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Abstract—We propose a novel data detection algorithm and

a corresponding very large scale integration (VLSI) design for

massive multi-user (MU) multiple-input multiple-output (MIMO)

wireless systems. Our algorithm uses alternating direction method

of multipliers (ADMM)-based infinity norm constrained equaliza-

tion and is called ADMIN. ADMIN is an iterative algorithm

that outperforms linear detectors by a large margin when

the ratio between the numbers of base-station (BS) and user

antennas is small. In the first iteration, ADMIN computes the

linear minimum mean-square error (MMSE) solution, which is

sufficient when the ratio between the numbers of BS and user

antennas is large. We develop time-shared and iterative VLSI

architectures for LDL-decomposition based soft-output ADMIN

supporting 16- and 32-user systems. We present application-

specific integrated circuit (ASIC) designs for 16 to 64 antenna

base stations in 28 nm complementary metaloxidesemiconductor

(CMOS) that supports up to 64 quadrature amplitude modulation

(QAM). The 16-user ADMIN ASIC achieves 303 Mbps while

dissipating 85 mW. The 32-user ADMIN ASIC achieves 287 Mbps

and 241 Mbps while dissipating 121 mW and 135 mW for 32 and

64 BS antennas, respectively. ADMIN has also been implemented

on a Xilinx Virtex-7 field-programmable gate array (FPGA) and

is compared with state-of-the-art massive MIMO data detectors.

Index Terms—ADMM, MIMO Detection, massive MIMO,

FPGA, ASIC, equalization, soft-output data detection, convex

optimization.

I. INTRODUCTION

Massive multi-user (MU) multiple-input multiple-output
(MIMO) is a key technology for fifth-generation (5G) wireless
communication systems. Traditional small-scale single-user
MIMO systems support typically from two to eight antennas
at both ends of the communication link. In contrast, massive
MU-MIMO equips the base station (BS) with a large number
of antenna elements that simultaneously serve a large number
of user terminals in the same frequency band [2], [3]. As
the number of the BS antennas grows large, random matrix
theory demonstrates that the effects of uncorrelated noise
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The detector implemented in this paper builds upon the VLSI architecture
presented at the IEEE International Symposium on Circuits and Systems [1].

and small-scale fading are diminished and the number of
supported users per cell becomes independent of the size
of the cell [4]. The improvements in spectral efficiency of
massive MU-MIMO (over small-scale MIMO) come at the
cost of higher computational complexity at the BS. In fact,
data detection in the uplink (user transmit to BS) is among
the most computationally intensive tasks at the BS side [5].
The receiver at the BS observes a linear superposition of the
separately transmitted information symbols and the task of the
symbol detector is to separate those transmitted symbols. The
complexity of the detection process grows exponentially with
the number of antennas at the BS. Thus, the detection problem
becomes more challenging in the massive MU-MIMO context.

A. Relevant Prior Art
One of the earliest near-optimal data detectors for massive

MIMO was the likelihood ascent search (LAS) algorithm
proposed by Vardhan et al. in [6]. It searches a sequence
of bit vectors with monotonic likelihood ascent. Another
local neighborhood search based near maximum likelihood
(ML) algorithm called reactive tabu search was presented in
[7]. Belief propagation based near-ML detection for massive
MIMO can be found in [8]. However, these detectors have
not been the most popular choice for circuits and systems
community over the past decade. Approximate inversion-based
linear data detectors, due to their low complexity, have been
the popular choice for hardware implementation of massive
MIMO detection. One of the earliest approximate matrix
inversion-based detection is Neumann series approximation
(NSA) and several implementations of NSA can be found in
the literature [5]. Gauss-Seidel (GS) approximate inversion
based detection algorithm is also a popular choice for im-
plementation and can be found in [9]. Several other iterative
variants have been proposed, such as conjugate gradient (CG)
[10], coordinate descent (CD) [11], mismatched approximate
message passing [12], and stair matrix based massive MIMO
detection [13]. We refer interested readers to [14] for more
details on massive MIMO detection techniques.

Such approximate inversion-based linear methods work well
under the assumption that the ratio between the number of
antennas in the BS and the number of users is large. These
algorithms provide high throughput, but entail a significant
performance loss compared to exact inversion-based MMSE
data detectors, especially in systems with a comparable number
of BS antennas and users. The performance of approximate
inversion based detectors are also very unstable and their error-
rate performance fluctuates greatly depending on the system and
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channel models, the number of users or BS antennas, coding
scheme, algorithm structure, and the number of iterations. The
performance can get worse to the point that such algorithms
fail to successfully detect the transmitted data. The instability
of approximate inversion based algorithms can jeopardize
the BS product development for network vendors who must
support a variety of scenarios and configurations as customer
requirement [15]. In a practical MU detection scenarios below 6
GHz, the deployment of a large number of radio-frequency (RF)
chains may not be feasible due to the size, weight, and cost of
the BS. The convergence rates of approximate-inversion based
data detectors will significantly deteriorate in such scenarios.
A study in [16] suggested that exact matrix inversion based
detectors are viable alternatives from both complexity and
latency perspective. A few implementations of exact-inversion
based data detection have been proposed in [17] and [18].

According to Björnson et al., there is a common miscon-
ception that massive MIMO refers to systems with at least an
order of magnitude more base station antennas than terminals
[19]. In fact, there is no strict requirement on the relation
between the numbers of users and antennas in massive MIMO,
since the ratio depends on the system performance metric,
propagation environment, and coherence time block length. In
addition, network providers would be able to serve as many
users as possible for the given number of BS antennas. Popular
massive MIMO products, such as Nokia AirScale, Ericsson Air
6468, and Huawei AAU are equipped with 64 antennas and
can support up to 16 layers [20]. Therefore, massive MIMO
systems with a small ratio between the number of BS antennas
and users are of practical importance—however, only a few
papers have studied data detection in such scenarios.

B. Contributions

We propose a novel data detection algorithm based on
alternating direction method of multipliers (ADMM). Our
algorithm is referred to as ADMM-based infinity-norm (AD-
MIN) and performs box-relaxation-based equalization, which
outperforms linear detectors by a large margin in systems with
small ratios between the number of BS antennas and users
(two or less). ADMIN is iterative by nature and performs
linear MMSE equalization in the first iteration. Therefore,
for systems where the numbers of BS antennas are an order
of magnitude larger than that of the users, it is sufficient
to perform a single ADMIN iteration. We present an LDL-
decomposition based soft-output version of the algorithm
and extensive simulation results to compare the error-rate
performance of ADMIN with existing state-of-the-art data
detectors. In addition, we design two iterative and time-shared
very large scale integration (VLSI) architectures for ADMIN.
Our architectures support 16 and 32 users for 16 and 32 BS
antennas, respectively. We propose implementation results in
a 28 nm complementary metaloxidesemiconductor (CMOS)
technology and on a Xilinx Virtex-7 field-programmable gate
array (FPGA), and we compare our data detectors to existing
ones in the literature.

Base 
Station 

BU

Fig. 1: A massive MU-MIMO system in which a large number
of BS antennas are serving a large number of users. The channel
between the BS and users is modeled as y = Hx+ n.

C. Notation

Boldface lowercase and boldface uppercase letters stand for
column vectors and matrices, respectively. For a matrix, A, we
denote its Hermitian transpose by A

H . We use Ak,l for the
entry in the kth row and lth column of the matrix A. The real
and imaginary part of a complex-valued matrix A are denoted
by <(A) and =(A), respectively. The identity matrix is I and
`2-norm of the vector a is kak2 =

pP
K
|ak|

2.

D. Outline of the Paper

The rest of the paper is organized as follows. Section II
introduces the system model and discusses the data detection
problem. Section III details the ADMIN algorithm. Section IV
presents an LDL-based soft-output detector variant and provides
a complexity and error-rate performance comparison. Section V
presents the VLSI architecture of ADMIN along with a
fixed-point analysis. Section VI presents application-specific
integrated circuit (ASIC) and FPGA implementation results.
We conclude in Section VII.

II. SYSTEM MODEL AND DATA DETECTION

We consider a massive MU-MIMO wireless uplink sys-
tem that employs orthogonal frequency division multiplexing
(OFDM). We assume that U single-antenna user terminals send
data simultaneously to a BS with B � U antennas over W

subcarriers. The U users first encode their own bit stream with
a forward error correcting code (e.g., a convolutional code)
and map the coded bit stream to constellation points in the
finite alphabet set O (e.g., 16 quadrature amplitude modulation
(QAM) with Gray mapping) with an average transmit power Es

per symbol. We assume perfect channel state information (CSI)
and synchronization at the receiver, as well as a sufficiently
long cyclic prefix such that we can consider each subcarrier
to be frequency flat. By omitting the subcarrier index, the
per-subcarrier input-output can be written as y = Hx + n,
where y 2 CB is the received signal vector, x 2 CU is the
transmit symbol vector, H 2 CB⇥U is the channel matrix, and
n 2 CB is the circularly symmetric complex white Gaussian
noise vector with zero mean and variance N0 per complex
entry. An illustration of the considered system model is shown
in Fig. 1.
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A. Maximum-Likelihood Data Detection
Maximum likelihood (ML) data detection is optimal in terms

of minimizing the vector error rate when all data vectors are
equally likely. The ML detector finds the transmit vector for
which the Euclidean distance after passing it through the MIMO
channel is minimized, i.e.,

x̂ML = arg min
x2OU

ky �Hxk
2
2. (1)

Unfortunately, this problem is of combinatorial nature and
an exhaustive search requires exponential complexity in the
number of users [21]. Hence, alternative low-complexity
methods are often used in practical systems.

B. Equalization-based Data Detection
Equalization-based data detection first forms an estimate of x

as x̂G = Gy by using linear equalization, i.e., multiplication
by matrix G. For zero-forcing (ZF) equalization, the matrix
G is the pseudo-inverse of H. ZF equalization can be viewed
as the solution of a relaxed ML problem in which the discrete
constellation set O is relaxed to the complex numbers C [22].
Concretely, ZF-equalization can be expressed as

x̂ZF = arg min
x2CU

ky �Hxk
2
2. (2)

Linear minimum mean-square error (MMSE) equalization also
relaxes the discrete constellation O to the complex numbers
C with an additional regularization term. Concretely, linear
MMSE equalization can be expressed as

x̂MMSE = arg min
x2CU

ky �Hxk
2
2 +N0E

�1
s
kxk

2
2. (3)

The regularizer N0E
�1
s
kxk

2
2 prevents x from growing too

large, since the transmit signals are taken from a finite-energy
discrete constellation O centered around zero. Because the
objective function of (3) is quadratic in x, MMSE equalization
has a well-known closed form solution [22].

III. ADMIN: ADMM-BASED INFINITY NORM DETECTION

We now propose our ADMIN data detector for massive
MU-MIMO systems.

A. Infinity-Norm Constrained Equalization
We define the component-wise `1-norm of a complex-valued

vector x can be expressed as follows:

kxk1̃ = max
i

{max{<(xi),=(xi)}}. (4)

Constraining this norm as kxk1̃  ⇢ can be seen as putting a
box around each component with side length 2⇢. The idea of
box-constrained equalization [23], [24] is to relax the finite-
alphabet constraint x 2 O

U of the ML problem to the convex
polytope CO around the constellation set O and to solve the
following convex optimization problem:

x̂BOX = arg min
x2CU

O

ky �Hxk
2
2. (5)

The convex polytope for QAM alphabets can be expressed
as CO = {xR + jxI : xR, xI 2 [�↵,+↵]} where ↵ =

maxu2O <{u} is the tightest radius of the box around the
square constellation. For example, the convex polytope for
quadrature phase-shift keying (QPSK) is given by a square box
with radius ↵ = 1 around the square constellation of QPSK.
With the `1-norm, we have C

U

O
= {x 2 CU : kxk1̃  ↵}.

Since the problem in (5) is convex, a solution could be
found using off-the-shelf interior-point methods. Such methods,
however, are not particularly hardware friendly and special-
purpose solvers are required to efficiently find a solution to (5).
We next propose an ADMM-based solution that is hardware
friendly and is able to solves the box-relaxation problem in
(5) efficiently.

B. ADMM-based Algorithm
The alternating direction method of multipliers (ADMM) is

a well known numerical method to solve convex optimization
problems in which objective function and constraints are
convex [25]. ADMM solves the original convex problem
by breaking it into smaller sub-problems that can be solved
efficiently. ADMM blends the decomposability of the dual
ascent method with the superior convergence properties of
the method of multipliers. A generic constrained convex
optimization problem

minimize f(x) subject to x 2 C

with a variable x 2 Rn can be re-written in ADMM form as

minimize f(x) + g(z), subject to x = z

where g is an indicator function of the convex set C. The scaled
ADMM form for this problem is

x
k+1 = arg min

x

n
f(x) +

⇢

2
kx� z

k + u
k
k
2
2

o

z
k+1 = arg min

z

n
g(z) +

⇢

2
kx

k+1
� z+ u

k
k
2
2

o

u
k+1 = u

k + x
k+1
� z

k+1
,

where u is the scaled dual variable [25]. Here, the x-update
involves minimizing f and z-update involves minimizing g.
As g is an indicator function of a closed nonempty convex set
C, the z update can be written as

z
k+1 = arg min

z

n
g(z) +

⇢

2
kz� vk

2
2

o
= ⇧C(v), (6)

where v = x
k+1 + u

k is a constant vector for the purpose
of z-update and ⇧C(v) denotes the Euclidean projection onto
C [25]. Thus, the scaled ADMM problem can be written as

x
k+1 = arg min

x

n
f(x) +

⇢

2
kx� z

k + u
k
k
2
2

o

z
k+1 := ⇧C(x

k+1 + u
k)

u
k+1 = u

k + x
k+1
� z

k+1
.

C. ADMM-Based Infinity-Norm Detection
We rewrite (5) into the following equivalent form

minimize
x,z2CU

1

2
ky �Hxk

2
2 + g(z) subject to z = x (7)
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where g(z) is the indicator function for the convex set CO

defined by

g(z) =

(
0, if z 2 C

U

O

1, otherwise.

The augmented Lagrangian for the problem in (7) is

L�(x, z,���) =
1

2
ky �Hxk

2
2 + g(z) +

�

2
kz� x� ���k

2
2, (8)

where ��� is the scaled dual variable associated with the constraint
z = x and � > 0 is a suitably chosen regularization parameter.

We can now use ADMM to solve the augmented Lagrangian
over x and z. Concretely, the procedure is as follows:

x̂
k+1 = arg min

x
L�(x, z

k
,���

k)

ẑ
k+1 = arg min

z
L�(x̂

k+1
, z,���

k)

���
k+1 = ���

k + ẑ
k+1
� x̂

k+1
.

In the first step of the ADMM iteration, we minimize x while z

is fixed. We take the derivative of (8) with respect to x and
set it to zero to compute the first step of ADMIN as

H
H(y �Hx)� �(z� x� ���) = 0

=) x̂ = (HH
H+ �I)�1(HH

y + �(z� ���)). (9)

Here, G = H
H
H + �I is a regularized Gramian matrix

and yMF = H
H
y is a matched filter. In other words, the x-

update of ADMIN solves a regularized least-squares problem.
Thus, ADMIN can be viewed as a method for solving the
box-constrained problem of (5) by iteratively carrying out
regularized least-square computations. Note that, initializing z

and ��� with zero at (9) provides us with the linear MMSE
equalization solution in the first iteration. The z update step
can be expressed as

ẑ = arg min
z2CU

O

(�/2)kz� (x̂+ ���)k22. (10)

Equation (10) is an orthogonal projection of x̂+��� onto the
convex polytype C

U

O
. This projection is given by

proj
CO

(w) =

(
w, if w 2 CO

argminq2CO
|w � q|, otherwise.

In words, if w is outside the set CO, the projection outputs the
value closest to w within the set CO in terms of the Euclidean
distance. For example, if w is outside of a box of ↵ = 1
that encloses the square constellation of QPSK, the projection
outputs a value q that is closest to w within the box. The
update for the Lagrange vector is given by

��� ���� �(ẑ� x̂), (11)

where we introduce a suitably chosen penalty parameter (or
the augmented Lagrangian parameter) 0 < � for the ADMIN
algorithm. Note that 0 < � < 1 ensures the convergence of
the ADMM, but larger choices may lead to improved results
for a very small number of iterations.

Algorithm 1 ADMIN
inputs: y, H, N0 and Es

1: preprocessing
2: � = N0E

�1
s

✏

3: G = H
H
H+ �IU

4: G = LDL
H

5: L̃ = L
�1, D̃ = D

�1

6: initialization
7: z = 0

8: ��� = 0

9: detection
10: yMF = H

H
y

11: for i = 1, . . . ,K
12: x̂ L̃

H
D̃L̃(yMF + �(z� ���))

13: ẑ proj
CO

(x̂+ ���,↵)
14: ��� ���� �(ẑ� x̂)
15: z ẑ

16: end

17: output: x̂

IV. LDL-DECOMPOSITION BASED SOFT-OUTPUT ADMIN
Inversion of the regularized Gram matrix G = H

H
H+�IU

is required to implement the x-update of ADMIN. Since G is
Hermitian and positive-definite, we can compute the exact
inverse using an LDL-decomposition [9]. Fortunately, the
computations required for G, LDL, and inversion of L and D

can be done during the preprocessing, and thereby the detection
stage can be simplified.The Hermitian transpose of the inversion
of L yields the inversion of LH . A similar approach of using
LDL-decomposition for soft-output detection can be found
in [18]. It should be noted that similar functionality can be
accomplished using Cholesky decomposition [17], however,
we choose LDL-decomposition because of its less complexity.

ADMIN computes the matched filter at the beginning of
the detection process. The matched filter should be calculated
at symbol rate as y is required for yMF = H

H
y calculation.

During the detection stage, ADMIN computes the matched filter
and afterwards, iteratively updates x̂, ẑ, and ���. The complete
ADMIN algorithm is presented in Algorithm 1. An intuitive
functional diagram of the preprocessing and detection stages
is presented in Fig. 2. The post-equalization signal-to-noise-
plus-interference ratio (SINR) vector ⇢⇢⇢, which is required to
compute the log-likelihood ratio (LLR) values, can be computed
as ⇢i = 1/N0E

�1
s

gi where gi is the i-th entry of the main
diagonal of G�1 [5]. This can be done efficiently with the help
of L̃ = L

�1 and D̃ = D
�1 as gi = (̃li)Hdiag(D̃)(̃li) where

l̃i is the i-th column of L̃. If the ratio between the numbers
of BS antennas and users is large1, we can approximate the
preprocessing stage by only taking the inverse of the diagonal
elements of the Gram matrix. Therefore, the calculation of gi
can be expressed as

gi =

(
1/Gii, if B > U

(diag(G�1))i otherwise

1Typically, a ratio of 10 or above is considered as large. For example, a
128⇥8 system.
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Fig. 2: Functional diagram of ADMIN preprocessing and
detection. The curved and bold arrow represents the iterative
process of ADMIN.

Note that, � uses a scaled version of N0E
�1
s

, while the SINR
calculation uses an unscaled version of N0E

�1
s

. The max-log
approximated LLR values can be computed from the SINR and
x̂ following [26]. We model the transmit symbol of user i as
x̂i = µixi + zi, where µi is the effective channel gain and zi

is the post-equalization noise-plus-interference with variance
vi

2 [11]. By defining ⇢
2
i
= (µ2

i
)2/v2

i
as the post-equalization

SINR, the max-log approximated LLR of bit b for user i can
be computed as

Li,b = ⇢i

✓
min
a2X 0

b

|
x̂i

µi

� a|
2
� min

a02X 1
b

|
x̂i

µi

� a
0
|
2

◆
(12)

where the sets X
0
b

and X
1
b

contain the constellation sym-
bols where bit b of the symbol in O equals to 0 and 1,
respectively [27]. According to [26], the calculation inside
the parentheses of (12) can be greatly simplified by exploiting
modulation of Gray mapping.

A. Complexity Analysis
We now analyze the computational complexity of ADMIN

and compare it with state-of-the-art detection algorithms. Most
of the massive MIMO detection algorithms are iterative and
therefore, we compare the number of real-valued multiplications
of a single iteration of the detection algorithms. The number
of complex-valued multiplications needed for line 12 of
Algorithm 1 is 2U2 + 2U where U is the number of users.
Here, U2 multiplications are needed for every matrix-vector
multiplication. Thus, the matrix-vector multiplication of L̃ and
yMF+�(z����) requires U2 complex operations and results in a
vector with U elements. This vector is multiplied element-wise
with the diagonal vector, D̃. The L̃H matrix is finally multiplied
with the resulting vector in earlier sentence, which requires
another U2 complex multiplications. The cost of projection is
negligible and another scalar-vector multiplication is required
for line 14 that requires U multiplications. Therefore, the total
complexity of ADMIN per iteration is 2U2 +3U which scales
with KU

2 where K is the number of ADMIN iterations. An
additional BU complex multiplication is required for the MF
calculation at line 10 of Algorithm 1. In Table I, the number
of real-valued multiplications for K iterations are shown for
different iterative data detection algorithms. It can be seen that

TABLE I: Complexity analysis of massive MU-MIMO detec-
tion algorithms

Algorithm Computational complexity

BPSK TASER [28] K( 13U
3 + 5

2U
2 + 37

6 U + 4)
QPSK TASER [28] K( 83U

3 + 10U2 + 37
3 U + 4)

CG [10] (K + 1)(4U2 + 20U )
NSA [5] (K � 1)(2U3 + 2U2 � 2U)
CD [11] K(8BU + 4U )
GS [9] 6KU2

ADMIN K(8U2 + 12U) + 4BU
MMSE 4U(U2 +B2 +B)

TASER [28] and the NSA [5] algorithms scale with KU
3 and

exhibit more complexity compared to ADMIN. CG [10] and
GS [9] scale with KU

2 and are slightly less complex compared
to ADMIN. CD [11] scales with KBU . It should be noted that
we listed the complexity of a single iteration while the number
of iterations requires to achieve a satisfactory performance
differs for each algorithm. The error-rate comparison is used
to determine the required number of iterations and discussed
in the next subsection.

We also like to point out that CG, NSA, CD, and GS
algorithms include pre-processing. Thus, the result in Table I is
not entirely fair. However, BPSK TASER and QPSK TASER
complexity also do not include any pre-processing in Table I.
ADMIN follows a standard pre-processing process based on
Gramian matrix calculation, LDL-decomposition and inverse of
L computation. A BS with B antennas supporting U users need
to multiply a B⇥U and U⇥B matrices for the Gramian matrix.
This calculation requires a total B2

U multiplications. The size
of the Gramian matrix is U⇥U and the LDL-decomposition of
this matrix requires 1

6U
3 multiplications. The inversion of the

triangular matrix, L can be accomplished by back-substitution.
The back-substitution of the U ⇥ U matrix takes 1

2 (U
2
� U)

multiplications.

B. Error-Rate Performance

We simulate a typical 40 MHz IEEE 802.11n OFDM
uplink scenario with a rate-3/4 convolutional code where the
channel matrices are generated using WINNER-phase-2 model.
A max-log BCJR algorithm is used for soft-input channel
decoding. We use 6000 packets per simulation where each
packet contains one OFDM symbol. Each OFDM symbol uses
128 subcarriers in our simulations. We invite interested readers
to explore [29] more detail on WINNER-phase-2 channel model.
We show the (coded) packet error-rate (PER) for ADMIN as
well as linear MMSE, single-input multiple-output (SIMO)
lower bound, TASER and box-constrained coordinate descent
(CD) detector [30] in Fig. 3. CD outperforms other MMSE
approximations like the Neumann series approach [31] or
the conjugate gradient (CG) [11] based detectors in terms
of PER. For a small (4 or less) base-station-to-user-antenna
ratio, the performance gain of CD over the state-of-the-art
detectors is more pronounced. Therefore, outperforming CD
for any antenna configuration means ADMIN can outperform
the state-of-the-art approximate inversion-based massive MIMO
detectors. Therefore, we compare ADMIN with five iterations
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Fig. 3: Packet error rate (PER) for a massive MU-MIMO-OFDM system with rate-3/4 code and WINNER channels for 16
users [1].
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Fig. 4: Packet error rate (PER) for a massive MU-MIMO-OFDM system with rate-3/4 code and WINNER channels for 32
users.

(K = 5) to the CD with five and ten (K = 10) iterations
respectively. Figs. 3a and 3b illustrates the PER performance
for a 16-user and 16 BS antennas system. For lower order
modulation (e.g., QPSK), ADMIN achieves a substantial
performance gain over MMSE. ADMIN also outperforms
TASER and CD with a smaller number of iterations. For higher
order modulation (e.g. 64-QAM), CD fails to detect the symbols
for square systems. ADMIN provides approximately 5 dB gain
compared to linear MMSE in this scenario. Fig. 3c illustrates
the PER performance for 16 users and 32 BS antennas. ADMIN
with five and CD with ten iterations performs similarly in this
scenario; however, CD performs worse than MMSE with five
iterations.

In Fig. 4, the detectors are simulated for 32-user systems.
Figs. 4a and 4b illustrate the ADMIN provide substantial gain
over linear MMSE for lower and higher order modulations in a
square system. Similar to 16-user square MIMO configurations,
CD is ineffective for a square MIMO system and higher order
modulations. In lower order modulations, TASER and CD
requires significantly higher number of iterations to reach
even close to ADMIN’s performance. Fig. 4c illustrates the
performance of 64-antenna BS and 32-user systems. It can

be seen that the ADMIN with K = 5 iterations provides
similar performance to CD with K = 15 iterations. For this
configuration, ADMIN provides better performance than exact
inversion based MMSE. The simulation results show that AD-
MIN algorithm provides significant performance improvements
when the ratio of numbers of BS antennas and users are small.
Most of the state-of-the-art massive MIMO detection algorithms
fail to successfully detect the transmitted data in such scenarios.
The fixed-point performance of ADMIN algorithm is shown
in Figs. 3b and 4b and denoted as ADMIN, FP. A detail on
the chosen word-lengths can be found in the beginning of
Section V.

We simulate the performance of ADMIN for 256-QAM and
for different BS antennas and users ratios in Fig 5. First, we
simulate different detectors for 128 BS antennas and 16 users
in Fig 5a. Here, the ratio between BS antennas and users is
8 and it can be seen that the MMSE performs well in this
scenario. ADMIN provides approximately 0.5 dB to 1 dB gain
compared to linear MMSE with its 2nd iteration. CD fails to
detect symbols with K = 2 iterations. This simulation shows
the efficacy of ADMIN with low number of iterations even
when the BS antennas and users ratio is high. In Fig 5b, the
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detectors are simulated when the ratio between BS antennas
and users is 4. Again, ADMIN provides 0.5 dB to 1 dB gain
compared to MMSE in this scenario. In this scenario, CD, with
5 iterations, can reach close to ADMIN’s 2 iterations and CD
with K = 2 and K = 3 iterations fail to detect received symbol
vectors. We also simulate 256-QAM when BS antennas and
users ratio is 1 in Fig 5c. We can see that ADMIN provides
significant gain over MMSE with K = 5 and K = 7 iterations.

C. Parameter Selection
The performance of ADMIN depends on the parameters

� and � discussed in Section III. It should be noted that
the number of iterations to reach a desired performance is
dependent on the ADMM parameters [32]. The mathematical
analysis to determine the optimal values of � and � is beyond
the scope of this paper. We use simulations to determine
the values of � and � that provides us satisfactory error-rate
performance. In Fig. 6, ADMIN detector is simulated for 32
users and 32 BS antennas. It can be seen that the performance
varies notably between different values of � and �. We selected
� = 3 and � = 2 for all of our simulations of Figs. 3 and 4.

V. VLSI ARCHITECTURE

A. Architecture Overview and Fix-Point Optimization
We propose VLSI architectures which takes H, y, L̃, d̃ =

diag(D̃) as inputs for the ADMIN detector. We use fixed-
point arithmetic to optimize the efficiency of our designs. We
quantize various parts in such a way that the components such
as complex multipliers and adder tree can be reused. Complex-
valued multipliers with 18-bit real and imaginary numbers are
sufficient for all computations. Therefore, all the inputs are
quantized to 18-bits. It should be noted that in a systolic array
architecture, the inputs can be quantized to smaller values.
However, due to the iterative nature of ADMIN, the output
of the adder tree, that is used as inputs of the multipliers in
subsequent iterations, requires a higher number of bits. The
VLSI architectures support ADMIN detection (lines 6 � 16)
of Algorithm 1. The architectures are divided in two parts and
they are explained next.

B. Vector Multiplication Unit
The vector multiplication unit (VM) computes the x-

minimization step of ADMIN (line 12) of Algorithm 1. VM
is designed with time-shared processing elements to compute
vector-vector multiplication. A block diagram of the VM unit
is shown in Fig. 7. It consists of complex multipliers followed
by an adder tree. The number of complex multipliers is 16 and
32 for the 16-user and 32-user ADMIN, respectively. We insert
pipeline registers between each complex multiplier and adder
tree to reduce the critical path. The adder trees are used to
sum 16 or 32 complex values for 16- or 32-user architectures
respectively. H is stored in a standard cell-based memory [33]2

in such a way that each address can read a column of H in

2The authors does not have access to a 28 nm SRAM memory compiler.
Therefore, the authors had to use the standard-cell based memory. A SRAM
memory could potentially save a lot of logic gates for the H memory

a single cycle. The VM unit first computes the matched filter
y

MF = H
H
y. The same values of yMF are needed for all the

five ADMIN iterations and that is why they are stored in a
register array.

The lower triangular matrix L̃ is stored in another standard
cell-based memory. The triangular memory is designed in such
a way that it is possible to read an entire column or row of L̃
in a single cycle. L̃ is read row-wise to compute the L̃y

MF and
the output is stored in a temporary register array t. The next
step is to compute the element-wise multiplication between
d̃ and t. The output from the multiplier array is written back
to t unlike the previous computations. The triangular memory
is read column-wise in next 16 or 32 cycles to compute L̃

H
t

that results in x̂ for 16 users or 32 users respectively which is
the output of VM unit.

C. Matched Filter Update Unit
The matched filter update (MFU) unit computes the z

minimization and ���-update steps of ADMM. The output values
from the VM unit, x̂i, where i = 1, 2, . . . ,M , are obtained
sequentially. Therefore, we choose a pipelined architecture for
MFU. The architecture for the MFU unit is shown in Fig. 8.

The ��� array is stored in a register array and initialized as
zero. The projection unit compares the real and imaginary
parts of the addition of x̂i and �i and outputs ẑ. The difference
between ẑ and x̂i is multiplied with the scaling parameter �.

A shimming register is used after x̂i to synchronize with ẑ.
Similarly another shimming register is used to synchronize �i to
add with �(x̂i� ẑ) that results in an updated �i+1. The updated
�i+1 is stored back in the same register array designated for
�i and they are used for the next iteration. The subtraction of
ẑ and �i+1 is multiplied with the penalty parameter �. The
output is added with the corresponding matched filter value
y
MF

i
for an updated y

u

i
. The updated matched filter values y

u

are stored in a register array and sent back to the VM unit to
compute for the next ADMIN iteration.

D. Control Signals
A large number of control signals is required to reuse the

multiplier array and the adder tree inside the VM unit. Firstly,
four control signals are used as read enable, write enable, read
address and write address for H memory. Secondly, there are
several control signals associated with L̃ memory. As both row
and column-wise read is needed from L̃, a control signal is
used to select the reading mode. A two dimensional array of
load signals are used to control read access of every individual
value of L̃. The writing of L̃ memory block is done only row-
wise and there is no need of a control signal to select the read
mode. Another signal is used to select a row of L̃ for write
access. The control signals associated with H and L memory
can be seen in Fig. 9.

In addition to write access control signals of H and L̃

memory, there are single-bit enable signals, which control the
write enable process of register arrays dedicated for y and d̃.
The matched filter register array, yMF includes an array of write
enable signals to write output from adder array to appropriate
y

MF
i

register. Similarly, an address signal is used to read the
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(a) 128 BS antennas, 16 users and 256-QAM.
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(b) 128 BS antennas, 32 users
and 64-QAM.
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(c) 32 BS antennas, 32 users
and 256-QAM.

Fig. 5: Packet error rate (PER) for a massive MU-MIMO-OFDM system with rate-3/4 code and WINNER channels for
256-QAM.
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Fig. 6: Packet error rate (PER) for a MU-MIMO-OFDM system
with 32 users, 32 antennas BS, rate-3/4 convolutional code and
WINNER channel model and 64-QAM modulation scheme.
The simulations used different values of � and �.

H
⇤
i,j

L̃i,j

d̃i

L̃
⇤
j,i

yi

y
u
i

y
MF
i

ti

x̂i

t

yMF

1

M

2

Adder
Tree

Fig. 7: VM unit: Computes vector-vector multiplication. It has
i = 1, 2, . . . ,M multiplier units in parallel. The adder tree
sum the output of the multipliers [1].

correct value of yMF
i

. An array of load registers is also used for
writing to different registers of t. This register array is used
to write either the output of the multiplier array or the output
of the adder tree. Therefore, another control signal is used to
select between the outputs of multiplier array and adder tree.
The adder tree output is connected to all the registers of t and
the array of load signals is used to activate the relevant write
enable.

yui

x̂i

ẑ

�

�i

�

�i+1

yMF
i

Proj

Fig. 8: MFU unit: Computes z minimization and ���-update in
pipelined fashion [1].

A couple of two bit signals are used to control the inputs
of the multiplier array. These signals are used in multiplexers
of VM unit, which can be seen on the left side Fig. 7. For
readibility, these two bit signals are not shown in Fig. 9. The
control mechanism of ��� register array is very similar to that
of yMF. It has an array of write enable signals and an address
signal to write or read the suitable �i values. There are also
several interrupt signals for debugging purpose, which are also
not shown in Fig. 9. A list of the control signals associated
with ADMIN and their functionalities are presented in Table II.

E. Scalable Architecture for More Antennas
As we use a time-shared and iterative architecture instead of

a systolic array, the ADMIN implementation can be modified
for higher numbers of BS antennas with relatively modest
effort. We extend the ADMIN architecture for 32 ⇥ 32 to a
BS with 64 antennas. To our advantage, the size of Gramian
matrix G32⇥32 and output of matched filter y

MF
32⇥1 remains

the same as of 32 antenna BS. Thus, the operation of lines
6 � 16 of Algorithm 1 is identical to 32 ⇥ 32 case and we
can keep the datapath very similar to 32 ⇥ 32. The major
difference is line 10 of Algorithm 1 due to the size difference
of H64⇥32 and y64⇥1 compared to the square configurations.
We use 32 complex multipliers for this architecture. Using 64
complex multipliers could enable us to compute the matched
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TABLE II: List of Control Signals

Signal Functionality
load DinxI Controls access of d̃ inputs
load yxI Controls access of y inputs
load yMFxI Array of write enable signals for yMF registers
load tempxI Array of write enable signals for t registers
selector1xI Selects between H, L̃ and their conjugates as one

input of multiplier array
selector2xI Selects between y, yMF, t as the other

input of multiplier array
yMF addrxI Address to read appropriate y

MF value
tempinModexI Selects between multiplier array and

adder tree outputs
RAdrxI Read address of H memory
RExI Read enable of H memory
WExI Write enable of H memory
WAdrxI Write address of H memory
load ResultxI Array of write enable signals of L̃
ReadModexI Selects column or row wise read access
ControlxI Activates column line of L̃
load lambdaxI Array of write enable signals for ��� registers
lambda addrxI Address to read appropriate ��� value
yMFaddmodexI Controls y

MF accumulation in 64⇥ 32 architecture
firstinvDonexI Interrupt when MMSE / 1st iteration is done
secondinvDonexI Interrupt when 2nd ADMIN iteration is done
resultDonexI Interrupt when 5th ADMIN iteration is done
MFDonexI Interrupt when matched filtering is done

H-memory L-memory

yMF array t array 

multiplier
array

adder 
tree

WExI WAdrxI

RAdrxI
load_ResultxI

ReadModexI

ControlxI

MFU 
unit

λ array 

RExI

load_lambdaxI lambda_addrxI

yMFaddmodexI

yMF_addrxI

load_yMFxI load_tempxI
tempinModexI

Fig. 9: A block diagram of control signal arrangements in
ADMIN architecture. The blue arrows show the control signals.

filtering faster. However, only 32 is required for the rest of the
process (lines 6�16 of Algorithm 1) and the other 32 complex
multipliers are not be utilized. The channel matrix H64⇥32 is
stored in two separate memory blocks Ha32⇥32 and Hb32⇥32

as H =


Ha

Hb

�
.

It is not essential to divide the channel matrix into different
parts. However, dividing H memory in such a way leads to a
scalable architecture. We read the first input of the multiplier
array from Ha. During these 32 cycles, we read half of y, i.e.,
y32⇥1 as the other input of the multiplier array. The adder tree

outputs are sequentially stored in y
MF register array. In the

next 32 cycles, we read Hb and other half of y, multiply them
and create 32 new outputs sequentially through adder array.
These new 32 values are added with the earlier values of yMF.
Due to the similarity of the datapaths, the rest of the control
logic also can be the same as the 32⇥ 32 implementation. As
extra 32 cycles are required to compute y

MF, the rest of the
control signals are delayed by 32 cycles too. The architecture
can be easily scaled for a BS with more antennas. For example,
in case of a 128 BS antennas, the channel matrix H128⇥32

can be divided in four 32⇥ 32 matrix. Thus, we can add two
more H32⇥32 memories in the 64 BS antennas architecture
and modify the control for matched filtering process. In a
similar way, the ADMIN architecture can be extended to 128
or higher number of BS antennas. Note that, the design can also
be scaled for binary phase-shift keying (BPSK) to 64-QAM
modulation schemes. The LLRs are computed in a simplified
form according to [26] for different modulations schemes. The
LLR computation logic is quite small and does not have any
noticable impact on the overall area or complexity of the design.

F. Dual Mode Architecture
The simplest way to design a dual mode ADMIN architecture,

which supports both 32 and 64 BS antennas, is to reuse the
64 ⇥ 32 architecture and modify the write access of y

MF to
support 32 BS antennas. In this way, we can avoid creating
multiplexers with every control signals to select between 32
and 64 BS antenna mode. We use the same control signals of
64⇥ 32 architecture and only disable the accumulation in y

MF

for 32 BS antennas mode. In this way, the multiplication of
Hb and second half of y64⇥1 are calculated, but the results
are not used. This is similar to the NOP instructions used in a
off-the-shelf processor architectures. Using this method, both
32⇥ 32 and 64⇥ 32 take equal number of cycles to compute
the output. In other words, the 32 BS antennas will require
32 more cycles more in the dual mode architecture than a
dedicated architecture solely for 32⇥ 32.

VI. IMPLEMENTATION RESULTS AND COMPARISON

A. FPGA Implementation
The ADMIN architecture is developed and optimized in

VHDL on register-transfer level (RTL). We design two separate
implementations for 16- and 32-user terminals and present the
post place-and-route implementation results on a Xilinx Virtex-
7 XC7VX690T FPGA in this subsection. Vivado default settings
is used as the synthesis and implementation strategy. The default
mode is selected for the -flatten_hierarchy option in
Vivado design tool to keep the same top level hierarchy after
synthesis. The 16-user design can reach 263.16 MHz. For 32-
user designs, the maximum clock frequency is 232.55 MHz
and 222.22 MHz for 32 and 64 BS antennas respectively.

The throughput and latency of different iterations for the
FPGAs are provided in Table III. The throughput decreases
linearly with respect to the number of iterations K, because
the number of operations remains the same in each iteration
of ADMIN. ADMIN requires K = 5 iterations to achieve the
desired PER shown in Figs. 3 and 4. In the first 70 cycles, the
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TABLE III: Throughput and latency of ADMIN FPGA imple-
mentation for K iterations

K=1 K=2 K=3 K=4 K=5

1
6
⇥

1
6 Cycles 70 109 148 187 226

Throughput (Mbps) 360 231 170 135 111
Latency (µs) 0.26 0.41 0.56 0.71 0.85

3
2
⇥

3
2 Cycles 134 205 276 347 418

Throughput (Mbps) 332 217 161 128 106
Latency (µs) 0.57 0.88 1.18 1.49 1.79

6
4
⇥

3
2 Cycles 198 269 340 411 482

Throughput (Mbps) 215 159 125 103 88
Latency (µs) 0.89 1.21 1.53 1.85 2.17

TABLE IV: Component wise breakdown of ADMIN in FPGA

LUT slices FF slices DSP

1
6
⇥

1
6

H memory 2577 9300 0
L memory 4608 4320 0
VM unit 1620 3168 64
MFU unit 324 1440 4
Others 4623 13 8
Total 13392 18241 76

3
2
⇥

3
2

H memory 8641 30782 0
L memory 10000 14880 0
VM unit 1740 5280 128
MFU unit 448 2160 4
Others 11220 44 8
Total 32049 53146 140

6
4
⇥

3
2

H1 memory 10368 36962 0
H2 memory 10945 36962 0
L memory 10780 17856 0
VM unit 2592 7488 128
MFU unit 540 2592 4
Others 13006 55 8
Total 48231 101915 140

16-user architecture computes the first ADMIN iteration that
provides the MMSE estimates. Here, 16 cycles are used for
storing the inputs to H and L̃ memory. The architecture needs
226 cycles to compute K = 5 ADMIN iterations that results
in a throughput of 111.71 Mbps. The first 134 cycles computes
the first ADMIN iteration and provides the MMSE estimates
for the 32-user configuration. Here, 32 cycles are used for
storing the H and L̃. The architecture computes five ADMIN
iterations that results in a throughput of 106.56 Mbps. The 32-
user and 64-antenna architecture compute five iterations with a
throughput of 88 Mbps. An FPGA device can be reconfigured
on-field by programming with different bitstreams. Therefore,
an FPGA device configured for 32 antennas can be updated
on-field with a new bitstream for 64 antennas. Thus, there is
no crucial need for a dual mode architecture in FPGA that
supports both 32 and 64 antennas.

In Table IV, the resource utilization of the ADMIN variants
on a Virtex-7 FPGA is presented. Even though the number of
elements in L memory is roughly half of H memory, it can be
seen from Table IV that L memory uses nearly same or more
LUTs. This is due to the control logic used in for accessing
both row and columns of the triangular register bank dedicated
for L. The 16-user configuration uses 16 complex multipliers
which are mapped to the 64 real multipliers available in the
DSP elements. Therefore, the LUT slice usage of the VM
unit is relatively lower than other units. Similarly, the 32-

user configurations uses 128 DSP elements because it uses
32 complex multipliers. The Others section contains control
logics, counters etc.

A comparison with different state-of-the-art data detectors
is presented in Table V. The most popular configuration for
the FPGA implementations use 8 users and 128 BS antennas
and thus, our design is not really comparable. Our goal
is to compare ADMIN with other designs where the ratio
between BS antennas and number of users is equal or less
than 4. For this reason, we compare our design with two
variants of TASER [28] and two variants of CD detectors [11],
[30]. All implementations in Table V used Xilinx Virtex-7
XC7VX690T FPGA, which gives us a fair comparison between
the implementations. In [28], the TASER FPGA implementation
results are provided for different BPSK and QPSK users per
time slot. We take 64-users BPSK or 32-user QPSK TASERs to
compare with our detectors. The resource utilization in TASER
increases quadratically with the size of the systolic array.
Therefore, while the number of LUTs in 8-user BPSK TASER
is only 4790, the number of LUTs of 64-user BPSK TASER
is 149942. Thus our design, provides a significantly higher
throughput/slices for all the configurations. The modulation
scheme plays a crucial role in the lower throughput of TASER
as it can support only BPSK and QPSK.

A MMSE based optimized CD was implemented in [11]
which was extended using box-relaxation in the journal ver-
sion [30]. Both implementations provide very high throughput
due to the 24 pipelined stages and the authors claim that the
throughput of 15.81 Mbps can be multiplied 24 times [11].
Thus, the CD implementations provide about 3.5⇥ higher
throughput than our implementation. As the CD results of
Table V is for 8 users and 32 antennas, the number of slices
used in the implementation is significantly lower than our
implementation. Thus, the scaled throughput per slices is also
significantly higher in CD. In addition, the results provided in
Table V for CD only use 3 iterations, where it needs around
K = 15 iterations to reach ADMIN performance (Figure 4c).
Therefore, the throughput of CD will decrease approximatey
5⇥ to get a similar error rate performance as of ADMIN.
Similarly, the PER results in Figs. 3 and 4 demonstrate that
K = 5 iterations of ADMIN performs better than K = 10
to K = 15 iterations of TASER. Consequently, the scaled
throughput of these algorithms should be based on higher
number of iterations to fairly compare to ADMIN. In the last
row of Table V, we normalize the results for number of users.
The difference between ADMIN and TASER; and the difference
between CD and ADMIN becomes more pronounced after this
scaling.

B. ASIC Implementation

The ADMIN architecture is developed and optimized in
VHDL on RTL for the ASIC design. The architecture is
synthesized using Synopsys DC with a 28 nm CMOS standard
cell library. For a 16-user and 16-antenna BS, ADMIN achieves
a maximum clock frequency of 714 MHz and takes an area
of 0.225 mm2 which equals to 460.6 k gate equivalents. For
32-user architectures, ADMIN achieves 625 MHz and 606 MHz
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TABLE V: Comparison of FPGA Implementations for MU-MIMO symbol detection

Proposed [28] [11] [30]

No. of users 16 32 32 64 32 8 8
BS antenna & users ratio 1 1 2 2 4 4 4
Algorithm ADMIN ADMIN ADMIN TASER TASER CD CD
Iteration 5 5 3 1 3 3 5
Modulation scheme 64-QAM 64-QAM 64-QAM BPSK QPSK 64-QAM 64-QAM
Preprocessing included No No No No No Yes Yes
Clock freq. [MHz] 263 232 222 111 262 261
LUT slices 13392 32049 48231 149942 5909 6059
FF slices 18241 53146 101915 91829 15148 10704
DSP 76 140 140 2208 195 198
Throughput [Mbps] 111.71 106.56 125 98 379 378
Throughput/slicesa

Mbps/K slices 8342 3324 2591 653 64139 62386

Throughput/(slicesa⇥ users)
Mbps/(K slices⇥ users) 521 104 81 10 20 8017 7798

aSummation of LUT and FF slices.

TABLE VI: Throughput and latency of ADMIN ASIC imple-
mentation for K iterations

K=1 K=2 K=3 K=4 K=5

1
6
⇥

1
6 Cycles 70 109 148 187 226

Throughput (Mbps) 979 629 463 366 303
Latency (µs) 0.09 0.15 0.2 0.26 0.31

3
2
⇥

3
2 Cycles 134 205 276 347 418

Throughput (Mbps) 895 585 434 345 287
Latency (µs) 0.21 0.32 0.44 0.55 0.66

6
4
⇥

3
2 Cycles 198 269 340 411 482

Throughput (Mbps) 588 432 342 283 241
Latency (µs) 0.32 0.44 0.56 .67 .79

and takes an area of 0.554 mm2 and 0.688 mm2 for 32 and
64 BS antennas respectively. The worst critical path goes
through the multiplier array to the temporary register, t for
all implementations. The throughput and latency of different
ADMIN iterations for the ASICs are provided in Table VI.
The 16-user architecture needs 226 cycles to compute K = 5
ADMIN iterations that results in a throughput of 303 Mbps. The
32-user architectures requires 418 and 482 cycles to compute
K = 5 ADMIN iterations that results in a throughput of 287
and 241 Mbps for 32 and 64 BS antennas respectively. As the
dual mode architecture’s control and data path are very similar
to that of 64⇥ 32, a separate implementation results for the
dual mode is not necessary.

The synthesized RTL for all the configurations are placed and
routed with Cadence Encounter tool. In Fig. 10, we present only
the layout diagram of a 32-user and 64-antenna ADMIN. The
figure shows the module placement of the main components of
ADMIN implementations. It can be seen from Fig. 10 that the
standard cell placements of ASIC are centered around the VM
unit. The VM unit is communicating with other major parts
such as Ha memory, Hb memory, L memory and MFU unit.
Most of the major parts of the ASIC have some connection
to the I/O ring because they each have connection to the top
level inputs or outputs of the design.

A breakdown for different components for the ASICs are
shown in Table VII. The H and L memory took a significant
portion of the whole ASIC. Synopsys DC is able to optimize
and save resources for the multiplier array as the number did

Fig. 10: Layout of the ADMIN ASIC for 64 BS antenna and 32
users. The blue, violet, yellow and green palettes represent the
VM unit, H memory, L memory and the MFU units respectively.
TABLE VII: Component wise breakdown of ASICs (k gates)

16⇥ 16 32⇥ 32 64⇥ 32

H memory 153.389 401.149 -
Ha memory - - 369.808
Hb memory - - 369.928
L memory 88.792 366.331 232.780
VM unit: mul. array 128.724 196.77 187.238
VM unit: adder tree 2.741 5.614 5.733
VM unit: others 59.405 117.782 167.112
MFU unit 22.618 44.58 28.096

Total 460.599 1132.226 1405.640

not increase linearly. The other part of the VM unit consists
of several intermediate register banks.

Table VIII presents the average power consumption distri-
bution of the ASICs. The power consumption is measured
by capturing signal activity traces of the post place-and-route
design during the detection. The multiplier array consumes the
majority of the VM unit. The rest of the VM slice consists
of the consumption by adder tree, intermediate registers etc.
The Other row in the table represents the consumption of the
clock tree buffer cells.

In Table IX, our ADMIN ASICs are compared to the state-
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TABLE VIII: Distribution of power of the ASICs

16⇥ 16 32⇥ 32 64⇥ 32

H memory 19% 37% -
Ha memory - - 18%
Hb memory - - 18%
L memory 10% 19% 15%
VM unit: multiplier array 42% 31% 34%
Rest of the VM unit 12% 7% 9%
MFU unit 4% 4% 2%
Others 13% 2% 4%

Total 100% 100% 100%

of-the-art massive MIMO detection. The throughput and area
of the implementations are normalized to 28nm technology as

t ⇠ 1/s, A =⇠ 1/s2, Pdyn ⇠ (1/s)(Vdd/V
0

dd)
2

s, t, A and Pdyn are scaling factor, throughput, area and power
respectively. This is a fairly standard practice to calculate
the area and power efficiency [35]. The 16-user architecture
provides an area efficiency of 1.39 Mbps per kGE and energy
efficiency of 3.56 Gbps per W. The 32-user architectures
provide an area efficiency of 0.7810 and 0.7896 Mbps per
kGE and energy efficiency of 2.37 and 2.53 Gbps per W for 32
and 64 BS antennas respectively. We compare ADMIN ASICs
with implementations where the ratio between BS antennas
and users is equal or less than 4.

In [28], the authors provided three separate TASER ASICs
for 8, 16 and 32 BPSK users. We compare the 32-user TASER
implementation with our designs in Table IX. The area and en-
ergy efficiency of TASER implementations are lower compared
to all our architectures. The area and energy efficiency of 32-
user ADMIN implementations are approximately 6⇥ and 1.5⇥
higher than 32-user TASER implementation. The throughput
of TASER will also be significantly lower for higher numbers
of iterations which is required for a comparable throughput
of ADMIN. For example, TASER with K = 20 iterations can
reach close to ADMIN’s performance as shown in Fig. 3a and
in Fig. 4a, which will further decrease TASER area and energy
efficiency. A reason for low throughput lies in the fact that
TASER only supports BPSK and QPSK and not suitable for
higher order modulation.

In [12], a VLSI architecture for NOnParametric Equalizer
(NOPE) massive MIMO detector is presented. The architec-
ture is presented for 16 users and 64 BS antennas. NOPE
architecture is synthesized in 28 nm CMOS and achieves a
throughput of 920 Mbps. We compare NOPE with ADMIN
in Table IX. The scaled throughput of NOPE is slightly better
than our 16-user ASIC. However, NOPE architecture results
are optimistic as they are based on synthesis while our results
are based on post-layout routing and placement. In addition, no
power results of the NOPE architecture have been presented.
We would like to note that NOPE uses K = 7 iterations and
with K = 5 iterations like 16-user ADMIN, the area efficiency
of NOPE will be higher. On the other hand, NOPE results
are based on 256-QAM while ADMIN results are based on
64-QAM. Hence, the area efficiency of NOPE will be lower
with similar modulation order as ADMIN.

In [34], an ASIC for channel hardening-exploiting message
passing (CHEMP) detector is presented for 32 users and
128 BS antennas. We compare the CHEMP results with 32-
user ADMIN implementations in Table IX. CHEMP ASIC
outperforms ADMIN architectures significantly in terms of
area and energy efficiency. The design provides approximately
11⇥ and 8⇥ better area and energy efficiency respectively than
ADMIN. However, CHEMP ASIC has been highly optimized
to fulfill the BER requirements for an i.i.d. Rayleigh fading
channel. The reason is the original CHEMP algorithm was also
developed based on the assumption that the channel matrix is
i.i.d. [36]. A highly optimized detector realization for such a
simplistic channel model might be impractical for real life and
thus, there is a question mark on MPD detector’s performance
in a realistic channel model.

VII. CONCLUSIONS

We have proposed ADMIN, a novel data-detection algo-
rithm and a corresponding VLSI architecture. The algorithm
outperforms linear MMSE equalization in terms of PER by a
large margin when the ratio of numbers between BS antennas
and users is rather small (two or less). Our ADMIN architec-
ture also provides promising results for 16-user and 32-user
MIMO detectors in terms of area and energy efficiency. Thus,
ADMIN enables a realistic large-scale MU-MIMO detector
implementation for the fifth generation (5G) communication
systems.
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