., 2017a). Following Cheng et al. (2019a), 
we suggest that the current topographic depres-
sion between the Qilian Shan and Longmen 
Shan was also a topographic depression in the 
Early Cretaceous. Some detrital zircons from the 
Lower Cretaceous strata yield Paleoproterozoic 
ages clustered at 2.58–2.47 Ga and 1.95–1.75 Ga 

Figure 16. U-Pb age spectra 
of the detrital zircon samples 
from Miocene (N1) and Lower 
Cretaceous (K1) strata in the 
Liyuanpu region, NW China. 
Cz—Cenozoic; Mz—Me-
sozoic; L.Pz—Late Paleo-
zoic; E.Pz—Early Paleozoic; 
Pt3—Neoproterozoic; Pt2—
Mesoproterozoic; Pt1—Paleo-
proterozoic; Ar—Archean. 
Unit of age is Ma.
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(Fig. 16). These ages are consistent with the ages 
of the Precambrian basement rocks in the Alxa 
area and North China north of our study area 
(Zhai and Santosh, 2011; Wu et al., 2005; Zhao 
et al., 2005, 2010, 2012; Jiang et al., 2010; Wan 
et al., 2014).

U-Pb detrital-zircon ages from the Miocene 
sediments (sample S1; Fig. 16A and Table 1) 
are dominated by a major ca. 265 Ma (Permian) 
age peak and minor ca. 427 Ma (Silurian) and 
ca. 367 Ma (Late Devonian) age peaks. These 
ages peaks are similar to the ages of plutons 
(289–269 Ma) in the Alxa area (Fig. 2; Geng and 
Zhou, 2012), and the Beishan orogenic belt with 
granite plutons of 310 Ma to 230 Ma (Cheng 
et al., 2019a). Although Permo-Triassic plutons 
are present in the southern and central Qilian 

Shan, they are separated from the northern Qil-
ian Shan by a watershed in the range south of 
Yeniugou valley. The Alxa region north to the 
Hexi Corridor could have been a topographi-
cal height north of the Hexi Corridor before the 
rise of the northern Qilian Shan in the Miocene 
(Fig.  17D). In contrast, the northern Qaidam 
basin may have also been higher in the early 
Oligocene than the northern Qilian Shan (Song 
et al., 2020).

CONCLUSIONS

In this study we address the problem of 
whether the northern margin region of the 
Tibetan plateau had experienced a compres-
sional event in the Cretaceous. To answer this 

question, we conducted detailed field mapping, 
stratigraphic description, U-Pb detrital zircon 
dating of Cretaceous strata, examination of 
growth-strata relationships, and construction 
and restoration of balanced cross sections. Our 
field mapping reveals multiple phases of defor-
mation in the area since the Early Cretaceous, 
which was expressed by northwest-trending 
folding and northwest-striking thrusting that 
occurred at the early stage of the Early Creta-
ceous. The compressional event was followed 
immediately by extension and linked right-slip 
faulting in the later stage of the Early Cretaceous. 
The area underwent gentle northwest-trending 
folding since the late Miocene. We estimate the 
magnitude of the Early Cretaceous crustal short-
ening to be ∼35%, which we interpret to have 

A

B

C

D

Figure 17. Tectonic evolution of the northern Qilian Shan and the Hexi Corridor, NW China since the Cretaceous. (A and D) are tectonic 
models for Early Cretaceous and early Miocene, respectively. Modified from Kapp and DeCelles (2019). (B and C) illustrate the extension 
and dextral strike-slip faulting in the late Early Cretaceous, respectively. NQL—North Qilian Shan; HX—Hexi Corridor; SQL—South 
Qilian Shan; YM—Yumu Shan; BNS—Bangong Co-Nujiang Suture; JS—Jinsha Suture; KS—Kunlun Suture; SCQLF—South Central 
Qilian fault; NCQLF—North Central Qilian fault; NQLF—North Qilian fault; LSF—Longshoushan fault; KLF—Kunlun fault; SQDF—
South Qaidam fault; NQDF—North Qaidam fault; SYNF—South Yeniugou fault; CMF—Changma fault; JTF—Jinta fault; HSF—Hong-
shan fault; LYF—Liyuanpu fault; K—Cretaceous.
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resulted from a far-field response to the collision 
between the Lhasa and the Qiangtang terranes 
in the south. We suggest that the subsequent 
extension in the Early Cretaceous was induced 
by orogenic collapse. U-Pb dating of detrital 
zircons, from the Lower Cretaceous sedimen-
tary clasts, suggests they were sourced from the 
north and the south, which implies the current 
foreland region of the Tibetan plateau was a 
topographic depression between two highland 
regions in the Early Cretaceous. Our work also 
shows that the Miocene strata in the foreland 
region of the northern Tibetan plateau was dom-
inantly sourced from the north, which implies 
that the rise of the Qilian Shan did not impact 
the sediment dispersal in the current foreland 
region of the Tibetan plateau where this study 
was conducted.
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