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ABSTRACT

Although the Cenozoic Indo-Asian col-
lision is largely responsible for the forma-
tion of the Tibetan plateau, the role of pre-
Cenozoic structures in controlling the timing
and development of Cenozoic deformation
remains poorly understood. In this study
we address this problem by conducting an
integrated investigation in the northern fore-
land of the Tibetan plateau, north of the Qil-
ian Shan-Nan Shan thrust belt, NW China.
The work involves field mapping, U-Pb
detrital-zircon dating of Cretaceous strata
in the northern foreland of the Tibetan pla-
teau, examination of growth-strata relation-
ships, and construction and restoration of
balanced cross sections. Our field mapping
reveals multiple phases of deformation in the
area since the Early Cretaceous, which was
expressed by northwest-trending folding and
northwest-striking thrusting that occurred
in the early stages of the Early Cretaceous.
The compressional event was followed imme-
diately by extension and kinematically linked
right-slip faulting in the later stage of the
Early Cretaceous. The area underwent gen-
tle northwest-trending folding since the late
Miocene. We estimate the magnitude of the
Early Cretaceous crustal shortening to be
~35%, which we interpret to have resulted
from a far-field response to the collision
between the Lhasa and the Qiangtang ter-
ranes in the south. We suggest that the subse-
quent extension in the Early Cretaceous was
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induced by orogenic collapse. U-Pb dating of
detrital zircons, sourced from Lower Creta-
ceous sedimentary clasts from the north and
the south, implies that the current foreland
region of the Tibetan plateau was a topo-
graphic depression between two highland
regions in the Early Cretaceous. Our work
also shows that the Miocene strata in the
foreland region of the northern Tibetan pla-
teau was dominantly sourced from the north,
which implies that the rise of the Qilian Shan
did not impact the sediment dispersal in the
current foreland region of the Tibetan pla-
teau where this study was conducted.

INTRODUCTION

One of the important questions with regard
to the development of the Tibetan plateau is
whether its current high topography was con-
structed entirely during the Cenozoic Indo-Asian
collision (e.g., England and Houseman, 1986;
Tapponnier et al., 2001; Wang et al., 2008) or a
superposed result of Cenozoic and pre-Cenozoic
crustal shortening (e.g., Murphy et al., 1997).
The first scenario predicts the Qilian Shan of
northernmost Tibet was a lowland in the Creta-
ceous, with an elevation similar to that of a typi-
cal stable craton at an elevation of ~500 m (e.g.,
England and Houseman, 1986); its current high
topography did not appear until the late Ceno-
zoic after ca. 20-15 Ma (e.g., Tapponnier et al.,
2001). The second scenario implies that parts of
the Tibetan plateau could have been higher than
the average elevation of a typical craton because
the region experienced multiple tectonic events
related to subduction, ocean closure, and terrane
collision during the development of the Tethys
orogenic system (Murphy et al., 1997; Jolivet
et al., 2001; Kapp et al., 2003, 2007; Li et al.,

2019a, 2020a; Zhao et al., 2020). Although
the hypothesis of a proto-plateau in southern
Tibet has been carefully investigated (Murphy
et al., 1997; Kapp et al., 2003), the possibil-
ity that the northern Tibetan plateau may have
also been a highland region immediately prior
to the Cenozoic Indo-Asian collision has never
been thoroughly investigated. Yet, the existence
of such a proto-highland region in northern
Tibet has important implications for the current
understanding of the relationship between the
Tibetan-plateau formation and climate change
in Asia (e.g., Raymo and Ruddiman, 1992;
Licht et al., 2014). It also has implications for
mass-balance calculations and estimates of total
crustal shortening for the Cenozoic construc-
tion of the Tibetan plateau (e.g., van Hinsbergen
et al., 2011; Yakovlev and Clark, 2014; Zuza
et al., 2016).

The northern margin of the Tibetan plateau is
marked by the northwest-trending Qilian Shan
that hosts the early Paleozoic Qilian orogen
(Fig. 1) (e.g., Sengdr and Natal’in, 1996a; Yin
and Harrison, 2000; Heubeck, 2001; Stampfli
and Borel, 2002; Yin et al., 2007; Stampfli et al.,
2013; Xiao et al., 2015; Wu et al., 2016, 2020a,
2020b; Zuza and Yin, 2016; Zuza et al., 2018).
Because the Qilian Shan is the site of the early
Paleozoic orogen (e.g., Sengor and Natal’in,
1996b; Yang et al., 2002; Yin and Harrison, 2000;
Xiao et al., 2009; Song et al., 2013; Zuza et al.,
2018) and a Cenozoic thrust belt (Yin et al., 2002,
2008a, 2008b; Zuza et al., 2016, 2019), previ-
ous geologic research has focused exclusively
on the timing and processes of these two most
dominant geologic events in the region (e.g., Yin
and Harrison, 2000; Gehrels et al., 2003a, 2003b;
Yin, 2010). With a few exceptions (e.g., Vincent
and Allen, 1999; Jolivet et al., 2001; Chen et al.,
2003; Gehrels et al., 2011), the intervening
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Figure 1. (A) Tectonic map of the Tethyan and the Paleo-Asian orogenic systems (modified from Wu et al., 2016, 2017). UHP—ultra
high pressure. KQD—Kunlun-Qinling-Dabie suture; NQS and SQS—North and South Qilian sutures; NQGS, CQGS, and SQGS—
North, Central, and South Qinling sutures; JS—Jinsha suture; BN—Bangong-Nujiang suture; IT—Indus-Tsangpo suture. QKT—
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Sketched fault tectonic map of the Qilian Shan-Nan Shan Range and its adjacent regions (modified from Gao et al., 2013; Zuza
et al., 2016; Wu et al., 2017). HC—Hexi Corridor; NQLF—North Qilian fault; LYF—Liyuanpu fault; LSF—Longshou Shan fault.
Underlying base map is from www.geomapapp.org (Ryan et al., 2009).
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Superposition of Cretaceous and Cenozoic deformation in northern Tibet

history between the early Paleozoic Qilian orog-
eny and Cenozoic construction of the northern
Tibetan plateau remains poorly understood. For
example, it is unclear if the region was deformed
repeatedly in response to the tectonic develop-
ment of the Tethyan and Paleo-Asian orogenic
systems north and south of the Qilian Shan since
the end of the Qilian orogeny and the onset of the
Indo-Asian collision (Yin and Nie, 1996; Sengor
and Natal’in, 1996b; Yin and Harrison, 2000).
In this work, we address this issue by examin-
ing the structural and stratigraphic relationships
of a Cretaceous sequence overlain by Miocene
strata. Our detailed field observations allow us to
decompose the total deformation magnitude of
the Cretaceous strata into Cretaceous and Ceno-
zoic components. We show below that the Lower
Cretaceous strata experienced a compressional
event and an extensional event in the Cretaceous,
followed by a Miocene compressional event. Our
provenance analysis assisted by U-Pb dating of
detrital zircon suggests that the Lower Creta-
ceous sediments were sourced from the north and
the south, which implies that the current foreland
region of the northern Tibetan plateau was a topo-
graphic depression between two highland regions
in the Early Cretaceous. Our work also shows
that the Miocene strata in the foreland region of
the Tibetan plateau was dominantly sourced from
the north, which implies that the rise of the Qil-
ian Shan did not impact the sediment dispersal in
the current foreland region of the Tibetan plateau
where this study was conducted.

REGIONAL GEOLOGY

The Qilian Shan marks the northern margin of
the Tibetan plateau and hosts the early Paleozoic
Qilian orogen composed of basement and supra-
crustal rocks of the North China craton and early
Paleozoic oceanic-arc and mélange complexes
(Pan and Xiao, 2015; Chen et al., 2019a). Some
authors considered the Qilian orogen to have
been generated by accretionary processes (Yin
and Nie, 1996; Yin and Harrison, 2000; Song
et al., 2006, 2007, 2013, 2014; Xiao et al., 2009;
Yang et al., 2010; Chen et al., 2010, 2019a; Pan
and Xiao, 2015), whereas others show that the
apparent multi-terrane architecture of the orogen,
the basis for the accretionary-orogen hypothesis,
is a result of Cenozoic thrust duplication of a
single arc-over-continent subduction zone (Yin
etal., 2007). The Qilian Shan region experienced
Middle to Late Triassic compression (Chen et al.,
2019a, 2019b), possibly in response to the clo-
sure of the Paleo-Tethyan ocean along the south-
ern margin of the East Kunlun Shan (Chen et al.,
2012,2015; Wu et al., 2016). Two discrete phases
of extension have also been documented in the
area, one in the Early Jurassic and another in the
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Early Cretaceous (Chen et al., 2003; Li, 2003;
Chen et al., 2014a; Cheng et al., 2019b). These
extensional events were expressed by the forma-
tion of extensional and transtensional basins and
rapid cooling of fault-bounded footwall rocks
(Vincent and Allen, 1999; Chen et al., 2003; Yin
et al., 2008a, 2008b; Zuza et al., 2016).

The early Paleozoic orogen was reactivated in
the Cenozoic by the development of the Qilian
Shan-Nan Shan thrust belt between the North
China craton in the north and the Qaidam basin
in the south (Figs. 1-3) (Yin and Harrison, 2000;
Chen et al., 2003; Wu et al., 2016; Zuza and Yin,
2016; Zuza et al., 2016, 2018, 2019; Zhang
et al., 2017a; Li et al., 2019a, 2021; Lin et al.,
2019; Yu et al., 2019). Restoration of balanced
cross sections across the Qaidam basin and
the Qilian Shan-Nan Shan thrust belt indicates
>250-350 km of Cenozoic N-S shortening has
been occurred in the region (Yin et al., 2008a,
2008b; Zuza et al., 2016). The Qilian Shan-Nan
Shan thrust belt are kinematically linked with
east-trending left-slip faults and northwest-
trending right-slip faults interpreted as a result
of a clockwise rotation (Zuza and Yin, 2016).
Cenozoic shortening strain is higher (>50%)
along the northern margin of the Qilian Shan-
Nan Shan thrust belt and lower (>30%-35%) in
the thrust belt interior (Zuza et al., 2016). Below,
we describe the stratigraphy and structural geol-
ogy in a foreland region north of the Qilian Shan
based on our own field studies and the incorpora-
tion of existing work.

STRATIGRAPHY

Our study area (Figs. 3, 4, and 5) exposes rocks
with ages ranging from the Ordovician to the Mio-
cene (Figs. 5 and 6; BGGP, 1971, 1973; BGQP,
1968). Ordovician rocks are composed of meta-
sandstone, slates, phyllite, schists, mafic volcanic
rocks, chert, limestone, and marble; Silurian strata
are mainly meta-greywacke; Devonian strata are
dominantly volcanic, pyroclastic, and siliciclastic
rocks; and Carboniferous—Permian units are bio-
clastic and siliceous limestone and fluvial sedi-
ments. Triassic and Jurassic strata in the study
area are composed of conglomerates, sandstones,
siltstones, shale, and coal seams (Fig. 3).

The Lower Cretaceous Xinminpu Formation
(K;xm) consists of sandstone, siltstone, and mud-
stone above a basal layer of pebbly sandstone
and conglomerate (Fig. 6; BGGP, 1971, 1973).
We divide the Xinminpu Formation (K,xm) into
the lower (K;xm?) and upper (K;xmP) members
(Fig. 6). The lower member (K,xm?) consists of
six sub-units (Fig. 6). Sub-unit 1 (K;xm?!) is a
sequence of purple-red and yellow-green con-
glomerate, glutenite, sandstone, and siltstone
interlayered with argillaceous siltstones. Sub-
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unit 2 (K;xm*?) comprises pink and gray-green
conglomerate, sandstone, argillaceous siltstone,
and mudstone. Sub-unit 3 (K,;xm*) is composed
of grayish-white, gray-green, yellow-green, and
ash-brown pebbly sandstone, sandstone, argil-
laceous siltstone, and mudstone. Sub-unit 4
(K,xm*) is a section of brick-red, yellow-green,
gray-green, gray-brown, yellow, and orange
mudstones. Sub-unit 5 (K, xm®*) consists of light-
yellow, yellow-green, and purple-red glutenite,
mudstone, pebbly sandstone, and siltstone. Sub-
unit 6 (K, xm?) consists of purple-red and earth-
yellow conglomerate, sandstone, and mudstone.
The upper member of the Xinminpu Formation
(K,xmb) consists of two sub-units (Fig. 6). The
lower sub-unit (K,xm"") consists of gray-green,
taupe, and purple-red pebbly sandstone, gluten-
ite, sandstone, and siltstone. The upper sub-unit
(K,xm"?) comprises brick-red, gray-green, and
yellow-green sandstone, siltstone, silty mud-
stone, and mudstone.

The Miocene sequence (N,), which is uncon-
formably on top of the Cretaceous and pre-
Cretaceous strata (Figs. 3, 6, and 7), is com-
posed of reddish pebbly sandstone, sandstone,
sandy mudstone, and argillaceous siltstone
(BGGP, 1971, 1973). The Pliocene unit (N,) is a
sequence of interbedded siltstones and conglom-
erates (Liu et al., 2011). Quaternary units in the
study area can be divided into alluvial, diluvial,
aeolian, lacustrine, swamp, and chemical depos-
its (Fig. 3).

STUCTURAL GEOLOGY
Folds

Major folds involving Cretaceous strata are
the Daoshan anticline, the Aoheshan syncline,
and the Hongshan anticlinorium. The Daoshan
anticline is an open and asymmetric fold with
its northeast limb dipping more steeply than its
southwest limb. It trends S30°E and plunges 24°.
The core of the fold consists of conglomerate,
glutenite, sandstone, and siltstone of the lower
member of the Cretaceous Xinminpu Formation
(K,;xm#) (BGGP, 1971, 1973). The northeastern
limb has been eroded away, and the remaining
part of the fold indicates a wavelength of ~7 km.

The Aoheshan syncline (Figs. 4, 5, and 8) is
an open and symmetric fold with limbs dipping
at 35°-45°. The fold hinge line trends S58°E and
plunges 14°. The fold axial trace can be traced
for >9 km. The core of the syncline consists of
unit K;xm® and the limbs of the syncline con-
sists of unit K;xm# (the youngest stratigraphic
unit involved) in its southeast edge. The wave-
length of the fold is ~7 km.

The Hongshan anticlinorium consists of
several superimposed folds including a major
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Duan et al. (2015); [8] Qin (2012); [9] Wei et al. (2013); [10] Xue et al. (2017); [11] Liu et al. (2017b); [12] Wang et al. (2019); [13] Chen et al.
(2014b); [14] Wu et al. (2010); [15] Gehrels et al. (2003b); [16] Wu et al. (2006); [17] Xiong et al. (2012); [18] Zuza et al. (2018); [19] Gong
et al. (2012); [20] Fu et al. (2020); [21] Song et al. (2013); [22] Tseng et al. (2009); [23] Hu et al. (2005); [24] Liao et al. (2014); [25] Zhang

et al. (2018); [26] Yu et al. (2018); [27] Shi et al. (2015). Location of Figure 3 is shown with red rectangle.

anticline. The folds trend from east to south-
east and south due to curved axial planes.
The averaged fold hinge orientation trends
S62°E and plunges 12°. The involved strata
are mainly the lower member of the Xinminpu
Formation. Locally, smaller parasitic folds
with an average fold wavelength of ~150 m
are present in unit K,;xm® (Fig. 9). The smaller
folds trend ~290°, and their limbs dip gently
at 15°-30°.

An anticline involving Miocene strata (N,)
trends S21°W and plunges 12°. It is an asym-
metric fold superimposed on older Cretaceous
folds (Figs. 5, 10B, and 11). The northwestern
fold limb dips ~13°, whereas the southeastern
fold limb dips 44°-55°.
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Faults

The study area exposes the Liyuanpu, Lan-
heba, Gaoerwan, Hongshan, Nianpangou,
Aohe, and Qijiataizi faults (Fig. 5). The north-
west-striking Liyuanpu fault dips 70°-80° NE.
It truncates the Lower Cretaceous Xinminpu
Formation (Fig. 5). The fault extends >80 km
and merges with the North Qilian thrust at its
southeastern end (Figs. 1B and 3). The Liyuanpu
fault and folds in Cretaceous strata are covered
by Miocene deposits (N,) (Figs. 5 and 10). Sev-
eral branches of the Liyuanpu fault system are
mapped in the study area, which include the
Gaoerwan, Donghe, and Lanheba faults (Figs. 4
and 5). The Liyuanpu fault system truncates the
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Yumushan thrust and nappe system (Chen et al.,
2019b) (Fig. 3). The total displacement along the
Liyuanpu fault is unknown.

The Lanheba fault is a branching struc-
ture of the Liyuanpu fault (Figs. 4, 5, 10A,
and 10B), striking ~320° and dipping 75° to
NS5SO0°E. The fault can be traced for ~5.5 km.
Right-separation of a marker bed for ~70 m
occurs along the fault (Figs. 10A and 10B).
Farther southeast, the magnitude of right-sep-
aration along the fault increases from ~150 m
to ~900 m, and finally reaching to ~1.3 km.
The fault manifests as a thrust fault, resulting
in strata thickening in unit K;xm*2. The west-
northwest—striking Gaoerwan fault is also a
branching structure of the Liyuanpu fault,

Geological Society of America Bulletin, v. 134, no. 1/2
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which displays a right-separation of ~1.0 km
(Figs. 4 and 5).

The Hongshan fault extends for ~6 km,
strikes ~285°, and dips 60°-70° to the north
(Figs. 4, 5, 10C, and 10D). The fault juxtaposes
the upper member of the Xinminpu Formation
(K;xm") in the hanging wall over the lower
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member of the same formation (K,;xm?*) in
the footwall. The Nianpangou fault is a south-
dipping thrust juxtaposing lower member of the
Xinminpu Formation (K;xm?®) in the hanging
wall over the upper member of the same forma-
tion (K,;xm") in the footwall. The thrust strikes
~N22°W and dips 65°SW.
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The Aohe fault is a NE-dipping oblique
left-slip reverse fault (Figs. 4 and 5). It places
unit K;xm®* in the hanging wall over unit
K,xm"? in the footwall. The Qijiataizi fault is
an inferred NW-dipping thrust, and its trace
is covered by Miocene sediments (N,; Figs. 4
and 5).

Geological Society of America Bulletin, v. 134, no. 1/2
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folds in NE direction, showing relationships among faults and folds developed in the region.
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Figure 6. Stratigraphic frame-
work of Lower Cretaceous
Xinminpu Formation (K;xm)
and Miocene (N,) strata in the
Liyuanpu region, NW China.
Typical lithologies are repre-
sented by photographs. Layer
localities of detrital zircon sam-
ples are also shown.
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Growth Strata

Growth strata in sub-unit K;xm* (Fig. 6)
are exposed across the southeastern limb of
the Hongshan anticlinorium. The growth-strata
relationship is expressed by the shallowing of
the fold limb dip from 63° stratigraphically
upwards to 7° over a stratigraphic thickness of
~300 m (Fig. 11). Field observations also reveal
a gradual decrease in grain size from coarse-
grained sandstones at the bottom of the K;xm®
to fine-grained mudstones at the top (Fig. 6).
Sub-units K;xm?!' and K,;xm?®? of the Xinminpu
Formation display parallel lamination and par-
allel bedding, which we interpret as pre-growth
deposits.

Balanced Cross Section and Restoration
Our detailed mapping allows us to construct

a balanced cross section (Fig. 5). Using the

508

Mudstone

method outlined in Bally et al. (1966) and Dahl-
strom (1969) and the models of fault related folds
by Suppe (1983), we restored the cross section
(Fig. 12) through line balancing of a Cretaceous
marker bed along section C-D in Figure 5. The
restoration yields a total shortening of ~7.1 km
and a shortening strain of ~35% (Figs. 12A and
12E). Note that the overlying Miocene strata are
only mildly folded. Together with the observed
growth-strata relationship mentioned above, the
estimated shortening was mainly generated in
the Cretaceous.

DETRITAL ZIRCON
GEOCHRONOLOGY

Sample Collection and Description
We collected 12 samples from the Lower

Cretaceous strata and one sample from the Mio-
cene strata for U-Pb detrital zircon dating and

Geological Society of America Bulletin, v. 134, no.

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/134/1-2/501/5496552/b35944.1.pdf
bv niversity of Nevada Reno user

provenance analyses. The samples, numbered
S1 through S13, are listed in Table 1. Sample
locations on the geological map and in the strati-
graphic column are shown in Figures 5A and 6,
respectively. Representative petrographic views
of the samples under the microscope are pro-
vided in Figure 13.

Sample S1 is a massive and medium-coarse-
grained lithic quartz sandstone from the Mio-
cene strata (N,). It consists of quartz (72%), feld-
spar (3%), lithic clasts (15%), cementing calcite
(7%) and clay minerals (2%), and pores (1%)
(Fig. 13A). The sample is poorly sorted and the
clasts are angular.

Sample S2 is a massive coarse-grained
gravel-bearing lithic sandstone from the middle
to upper section of the upper member of the
Xinminpu Formation (K;xm®?). It is comprised
of quartz (20%), potassium feldspar (20%), pla-
gioclase (14%), lithic fragments (22%; mainly
mudstone, quartzite, and chert), cement materi-
als (10%), matrix clay minerals (4%), and grav-
els (8%; mainly quartzite) (Fig. 13B). It is poorly
sorted and the clasts are poorly rounded.

Sample S3 is a massive medium-grained
lithic quartz sandstone from unit K,;xm®. It
consists of quartz (56%), plagioclase and potas-
sium feldspar (10%), lithic clasts (20%), calcite
(8%), matrix (6%), and pores (Fig. 13C). The
lithic clasts are mainly phyllite and mudstone.
The sample is poorly sorted and the clasts
poorly rounded.

Sample S4 is a massive coarse-grained gravel-
bearing lithic sandstone from unit K ;xm®. It
is too fragile for making thin sections. Visual
examination indicates its modal composition
is dominated by quartz, plagioclase, potassium
feldspar, and cementing calcite and clay miner-
als. Gravels are mainly quartzite, and lithic clasts
are mudstone, quartzite, and chert.

Sample S5 is a massive medium-coarse-
grained quartz-dominated sandstone from unit
K,xm®. It is comprised of quartz (74%), feld-
spar (3%), and lithic clasts (12%), cementing
calcites and clay minerals (10%), and pores (1%)
(Fig. 13D). The lithic clasts are mainly quartzite,
phyllite, and mudstones. It is moderately sorted
and rounded.

Sample S6 is a massive medium-coarse-
grained quartz sandstone from unit K;xm®. Tt
consists of 80% quartz, 3% feldspar, 7% lithic
clast, and 10% interstitial materials (Fig. 13E).
It is poorly sorted and rounded. Pyrite framboids
can be observed under the microscope.

Sample S7 is a massive fine—-medium-grained
feldspar-rich lithic sandstone from unit K;xm®.
It is composed of 60%—65% quartz, 5%—10%
plagioclase and potassium feldspar, 20%—-25%
lithic clasts, and 11%-20% interstitial materi-
als (Fig. 13F). Lithic clasts are slates, phyllite,

172



Superposition of Cretaceous and Cenozoic deformation in northern Tibet

Elavation / km South Corridor Range North Qilian Orogenic Belt
¢ Yeniugou 1 ¢ NF ¢ MF o ¢ Qingquan Yumu Shan | v¢ - .
4 P €, o T NQLF s N, SYMF s NYMF Hexi Corridor
' 7 & =TT Nt N s) D dlie N ipjs 1 sio DGF
2 e -1 QIXGF Q
o K K, _ KI/,‘ / K
(A) Structural geologic section A-B acrossing the North Qilian and Hexi Corridor
TSNTT/ s ; N_F HF QF CMF LYF Elavation / km
o L& N e # o Jiuquan Basin Liyuanpu
3 -
Q& ; \'-”_” i O NQLF s N SYMF DGF Basin 5

= 5
30 40 50 60 70 80 90
Distance / km B

(B) Structural geologic interpretation of Deep Seismic Reflection Profile NQL-2016 (South segment) acrossing the North Qilian and Hexi Corridor

Figure 7. (A) Geological cross section along profile A-B across the northern Qilian Shan, showing the development of the Yumu Shan thrust
and nappe system (YMTS). (B) Structural interpretation of the deep seismic reflection profile NQL-2016 across the North Qilian Shan.
Modified from Chen et al., 2019b. Strata systems and faults are the same as in Figures 2 and 3. See location and abbreviations in Figure 3.

TWTT—two-way travel time.

chert, siltstone, rhyolite, granite, basalt, and
mica. It is poorly to moderately rounded, and
poorly sorted. The sample is weakly sericitized
and kaolinized.

Sample S8 is a massive muddy micritic lime-
stone collected from unit K,xm®. It consists
mainly of micritic calcites (83%) and iron-rich
mud (12%), with minor sparry calcite (3%) and
silt-sized quartz (2%) (Fig. 13G). The micritic
calcite is organic-rich, whereas the sparry cal-
cites are present along fractures 0.05-0.1 mm
wide. Pyrites are distributed in the mud matrix.

Sample S9 is a coarse-grained gravel-bearing
lithic sandstone from unit K;xm®. It consists
of 55%—-60% quartz, 1%—5% plagioclase and
potassium feldspars, 25%-30% lithic clasts,
5%-10% gravel-sized debris, and 10%—15%
calcite cements and clay-rich interstitial matrix
materials (Fig. 13H). Lithic clasts are slates,
phyllite, chert, rhyolite, andesite, and altered
basalt. Gravel-sized clasts are mainly metamor-
phosed silty sandstone. The sample is weakly
sericitized and kaolinized.

Geological Society of America Bulletin, v. 134, no. 1/2

Sample S10 is a massive medium-grained
lithic sandstone from unit K,xm#. It consists of
32% quartz, 8% plagioclase, 50% lithic clasts,
4% micritic cements, and 6% clay-rich matrix
(Fig. 1310). Itis poorly sorted and rounded. Lithic
clasts are mainly silty mudstone and rare chert.

Sample S11 is a massive silty mudstone col-
lected from unit K,xm®. It consists of 92% clay
minerals, 3% sericites, and 5% silt-sized quartz
grains (Fig. 13J).

Sample S12 is a massive medium—fine-
grained lithic feldspathic sandstone from unit
K,xm?!. Tt consists of 40% quartz, 23% plagio-
clase, 24% lithic clasts, 6% cements, 6% matrix
clay minerals, and 1% detrital biotite, muscovite,
and secondary minerals (Fig. 13 K). It is poorly
to moderately rounded and poorly sorted. Sparry
calcites occur as fracture fills. Lithic clasts are
mainly mudstone fragments.

Sample S13 is a massive coarse-grained lithic
quartz sandstone collected from unit K,xm?!. Tt
consists of 80%—85% quartz, 1%—5% potassium
feldspar, 15%—-20% lithic clasts, 2%-8% inter-
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stitial materials (Fig. 13L), and a small num-
ber of gravel-sized clasts (2.0-2.5 mm). Lithic
clasts are rhyolite, tuff, slate, quartzite, chert, and
sparry limestone. Gravel-sized clasts are rhyolite
and quartzite. The interstitial materials are fine-
grained clay minerals and calcite cements. It is
moderately rounded and well sorted. The sample
is weakly kaolinized.

Sample Preparation and Analytical
Methods

Detrital zircons were extracted from the sam-
ples through roller crushing and grinding, heavy
mineral separation and hand picking under bin-
ocular microscope. They were mounted in epoxy
resin, solidified, and then polished and ground
to approximately half of the thickness until their
cores were fully exposed. Zircons were exam-
ined both in reflected and transmitted light, and
imaged by cathodoluminescence (CL) (Fig. 14),
to characterize their internal microstructures and
to target sites.
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Figure 8. Field photographs of the Aoheshan syncline (AHS) developed in Unit A of the Lower Cretaceous. (A and B) are original photo-
graph and interpreted structure, respectively. Taken at the position of 38°58'27.9”N and 100°2'28.6”E, near a main gate of the Zhangye
Danxia National Geopark, NW China.

Zircon U-Pb isotope analyses were con-
ducted by laser ablation—multicollector—induc-
tively coupled plasma—mass spectrometry
(LA-MC-ICP-MS) with Neptune X-Series 11
multi-receiving plasma mass spectrometer
(ThermoFisher), at the Tianjin Geological
Survey Center, China Geological Survey. The
analyses involve zircon ablation with a New
Wave FX laser (operating at a wavelength of
193 nm) using a spot diameter of 35 pm (Hu
et al., 2015a). Details of the instrument param-
eters and analytical procedures are provided
by Li et al. (2009). Zircon standard 91500 and
standard glass NIST610 were used as external
standards for fractionation correction of U-Pb
isotopes and trace elements, respectively. Each
set of time-resolved data consists of ~20-30 s
of blank analysis and 50 s of sample analysis.
Data processing, which involved selections of
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sample and blank signals, instrument sensitiv-
ity drift corrections, and calculations of ele-
ment concentrations, and U-Pb isotopic ratios,
was completed using software ICPMSDataCal
(Liu et al., 2008). ISOPLOT/Ex_ver3 (Ludwig,
2003) was used for age calculation.

U-Pb Detrital Zircon Ages

CL images show that the shape and size of
the zircons are variable (Fig. 14). Most of the
zircons are rounded, typical for detrital zircon
grains in sedimentary rocks. A total of 90-110
zircon grains were selected randomly from each
sample, and only analyses of 90%—-100% con-
cordant were included in the statistical analy-
ses for age spectra. U-Pb ages were calculated
using 20°Pb/?38U ratios for zircons <1000 Ma
and 207Pb/2%Pb ratio for zircons >1000 Ma. The
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analytical data are reported in Supplementary
Tables S1-S13!, shown on U-Pb concordia dia-
grams (Fig. 15) and age spectra (Fig. 16), and
summarized in Table 1.

Sample S1. Detrital zircons are prismatic to
sub-rounded shaped with 50-180 um in size.
A total of 103 grains were analyzed, with 12
discordant ages (concordant <90%) excluded.
Their Th/U ratios range from 0.03 to 3.98. U-Pb
ages are grouped around the main peak at ca.
265 Ma, and minor peaks at ca. 427 Ma and ca.
367 Ma (Figs. 15A and 16A). The youngest zir-
con age is 257 &+ 3 Ma.

ISupplemental Material. U-Pb isotope dating results
for the detrital zircons from sample S1-S13. Please
visit https://doi.org/10.1130/GSAB.S.14489154
to access the supplemental material, and contact
editing @geosociety.org with any questions.

Geological Society of America Bulletin, v. 134, no. 1/2
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Figure 9. Folds developed in Unit B of the Lower Cretaceous, north to the Hongshan Anticlinorium (HSA), Liyuanpu region, NW China.
(A) Original and (B) interpreted photographs of the anticline in the north, and (D) original and (E) interpreted photographs of the syncline
in the south. Relationship between the anticline and syncline are shown in panel C. Location is at 38°56"30.6”N and 100°46.4”E.

Sample S2. Detrital zircons are sub-rounded
and 40-140 pm in size. 92 spots were analyzed,
and 11 points (<90% concordant) were excluded.
Th/U values range from 0.06 to 5.85. The U-Pb
ages are clustered mostly at ca. 408 Ma and ca.
280 Ma, with minor clusters at ca. 807 Ma, ca.
932 Ma, and ca. 1884 Ma. The youngest age is
258 + 3 Ma (Figs. 15B and 16B).

Sample S3. Detrital zircons are sub-rounded
and 60—190 pum in size. 109 spots were analyzed,
and one discordant point (<90% concordant)
was excluded. The Th/U values range from 0.03
to 1.67. The main age clusters are at ca. 274 Ma
and ca. 413 Ma, while two minor clusters are at
ca. 1744 and ca. 2470 Ma. The youngest age is
239 + 3 Ma (Figs. 15C and 16C).

Sample S4. Detrital zircons are sub-rounded
and 75-180 pm in size. 98 spots were analyzed,
and two spots were excluded because they
are <90% concordant. The Th/U values are
0.08-1.77. The ages are mainly clustered at ca.
266 Ma and ca. 442 Ma, with minor clusters at

Geological Society of America Bulletin, v. 134, no. 1/2

ca. 1864 and ca. 2582 Ma. The youngest age is
246 + 2 Ma (Figs. 15D and 16D).

Sample SS. Detrital zircons are long colum-
nar to sub-rounded, with 65-175 pm in size. 99
spots were analyzed and 15 discordant points
(<90% concordant) were excluded. The Th/U
values range from 0.12 to 3.78. U-Pb ages are
mainly clustered at ca. 402 Ma and ca. 279 Ma,
with a minor cluster centered at ca. 1946 Ma. The
youngest zircon age is 241 4+ 3 Ma (Figs. 15E
and 16E).

Sample S6. Detrital zircons are short colum-
nar to sub-rounded and 50-180 um in size. 99
spots were analyzed and none were excluded.
The Th/U values are 0.09-1.91. The main age
clusters are at ca. 286 Ma and ca. 473 Ma, and
minor clusters are at ca. 981 and ca. 1870 Ma,
respectively. The youngest age is 268 + 3 Ma
(Figs. 15F and 16F).

Sample S7. Detrital zircons are prismatic to
sub-rounded and 65-190 pm in size. 101 spots
were analyzed, with 10 spots excluded as <90%
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concordant. The Th/U values are 0.18-1.70.
The main age clusters are at ca. 277 Ma and
ca. 432 Ma, and minor ones are at ca. 1846 and
ca. 2488 Ma. The youngest age is 237 + 2 Ma
(Figs. 15G and 16G).

Sample S8. Detrital zircons are short columnar
to sub-rounded and 45-135 pum in size. 98 spots
were analyzed and 13 analyses were excluded
because of <90% concordant. Their Th/U values
are 0.002-2.77. The main age clusters are at ca.
438 Ma and ca. 277 Ma, and minor clusters are
at ca. 752 Ma, ca. 957 Ma, and ca. 2486 Ma. The
youngest age is 233 &+ 2 Ma (Figs. 15H and 16H).

Sample S9. Detrital zircons are prismatic to
sub-rounded and 75-245 um in size. A total of
101 spots were analyzed, among which seven
spots were excluded because of <90% con-
cordant. Their Th/U values are 0.17-2.42. The
main age clusters are at ca. 280 Ma and ca.
427 Ma, and minor age clusters are centered at
ca. 931 and ca. 1841 Ma. The youngest age is
233 4+ 2 Ma (Figs. 151 and 16I).
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Figure 10. Field photographs of typical faults developed in the Liyuanpu region, NW China. (A) Original and (B) interpreted photograph
of the Lanheba fault (LHF), which branches off the major right-lateral strike-slip Liyuanpu fault (LYF) at a small angle (Fig. 5) (photo
taken at 38°58’10.5”N and 100°1’42.9”E). The strike-slip fault system is unconformably covered by shallowly dipping Miocene sedimentary
rocks (N,). (C) Original and (D) interpreted photographs of the Hongshan fault (HSF), which is a steep north-dipping normal fault that cuts
Lower Cretaceous rocks (taken at 38°55’54.8”N and 100°5'42.6"E).

Sample S10. Detrital zircons are long colum-
nar to sub-rounded and 70-200 pm in size.
89 spots were analyzed, of which three were
excluded. The Th/U values are 0.04-3.90.
The main age clusters are at ca. 468 Ma and
ca. 279 Ma, and the minor age clusters are at
ca. 807 Ma, ca. 967 Ma, ca. 2011 Ma, and ca.
2505 Ma. The youngest age is 258 £ 3 Ma
(Figs. 15J and 167).

Sample S11. Detrital zircons are long colum-
nar to sub-rounded and 45-180 pm in size. 101
spots were analyzed, with 12 spots excluded.
The Th/U values are 0.05-13.43. The main age
clusters are at ca. 435 Ma and ca. 297 Ma, and a
minor cluster at ca. 974 Ma. The youngest age is
255 + 3 Ma (Figs. 15 K and 16 K).

Sample S12. Detrital zircons are long colum-
nar to sub-rounded and 40-170 pm in size. A
total of 104 spots were analyzed, with two spots
excluded. The Th/U values are 0.04-1.63. The
main age clusters are at ca. 304 Ma, ca. 274 Ma,
ca. 343 Ma, and ca. 442 Ma, and a minor clus-
ter at ca. 1872 Ma. The youngest zircon age is
244 + 2 Ma (Figs. 15L and 16L).
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Sample S13. Detrital zircons are prismatic
to sub-rounded and 70-190 pm in size. A total
of 100 spots were analyzed, and eight discor-
dant analyses were excluded. Their Th/U values
are 0.12-2.24. The main age clusters are at ca.
291 Ma and ca. 423 Ma, and minor clusters are at
ca. 1775 Ma, ca. 1933 Ma, and ca. 2534 Ma. The
youngest zircon age is 246 + 3 Ma (Figs. 15 M
and 16 M).

DISCUSSION

The new geologic map created in this research
provides the tightly constrained field relationship
between the formation of folds and the develop-
ment of growth strata in the Cretaceous unit. The
newly acquired U-Pb detrital zircon ages allow
a detailed provenance analysis of the Cretaceous
and Miocene strata from which the samples were
collected. Below, we discuss the implications of
our findings.

Previous work shows that the early Paleozoic
Qilian orogen in northern Tibet was reactivated
during the Cenozoic Indo-Asian collision by
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the development of thrusting and strike-slip
faulting (Zuzaetal., 2016, 2018, 2019; Liet al.,
2021). Deformation recorded in the Cretaceous
strata in the northern Tibetan plateau and its
foreland region may have occurred during the
onset of the Indo-Asian collision or even before
(Frost et al., 1995; Dupont-Nivet et al., 2004).
‘We propose a three-stage model for the tectonic
deformation of the study area in the Cretaceous
and Cenozoic based on the following interpre-
tations. (1) The angular unconformity between
the Miocene and the Cretaceous strata (Figs. 7
and 11) implies a protracted erosion and pene-
planation process from the Late Cretaceous
(i.e., after the deposition of the Lower Creta-
ceous strata) to the end of Paleogene when the
Miocene strata were deposited. In this interpre-
tation, folding in the Lower Cretaceous strata
occurred prior to the interpreted peneplanation
event. (2) The occurrence of growth strata in
unit K,xm?* indicates folding during the depo-
sition of the Early Cretaceous in the study area.
(3) The local presence of the upper member
of the Xinminpu Form (K;xmP), and drastic

Geological Society of America Bulletin, v. 134, no. 1/2
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Figure 11. Growth strata developed in Unit A of the Lower Cretaceous Xinminpu Formation, in the south limb of the Hongshan Anticlino-
rium (taken at 38°55'12.2”N and 100°5'8.9”E), Liyuanpu region, NW China. (A and B) are original photograph and interpreted structure,
respectively. The growth strata are covered by Miocene sedimentary rocks (N;) with gentle dips.

contrast in the tightness of folds in the Creta-
ceous and Miocene strata requires a significant
shortening event in the study area prior to the
Miocene, consistent with our growth-strata
relationship. (4) The occurrence of normal
faulting at the time between the deposition of
the upper and lower member of the Xinminpu
Formation (Figs. 10C and 10D) suggests an
extensional origin for the deposition of the
upper member. The three-stage tectonic model
is shown in Figure 12 and detailed below.

Stage 1. Early Cretaceous Folding and
Thrust faulting

We infer that the sub-unit K;xm* (Fig. 6)
as a set of growth strata were deposited in
the piedmont depression as a response to the
development of the Daoshan anticline and the
Hongshan anticlinorium during the earlier Early
Cretaceous. Major folds, such as the Daoshan
anticline, the Aoheshan syncline (Fig. 8), and
the Hongshan anticline were created during
NE-SW compression during the development
of the growth strata (Fig. 11). Coeval with this
folding was the development of the Yumushan

Geological Society of America Bulletin, v. 134, no. 1/2

thrust and nappe system and Yumushan klippe
documented by an earlier study (Figs. 3 and 7;
Chen et al., 2019b). Possible thrust-induced
basins in the Early Cretaceous may include the
Pingshanhu basin deposited prior to ca. 129 Ma
(Shao et al., 2019) north to the Longshou
Shan thrust.

We suggest that the Early Cretaceous com-
pressional event in the study area of northern-
most Tibet and its foreland occurred during the
final closure of the Bangong-Nujiang ocean and
continued convergence between the Lhasa and
Qiangtang terranes (Kazmin, 1991; Kapp et al.,
2003; Volkmer et al., 2007; Metcalfe, 2013;
Li et al., 2019c; Tang et al., 2020; Zhao et al.,
2017; Ma et al., 2018; Lai et al., 2019; Cao
et al., 2019; Chen et al., 2020; Li et al., 2020b).
Li et al. (2019b) suggested the final closure of
the Bangong-Nujiang ocean and the initial col-
lision between the Lhasa and the Qiangtang
terranes occurred at 152—-150 Ma. Accelerated
exhumation and crustal thickening was initiated
at ca. 150 Ma in the southern Qiangtang terrane
(Zhao et al., 2017, 2020). Paleomagnetic stud-
ies indicate that the Lhasa-Qiangtang collision
may have occurred at ca. 145 Ma (Ma et al.,
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2018). Early Cretaceous basin evolution in the
northern Lhasa terrane implies the timing of the
initial Lhasa-Qiangtang collision at ca. 122 Ma
(Lai et al., 2019) or before ca. 119 Ma (Li et al.,
2020b). The above timing is consistent with the
age of compressional deformation in our study
area (Fig. 17A).

Stage 2A. Post-folding Early Cretaceous
Normal Faulting

Our field mapping and field observations
show that the WNW-striking Hongshan fault
is a normal fault developed during the later
stage of the Early Cretaceous. Its orientation
indicates approximately N-S extension. The
strike of this fault is generally parallel to the
trend of the other known Cretaceous exten-
sional basins in the Qilian Shan foreland (i.e.,
the Hexi Corridor), which include the Early
Cretaceous grabens and half-grabens in the
Cretaceous Jiuquan, Minle, Chaoshui, and
Pingshanhu basins (Vincent and Allen, 1999;
Li, 2003; Chen et al., 2014a; Cheng et al.,
2019b; Shao et al., 2019). Detrital zircon U-Pb
dating revealed the formation of grabens and
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Figure 12. Restoration and kinematic reconstruction of the cross section shown in Figure 5 (see Fig. 5 for abbreviations). The
strata have been divided into Pre-Cretaceous (PreK), Units A and B of the Lower Cretaceous Xinminpu Formation (K xm?-
K,xm"), Miocene (N,), and Holocene (Q,). (A) Undeformed restoration of the balanced section (see location in Fig. 5A), with
original section length of 20.2 km. (B) Development of folds and thrusts in the earlier stage of Early Cretaceous. (C) Develop-
ment of right-lateral strike-slip faults (e.g., LYF) and normal faults in the later stage of Early Cretaceous, followed by ero-
sion during the Late Cretaceous and Paleogene. (D) Gently folding since Miocene, followed by erosion since Pleistocene and
sedimentation in Holocene. (E) Present-day deformed-state cross section as shown in Figure 5. Total shortening strain in this
model is 7.1 km or ~35.1% strain.
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TABLE 1. SUMMARY OF DETRITAL ZIRCON U-Pb DATING OF LOWER CRETACEOUS AND MIOCENE
SEDIMENTARY ROCK SAMPLES FROM THE LIYUANPU AREA, NW CHINA

No. Sample no.  Stratum GPS position Elevation Lithology Mineral Peak ages Youngest
layer Lat °N) Long (°E) (m) assemblage (Ma) age (Ma)
S1  SQL2017-404-2 N, 38°58/24.0”  100°2/17.9" 1737 Lithic quartz sandstone Qz+Lf+Fs 265, 367, 427 257
S2 QL2017-4-4  Kxm°2  3goggio7g”  100°4/43.1" 1736  Gravel-bearing lithic sandstone Qz + Lf + Kfs + PI 280, 408, 807, 932, 1884 258
S3 QL0921-7-1 Kixm®  38°56/19.7"  100°6/49.9" 1712 Lithic quartz sandstone Qz + Lf+ Pl 274, 413, 1744, 2470 239
S4  QL2017-36-1 K;xm2* 38°55/'38. 7 100°6'56.7" 1698  Gravel-bearing lithic sandstone Qz+Lf+Fs 266, 442, 1864, 2582 246
S5 SQL2017-419-1 K;xm33  3go5g/5 o 100°1/172" 1795 Lithic quartz sandstone Qz+ Lf+Fs 279, 402, 1946 241
S6  QL2017-28-1 K;xm® 3g055/12 2/ 100°5'8.9” 1784 Lithic quartz sandstone Qz +Lf+Fs 286, 473, 981, 1870 268
S7  QL2018007-1 K;xm# 3go55/4522"  100°2'5.4" 1808 Lithic sandstone Qz + Lf+Fs 277,432, 1846, 2488 237
S8 SQL2017-425-1 Ki;xm#  3g°57/00" 100°3/46.4" 1745 Micritic limestone Mi + la 292, 438, 752, 957, 2486 233
S9  QL2018021-1 K;xm? 38°55/'8 67" 100°4'46.91" 1730  Gravel-bearing lithic sandstone Qz+Lf+Fs 280, 427, 931, 1841 233
S10  QL2017-8-1  Kyxm* 3g°56/28.3" 100°3/28" 1797 Lithic sandstone Qz+Li+ Pl 279, 468, 807, 967, 2011, 2505 258
811 SQL2017-410-1 K;xm3  3ge58/115”  100°1'46.1" 1749 Silty mudstone Cl+Qz+ Ms 297, 435, 974 255
S12  QL2017-12-1  K;xm?' 38056174 100°2/55.1" 1823 Lithic feldspathic sandstone Qz + Lf+ Pl 274, 304, 343, 442, 1872 244
S13  QL2018060-1 Ki;xm?' 38°53/13.84” 100°2/52.23" 1927 Lithic quartz sandstone Qz +Lf+Fs 291, 4283, 1775, 1933, 2534 246

Notes: Qz—quartz; Fs—feldspar; Lf—lithic fragment; Mi—micrite; la—Iron argillaceous; Kfs—K-feldspar; Pl—plagioclase; Cl—clay mineral; Ms—muscovite.

J S11: SQL2017-410-1

Figure 13. Photomicrographs of sedimentary rocks from Miocene (A) and Lower Cretaceous (B-L) in the Liyuanpu region, NW

China. (A) S1—SQL2017-404-2; (B) S2—QL2017-4-4; (C) S3—QL0921-7-1; (D) S5—SQL2017-419-1; (E) S6—QL2017-28-1;
(F) S7—QL2018007-1; (G) S8—SQL2017-425-1; (H) S9—QL2018021-1; (I) S10—QL2017-8-1; (J) S11—SQL2017-410-1; (K)

S12—QL2017-12-1; (L) S13—QL.2018060-1. Except plane polarized light for samples S8 and S11, the others are all under crossed
polarized light. Qz—Quartz; Cal—Calcite; Kfs—K-feldspar; Pl—Plagioclase; Cly—Clay minerals; Ve—Volcanic debris.
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half-grabens in the Pingshanhu basin was on-
going at ca. 129 Ma (Shao et al., 2019). The
Yagan metamorphic core complex north of our
study area occurred at 129-126 Ma (Zheng and
Zhang, 1994). Continental basalts with ages
of 120-102 Ma indicate Early Cretaceous

extension in the Hexi Corridor and Alxa block
(Tang et al., 2012; Hui et al., 2020). The Cre-
taceous extensional event may explain earlier
observed apatite fission-track cooling ages at
124 + 11 Ma from Triassic granite samples
in the Qilian Shan (Qi et al., 2016; Li et al.,

2019a, 2020a). Finally, an extensional event at
ca. 100 Ma was reported in the eastern Altyn
Tagh range during the development of east-
striking Lapeiquan detachment fault (Chen
et al., 2003). We suggest that the extensional
event may have been induced by gravitational
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collapse of a thickened continental lithosphere
in northern Tibet.

Stage 2B. Cretaceous Right-Slip Duplex
Development

According to the regional structural rela-
tionship, the Liyuanpu fault postdates the
Yumushan thrust and nappe system (Chen
et al., 2019b). Its inferred right-slip faulting
may have been coeval with extension along

Geological Society of America Bulletin, v. 134, no. 1/2

20
207pp/357

the Hongshan fault (Fig. 12C). The Liyuanpu,
Lanheba, Aohe and Qijiataizi faults that bound
the Hongshan anticlinorium display a strike-
slip duplex-like fault network, which is similar
with the strike-slip duplex in northern Altyn
Tagh (Cowgill et al., 2000). Right-slip faulting
may have caused the distortion of the earlier
folds, which may explain why the fold axis of
the Aoheshan syncline changes its trend along
the fold trace (Fig. 18). Regionally, the Hexi
Corridor was proposed to have been bounded
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by dextral motion of the North Qilian and
Longshou Shan fault systems in Early Creta-
ceous (Vincent and Allen, 1999).

Stage 3. Folding of Miocene Strata

The Cenozoic Indo-Asian collision affected
vast regions of Asia from the Himalaya in the
south to Lake Baikal in the north over a distance
of more than 4000 km in the north-south direc-
tion (Molnar and Tapponnier, 1975; Tapponnier
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et al., 1990; Molnar, 1998; Yin and Harrison,
2000; Zhao et al., 2006; Clark et al., 2010; Yin,
2010; Najman et al., 2010; Wu et al., 2014; Hu
etal., 2015b; Xu et al., 2016; Xiao et al., 2017;
Wang et al., 2018; Colleps et al., 2020). Dur-
ing the initial of the Indo-Asian collision, the
South Qilian and Nan Shan thrust belt started
its activities along its southern margin against
the Qaidam basin (65-50 Ma), and the left-slip
Altyn Tagh fault was initiated at ca. 49 Ma (Yin
et al., 2002, 2008a, 2008b). The basal sedi-
ments in the Qaidam basin (i.e., Lulehe For-
mation) are generally interpreted to be Eocene,
which suggests thrust loading along its margins
by the early Cenozoic (e.g., Chang et al., 2015;
Keetal., 2013; Yin et al., 2008a; Ji et al., 2017;
Cheng et al., 2019b), although others have
argued for an Oligocene-Miocene age for this
formation (e.g., Wang et al., 2017). Apatite He
cooling ages suggest that the southern margin
of the Qaidam basin may have begun to rise

518

at ca. 35 Ma (Clark et al., 2010). The interior
of the Qilian Shan-Nan Shan thrust belt expe-
rienced exhumation in the early Cenozoic (Li
et al., 2020a), and detrital thermochronology
from the northern foreland supports Eocene
exhumation of parts of the Qilian Shan (An
et al., 2020). The Qilian Shan-Nan Shan thrust
belt expanded outward with the initiation of
tranpressional deformation associated with the
Haiyuan fault at ca. 17-16 Ma, including initia-
tion of the North Qilian thrust system (George
et al., 2001; Wang et al., 2016; An et al., 2018;
Lin et al., 2019; Li et al., 2019a, 2020a). The
lack of the Upper Cretaceous and Paleogene
strata in our study area indicates a period of
tectonic quiescence from the Late Cretaceous
to the middle Miocene (Li et al., 2019a). The
formation of broad and gentle folds in the Mio-
cene strata (N;) may be the result of the most
recent northward expansion of the Qilian Shan-
Nan Shan thrust belt.
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Source Areas of Cretaceous and Miocene
Strata

Detrital zircon age spectra of the Lower Cre-
taceous strata (samples S2-S13 in Fig. 16 and
Table 1) are dominated by two age clusters at
442-423 Ma and 297-266 Ma. The lack of detri-
tal zircon ages of 0.8-0.9 Ga from the plutonic
rocks of the interior part of the Qilian Shan-Nan
Shan thrust belt (Zuza et al., 2018) led us to sug-
gest that main source areas for the Cretaceous
strata are from the region to the north, affected
by the development of the Paleo-Asia orogenic
system and the northern margin of the Qilian
Shan-Nan Shan thrust belt. This suggestion is
consistent with paleocurrent data derived in the
Liyuanpu area, which implies Lower Cretaceous
sediments were derived from both the Qilian
Shan in the south and the Longshou Shan in the
north (Vincent and Allen, 1999). The Alxa area
to the north exposes Middle Ordovician—Early

Geological Society of America Bulletin, v. 134, no. 1/2
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Devonian granitoids with ages of 461-441 Ma
and 432-397 Ma (Fig. 2; Zhang and Gong,
2018; Wang et al., 2020). The Qilian Shan area
exposes granitoids of ca. 500420 Ma (Fig. 2;
Xu et al., 1999; Gehrels et al., 2003a, 2003b,
2011; Wuetal., 2006, 2017; Cheng et al., 2019a;
Liu et al., 2019). The Permian (297-266 Ma)

Geological Society of America Bulletin, v. 134, no. 1/2

detrital zircon in the Cretaceous strata may
have been derived from the late Paleozoic—early
Mesozoic Badain Jaran magmatic arc in the Alxa
area where Late Carboniferous—early Triassic
(289-269 Ma) plutons are exposed (Fig. 2; Geng
and Zhou, 2012; Chen et al., 2013; Zheng et al.,
2014; Zhang et al., 2015; Shi et al., 2016; Liu
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et al., 2017a). Following Cheng et al. (2019a),
we suggest that the current topographic depres-
sion between the Qilian Shan and Longmen
Shan was also a topographic depression in the
Early Cretaceous. Some detrital zircons from the
Lower Cretaceous strata yield Paleoproterozoic
ages clustered at 2.58-2.47 Gaand 1.95-1.75 Ga
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A 145~129 Ma. Lhasa-Qiangtang collision as the tectonic background for contracting deformation in the North Qilian Shan and Hexi Corridor
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Figure 17. Tectonic evolution of the northern Qilian Shan and the Hexi Corridor, NW China since the Cretaceous. (A and D) are tectonic
models for Early Cretaceous and early Miocene, respectively. Modified from Kapp and DeCelles (2019). (B and C) illustrate the extension
and dextral strike-slip faulting in the late Early Cretaceous, respectively. NQL—North Qilian Shan; HX—Hexi Corridor; SQL—South
Qilian Shan; YM—Yumu Shan; BNS—Bangong Co-Nujiang Suture; JS—Jinsha Suture; KS—Kunlun Suture; SCQLF—South Central
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(Fig. 16). These ages are consistent with the ages
of the Precambrian basement rocks in the Alxa
area and North China north of our study area
(Zhai and Santosh, 2011; Wu et al., 2005; Zhao
et al., 2005, 2010, 2012; Jiang et al., 2010; Wan
et al., 2014).

U-Pb detrital-zircon ages from the Miocene
sediments (sample S1; Fig. 16A and Table 1)
are dominated by a major ca. 265 Ma (Permian)
age peak and minor ca. 427 Ma (Silurian) and
ca. 367 Ma (Late Devonian) age peaks. These
ages peaks are similar to the ages of plutons
(289-269 Ma) in the Alxa area (Fig. 2; Geng and
Zhou, 2012), and the Beishan orogenic belt with
granite plutons of 310 Ma to 230 Ma (Cheng
et al., 2019a). Although Permo-Triassic plutons
are present in the southern and central Qilian
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Shan, they are separated from the northern Qil-
ian Shan by a watershed in the range south of
Yeniugou valley. The Alxa region north to the
Hexi Corridor could have been a topographi-
cal height north of the Hexi Corridor before the
rise of the northern Qilian Shan in the Miocene
(Fig. 17D). In contrast, the northern Qaidam
basin may have also been higher in the early
Oligocene than the northern Qilian Shan (Song
et al., 2020).

CONCLUSIONS

In this study we address the problem of
whether the northern margin region of the
Tibetan plateau had experienced a compres-
sional event in the Cretaceous. To answer this
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question, we conducted detailed field mapping,
stratigraphic description, U-Pb detrital zircon
dating of Cretaceous strata, examination of
growth-strata relationships, and construction
and restoration of balanced cross sections. Our
field mapping reveals multiple phases of defor-
mation in the area since the Early Cretaceous,
which was expressed by northwest-trending
folding and northwest-striking thrusting that
occurred at the early stage of the Early Creta-
ceous. The compressional event was followed
immediately by extension and linked right-slip
faulting in the later stage of the Early Cretaceous.
The area underwent gentle northwest-trending
folding since the late Miocene. We estimate the
magnitude of the Early Cretaceous crustal short-
ening to be ~35%, which we interpret to have

Geological Society of America Bulletin, v. 134, no. 1/2
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resulted from a far-field response to the collision
between the Lhasa and the Qiangtang terranes
in the south. We suggest that the subsequent
extension in the Early Cretaceous was induced
by orogenic collapse. U-Pb dating of detrital
zircons, from the Lower Cretaceous sedimen-
tary clasts, suggests they were sourced from the
north and the south, which implies the current
foreland region of the Tibetan plateau was a
topographic depression between two highland
regions in the Early Cretaceous. Our work also
shows that the Miocene strata in the foreland
region of the northern Tibetan plateau was dom-
inantly sourced from the north, which implies
that the rise of the Qilian Shan did not impact
the sediment dispersal in the current foreland
region of the Tibetan plateau where this study
was conducted.
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