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ABSTRACT

The Proterozoic—Phanerozoic tectonic
evolution of the Qilian Shan, Qaidam Ba-
sin, and Eastern Kunlun Range was key to
the construction of the Asian continent, and
understanding the paleogeography of these
regions is critical to reconstructing the an-
cient oceanic domains of central Asia. This
issue is particularly important regarding the
paleogeography of the North China-Tarim
continent and South China craton, which
have experienced significant late Neoprotero-
zoic rifting and Phanerozoic deformation. In
this study, we integrated new and existing
geologic field observations and geochronol-
ogy across northern Tibet to examine the tec-
tonic evolution of the Qilian-Qaidam-Kunlun
continent and its relationships with the North
China-Tarim continent to the north and
South China craton to the south. Our re-
sults show that subduction and subsequent
collision between the Tarim-North China,
Qilian-Qaidam-Kunlun, and South China
continents occurred in the early Neopro-
terozoic. Late Neoproterozoic rifting opened
the North Qilian, South Qilian, and Paleo-
Kunlun oceans. Opening of the South Qilian
and Paleo-Kunlun oceans followed the trace
of an early Neoproterozoic suture. The open-
ing of the Paleo-Kunlun Ocean (ca. 600 Ma)
occurred later than the opening of the North
and South Qilian oceans (ca. 740-730 Ma).
Closure of the North Qilian and South Qil-
ian oceans occurred in the Early Silurian
(ca. 440 Ma), whereas the final consump-
tion of the Paleo-Kunlun Ocean occurred
in the Devonian (ca. 360 Ma). Northward
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subduction of the Neo-Kunlun oceanic litho-
sphere initiated at ca. 270 Ma, followed by
slab rollback beginning at ca. 225 Ma evi-
denced in the South Qilian Shan and at ca.
194 Ma evidenced in the Eastern Kunlun
Range. This tectonic evolution is supported
by spatial trends in the timing of magma-
tism and paleo-crustal thickness across the
Qilian-Qaidam-Kunlun continent. Lastly, we
suggest that two Greater North China and
South China continents, located along the
southern margin of Laurasia, were separated
in the early Neoproterozoic along the future
Kunlun-Qinling-Dabie suture.

INTRODUCTION

The Kunlun-Qaidam-Qilian continent, locat-
ed along the northeastern margin of the Tethyan
orogenic system, is a key continental fragment
that contributed to the tectonic development
of Asia (e.g., Sengor, 1984; Jiang et al., 1992;
Yin and Harrison, 2000; Wu et al., 2016a; Xiao
etal., 2009; Song et al., 2013; Zuza et al., 2018).
Despite the regional importance of the Kunlun-
Qaidam-Qilian continent, its Proterozoic—Pha-
nerozoic evolution has remained inadequately
examined. A major unresolved issue is the
paleogeographic relationship of the Kunlun-
Qaidam-Qilian continent with the North China-
Tarim cratons and the adjacent Songpan-Ganzi
continent of the South China craton (Fig. 1) (e.g.,
Wau et al., 2016a). These continental fragments
are presently separated by the Cenozoic Qilian
Shan-Nan Shan thrust belt to the north and left-
slip Kunlun fault to the south. Several active
structures deform Archean—Proterozoic base-
ment rocks and overprint rocks emplaced during
Mesozoic extension and punctuated magmatism
during the Neoproterozoic—early Mesozoic (e.g.,
Xiao et al., 2009; Song et al., 2013, 2019a; Zuza
etal., 2016,2018; Wu et al., 2016a, 2019a; Dong
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etal., 2018; Yu et al., 2021), which has provided
a challenge in understanding the evolution of
northern Tibet.

Several important first-order questions regard-
ing the evolution of the Qilian orogen remain un-
answered: (1) the relationships between North,
Central, and South Qilian Shan basement rocks
with those of the North China, Tarim, and South
China cratons, respectively; (2) whether subduc-
tion of the Qilian Ocean faced to the north (Song
et al., 2013), south (Yin et al., 2007; Zuza et al.,
2018), or was bi-directional (Xiao et al., 2009;
Li et al., 2021); (3) whether final closure of the
Qilian Ocean occurred during the Devonian or
Silurian; (4) the number and composition (i.e.,
oceanic versus continental) of magmatic arcs
involved; and (5) whether the North and South
Qilian sutures formed via distinct ocean closure
events (Fig. 1). Similarly, the number and clo-
sure timing of sutures of the Eastern Kunlun oro-
gen remain debated. One set of models involve
the one-time closure of a single Kunlun Ocean
in the Neoproterozoic (Sengor et al., 1988; Wu
et al., 2016a, 2019a) or Devonian (Stampfli and
Borel, 2002). Alternatively, Yin and Harrison
(2000) proposed that a single Kunlun Ocean su-
ture existed prior to the Ordovician and closed
once in the Early Carboniferous and again in the
latest Triassic. A third set of models involve the
closure of two to three oceans along distinct su-
tures (Jiang et al., 1992; Yang et al., 1996; Meng
et al., 2013a, 2015; Dong et al., 2018).

Here we present findings of the structural
framework of the Qilian and Eastern Kunlun
orogens located between the Kunlun-Qaidam-
Qilian, Tarim-North China, and Songpan-Ganzi
continents based on a compilation of new and ex-
isting field observations from geologic mapping,
geo-/thermochronologic ages, and geochemical
data. Our results allowed us to construct regional
tectonostratigraphic sections, constrain the spa-
tial and temporal extents of arc magmatism, and
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Figure 1. Simplified tectonic map across the Tibetan Plateau and central Asia, modified after Yin and Nie (1996) and Yin and Harrison

(2000). UHP—ultrahigh pressure.

correlate basement rocks and assign possible
provenance which provided new constraints on
the Proterozoic—Phanerozoic tectonic evolution
of the Qilian and Eastern Kunlun orogens and
the formation of the Asian continent.

REGIONAL GEOLOGIC SETTING

The Qilian Shan is located along the north-
eastern margin of the Tibetan Plateau, separating
the Hexi Corridor to the north from the Qaidam
Basin to the south. The Qilian Shan is truncat-
ed to the northwest by the sinistral strike-slip
Altyn Tagh fault and links to the east with the
Qinling orogen (e.g., Yin and Harrison, 2000;
Zuza et al., 2016) (Fig. 1). The early Paleozoic
Qilian orogen exposed in the Qilian Shan con-
tains ophiolitic mélange complexes of the North
and South Qilian suture zones (Figs. 1 and 2)
that formed during the collision of the Kunlun-
Qaidam continent with the southern margin of
the combined Tarim-North China cratons (e.g.,
Xiao et al., 2009; Song et al., 2013; Wu et al.,
2017; Zuza et al., 2018; Fu et al., 2020; Li et al.,
2021; Fuetal., 2019, 2021). In general, the Qil-
ian orogen contains three tectonic units separat-
ed by the North and South Qilian sutures: (1) the
North Qilian Shan consisting of Neoproterozoic
passive-continent margin strata and post-colli-
sional intrusions, (2) the Central Qilian Shan
consisting of Precambrian basement intruded

by 1.1-0.9 Ga plutons, and (3) the South Qilian
Shan consisting of the early Paleozoic Qilian
arc sequence emplaced atop Precambrian am-
phibolite-grade continental basement (e.g., Yin
and Harrison, 2000; Pan et al., 2004; Wu et al.,
2016a; Zuza et al., 2018) (Fig. 2). The southern
margin of the North China craton and Kunlun-
Qaidam continent may contain correlative Pa-
leoproterozoic (ca. 2.3—1.8 Ga) basement rocks
and overlying Mesoproterozoic cover sequences
(e.g., Chen et al., 2013f; Yu et al., 2017b, 2019;
Wauetal.,, 2017, 2021). The tectonostratigraphic
evolution of the Qilian orogen is described by
Zuza et al. (2018) and Wu et al. (2017). Key
geologic relationships and geochronologic ages
of the North, Central, and South Qilian Shan are
summarized in a simplified tectonostratigraph-
ic column (Fig. 3) and regional-scale geologic
map (Fig. 4).

The Eastern Kunlun Range is located be-
tween the Qaidam Basin of the Kunlun-Qaidam
continent to the north and the active left-slip
Kunlun fault to the south, the latter of which
follows the Triassic Neo-Kunlun suture (e.g.,
Jiang et al., 1992; Yang et al., 1996; Wu et al.,
2016a, 2019a; Dong et al., 2018) (Fig. 4). The
Eastern Kunlun orogen exposed in the range
formed via three major deformation events in
the Neoproterozoic, early Paleozoic, and late
Paleozoic—early Mesozoic associated with col-
lision of the Proto-, Paleo-, and Neo-Kunlun
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arcs, respectively (Wu et al., 2016a, 2019a)
(Fig. 4). The late Paleozoic—early Mesozoic
closure of the Neo-Kunlun ocean occurred as
the Qaidam-Kunlun continent collided with
the Songpan-Ganzi continent along the west-
ern margin of the South China craton (Wu
et al., 2016a, 2019a). The Eastern Kunlun oro-
gen primarily contains three tectonic units that
consist from north to south of: (1) Paleopro-
terozoic basement rocks and Phanerozoic cover
sequences along the southern margin of the
Kunlun-Qaidam continent; (2) a central zone
of volcanic and plutonic rocks associated with
the Kunlun arc(s), and intermittently exposed
ultramafic-mafic rocks and ophiolitic fragments
that occur within Precambrian—early Paleozoic
metamorphic complexes; and (3) the Triassic
Neo-Kunlun suture that separates the Kunlun
arc(s) to the north and South China craton base-
ment rocks overlain by Triassic submarine-fan
turbidite deposits of the Songpan-Ganzi flysch
complex to the south (e.g., Yin and Harrison,
2000; Jiang et al., 1992; Yang et al., 1996; Ding
etal.,2013; Wu et al., 2016a). Detailed descrip-
tions of the Eastern Kunlun tectonostratigraphy
are presented in Wu et al. (2016a, 2019a).

The northwest-striking, early Paleozoic
intra-arc North Qaidam ultrahigh pressure
(UHP) metamorphic belt is located along the
northeastern margin of the Qaidam Basin and
is truncated by the left-slip Altyn Tagh fault to
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Figure 2. Geologic map of the Qilian Shan of northern Tibet showing regional geochronologic results of magmatic events. The map is
compiled from Pan et al. (2004), Wang et al. (2013b), and this study. Data are compiled from: 1—H. Yang et al. (2020); 2—C.Y. Tseng et al.
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the northwest (e.g., Yin et al., 2007; Yu et al.,
2021; Song et al., 2013, 2019b) (Figs. 1 and 2).
This UHP metamorphic belt includes the tightly
folded eclogite blocks and ophiolitic rocks that
experienced regional epidote-amphibolite fa-
cies metamorphism (Menold et al., 2009). The
present-day exposure of the belt is strongly con-
trolled by north-dipping Cenozoic thrust faults
(e.g., Sobel and Arnaud, 1999, Yin et al., 2007)
(Fig. 2) and thus is not interpreted to represent an

in situ early Paleozoic suture. In the Qilian Shan,
two or even three subparallel ophiolitic mélange
belts have been identified (e.g., Song et al., 2013,
2019a; Fu et al., 2020) (Figs. 2 and 3). These
ophiolitic mélange belts consist, from north to
south, of: (1) the ca. 517487 Ma forearc and
ca. 490-445 Ma backarc North Qilian ophiolitic
mélange belts; (2) the ca. 550495 Ma Central
Qilian ophiolitic mélange belt (?); and (3) the
ca. 525-500 Ma South Qilian ophiolitic mélange
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belt. Similarly, three subparallel ophiolitic mé-
lange belts have been identified in the Eastern
Kunlun Range (Fig. 4) including: (1) the ca.
486-423 Ma(?) North Kunlun ophiolitic mé-
lange zone; (2) the ca. 555-243 Ma(?) Central
Kunlun ophiolitic mélange zone; and (3) the ca.
535-260 Ma(?) South Kunlun ophiolitic mé-
lange zone (e.g., Yang et al., 1996; Meng et al.,
2015; Dong et al., 2018; Yu et al., 2017a). Ophi-
olitic mélange belts exposed in the Qilian Shan
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Figure 3. Lithostratigraphy of
the North Qilian Shan, Central
Qilian Shan, and South Qilian
Shan of northern Tibet. Ages
are compiled from Qinghai Bu-
reau of Geology and Mineral
Resources (1997), Pan et al.
(2004), Wang et al. (2013c), and
this study. cl—clay; si—silt;
and; cg—conglomerate.
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and Eastern Kunlun Range are truncated to the
northwest by the left-slip Altyn Tagh fault and
occur in the hanging walls of Cenozoic thrusts
(e.g., Yin et al., 2007) (Figs. 2 and 4). The trace
of the South Qilian suture appears to link to the
southeast with the North Qinling Erlangping
suture (Yin and Nie, 1996; Tseng et al., 2009),
whereas the Neo-Kunlun suture correlates with
the Shangdan suture exposed in the central Qin-
ling region to the east (Ratschbacher et al., 2003;
Dong and Santosh, 2016). Whether the ophiol-
itic mélange belts exposed in the Qilian Shan
and Eastern Kunlun Range represent individual
in situ sutures formed via distinct ocean closure
events or intracontinental and/or backarc pro-
cesses remains debated.

Numerous Neoproterozoic and early Paleozoic
granitoid plutons are exposed throughout the

Qilian Shan (Fig. 2; Table S1'). These plutons
have ages ranging between 1030 and 728 Ma and
520-340 Ma (Table S1), and have been mostly
attributed to subduction-related arc magmatism
and/or syn- to post-orogenic magmatism (e.g.,

ISupplemental Material. Table S1: Summary of

Geochronology Results of Intrusive rocks in the
Qilian Shan; Table S2: Summary of Geochronology
Results of Intrusive rocks in the East Kunlun Range;
Table S3: LA-ICP-MS results for zircons U-Pb ages
of igneous, sandstone, and metamorphic sedimentary
samples in this study; Table S4: Geochemistry Data
for Plots of age against crustal thickness of the Qilian
Shan; Table S5: Geochemistry Data for Plots of age
against crustal thickness of the Eastern Kunlun
Range. Please visit https://doi.org/10.1130/GSAB
.S.17138867 to access the supplemental material, and
contact editing @ geosociety.org with any questions.
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Gehrels et al., 2003b; Wu et al., 2017; Zuza et al.,
2018; Huang et al., 2015; Fu et al., 2018). In ad-
dition, ca. 235-269 Ma granitoids are distributed
throughout the southern Qilian Shan along the
northern margin of the Kunlun-Qaidam conti-
nent (Xie et al., 2014; Hu et al., 2016; Li et al.,
2021; Jia et al., 2017; Wu et al., 2009a, 2009b).
Three distinct generations of Neoproterozoic—
Mesozoic granitoid plutons are exposed along
the southern margin of the Kunlun-Qaidam ter-
rane, two of which are widely exposed in the
Eastern Kunlun Range (ca. 500-360 Ma and ca.
263-194 Ma) (Cowgill et al., 2003; Wu et al.,
20164, 2019a) (Fig. 4; Table S2; see footnote 1).

As part of this study, we performed local- and
regional-scale geologic mapping of major tec-
tonic units exposed in the eastern portion of the
Qilian Shan (Fig. 5) and Wenquan area of the
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Figure 5. Geologic map of the eastern Qilian Shan of northern Tibet based on the results of this study, Pan et al. (2004), and Wu et al. (2021).
The locations of the samples of this study are shown.
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Eastern Kunlun Range (Fig. 6). In the following
sections, we present the results of our mapping
combined with constraints from existing geo-
logic maps in the regions (e.g., Pan et al., 2004;
Wu et al., 2021).

GEOLOGY OF THE EASTERN QILIAN
SHAN

The eastern Qilian Shan region, including
North and Central Qilian, exposes rocks vary-
ing in age from Neoproterozoic to Quaternary
(Fig. 5). Precambrian metamorphic basement
rocks are mainly exposed in the southern part
of the mapping area and consist of porphyritic

gneiss (Fig. 7A), phyllite, slate, meta-sandstone
(Fig. 7B), quartzite (Fig. 7C), and schist. Cam-
brian volcanic, volcaniclastic, and siltstone rocks
are exposed in the northern margin of the study
area (Fig. 5). Ordovician rocks are widespread
throughout the study area and consist of sand-
stone, siltstone, and volcaniclastic deposits.
Ordovician rocks may represent a sequence
of forearc, accretionary wedge, and foreland-
basin strata (e.g., Xiao et al., 2009). Silurian
rocks unconformably overlie Ordovician strata
and often feature isoclinal folds and transposed
bedding (Fig. 5). The Ordovician strata consist
of minor conglomerate layers interbedded with
siltstone, shale, and sandstone (Fig. 7D), which
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are considered to represent a flysch basin that
transitions to a molasse sequence (e.g., Duetal.,
2003; Yang et al., 2009; Yan et al., 2010).
Devonian strata do not exceed 350 m in thick-
ness (Fig. 5) and consist of terrestrial conglomer-
ate, sandstone, and minor volcanic rocks. These
strata are interpreted to represent molasse that
was deposited in intermontane and/or foreland
basins during the Qilian orogeny (e.g., Xiaetal.,
2003; Yan et al., 2007). Devonian strata uncon-
formably overlie deformed Proterozoic—early
Paleozoic rocks. A disconformity forms the up-
per contact of the Devonian strata with Carbon-
iferous strata (Zuza et al., 2018; Li et al., 2021).
Throughout most of the eastern Qilian Shan,



# '‘porphyritic gneiss
sample WC 09-13-14 (8B)

Carboniferous strata overlie Ordovician—Devo-
nian rocks along an angular unconformity, and
often feature isoclinal folds and transposed bed-
ding (Zuzaet al., 2018; Wu et al., 2021) (Fig. 5).
Carboniferous strata consist of quartz sandstone
(Fig. 7E) interbedded with siltstone and minor
carbon-rich shale and coal. Permian strata con-
sist of the coarse sandstone interbedded with
siltstone and shale.

Wu et al.

heta-s}andstqne BN L
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Triassic shallow marine and lacustrine strata
conformably overlie Permian strata and consist
of a basal conglomerate and overlying arkosic
sandstone interbedded with calcareous siltstone
(Fig. 5). Jurassic strata overlie Triassic strata
along a regional disconformity and consist of a
basal conglomerate and overlying arkosic sand-
stone interbedded with siltstone, shale, and nu-
merous coal beds (Fig. 5). Overlying the Jurassic
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Figure 7. Field photographs of
the Neoproterozoic Qilian Shan
of northern Tibet metamorphic
rocks including (A) porphyritic
gneiss, (B) meta-sandstone,
and (C) quartzite. Also shown
are (D) Silurian quartzite,
(E) Carboniferous slightly
metamorphic sandstone, (F)
Neoproterozoic metasandstone
of the Langyashan Formation
in the Eastern Kunlun Range,
(G-H) a Triassic granite dike
intruding Lower Triassic sand-
stone, (I) a Late Triassic granite
dike intruding Upper Triassic
sandstone, (J) weakly meta-
morphosed Lower Triassic
sedimentary rocks thrust atop
Cenozoic red deposits, and (K-
M) granitoid samples collected
as part of this study.

strata are Cretaceous and Cenozoic red-colored
strata consisting of polymictic conglomerate and
coarse sandstone. Gypsum layers are prevalent
within the Cenozoic fluvial and lacustrine sedi-
ments (Fig. 5). The youngest strata are Quater-
nary alluvial and fluvial deposits (Fig. 5).

Four distinct Phanerozoic unconformities are
recognized in the eastern Qilian Shan: (1) an old-
est and most widespread unconformity between



overlying Carboniferous strata (locally Devonian
and/or Permian strata) and Proterozoic metamor-
phic basement and Ordovician—Silurian strata;
(2) an unconformity between overlying Triassic
strata and Carboniferous strata in the North Qil-
ian; and (3) two youngest unconformities along
the basal contacts of Cretaceous and Cenozoic
strata. These youngest strata are interpreted to
reflect regionally extensive tectonic events.
Numerous early Paleozoic granitoid plutons
with ca. 503-424 Ma crystallization ages are
exposed throughout the eastern Qilian Shan re-
gion (e.g., Chen et al., 2019; Ding and Huang,
2019; Huang et al., 2018; Xiong et al., 2012; Yu
et al., 2013a, 2015; H. Huang et al., 2015; Guo
etal., 2015a, 2015b; Liu et al., 2019; Peng et al.,
2017a,2017b; Tung et al., 2013; Wu et al., 2021;
this study) (Fig. 5). In addition, Paleoproterozo-
ic leucogranites (ca. 1.91 Ga), Neoproterozoic
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ower Triassic sandstone

»

Cenozoic sandstone
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- féllat_ed grant
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a

granitic intrusions (ca. 920-935 Ma), and late
Paleozoic leucogranites (ca. 345 Ma) and alka-
line rocks (ca. 410 Ma) are reported in the study
area (e.g., Wu et al., 2021; Huang et al., 2018).

GEOLOGY OF THE EASTERN
EASTERN KUNLUN RANGE

The oldest rocks exposed in the eastern East-
ern Kunlun Range are Meso- to Neoproterozoic,
low-grade metamorphic and unmetamorphosed
strata of the Langyashan Formation (Fig. 6).
These rocks are exposed in the northern corner
of the mapping area and consist of marble and
interbedded limestone and tuffeous sandstone
(Zhang et al., 2018c) (Fig. 7F). The Langyas-
han Formation is thrust atop the Ordovician
Naijtal Group which consists of weakly meta-
morphosed, shallow- and deep-marine clastic,
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Figure 7. (Continued)

carbonate, and volcaniclastic strata and volcanic
rocks. Wu et al. (2019a) suggest that the Nai-
jtal Group was deposited between ca. 447 and
440 Ma based on the detrital zircon U-Pb ages
and the presence of Late Ordovician—Early Si-
lurian granitoid intrusions. It remains unclear
whether Paleozoic granitoids in the study area
are thrust atop or intrude Proterozoic meta-
morphic rocks. The Carboniferous Haoteluowa
Formation is thrust atop Triassic strata and vol-
canic rocks and consists of limestone interbed-
ded with sandy slate (Fig. 6). Triassic rocks are
divided into Lower, Middle, and Upper Triassic
units, which are all intruded by granitic dikes
(Figs. 7G-T7I). The Lower Triassic Hongshuich-
uan Formation consists of a basal unit of massive
cross-bedded gray sandstone overlain by silt-
stone and sandy slate (Figs. 7G and 7H). Middle
Triassic strata are dominated by basal limestone
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TABLE 1. SUMMARY OF SAMPLE LOCATIONS IN THE QILIAN SHAN AND EASTERN KUNLUN RANGE, NORTHERN TIBET

Sample number Description Latitude Longitude Elevation Crystallization age MSWD n

CN) (°E) (m)
WC 07-26-17 (6) granitoid 35°55/11.60" 95°20/03.39” 5312 244 + 8 Ma 3.8 4 out of 18
WC 07-26-17 (1) granitoid 35°57/30.93" 95°16/25.01" 4929 207 + 1 Ma 0.79 17 out of 19
WC 07-25-17 (3) granitoid 35°58/34.12" 95°26/03.87" 4765 407 + 13 Ma 2.1 6 out of 7
WC 07-13-17 (1) granitoid 37°15/22 54" 101°36/32.85" 3943 446 + 4 Ma 0.63 3 out of 19
WC 07-16-17 (1) granitoid 37°34/42.88" 102°02/18.27" 4406 457 + 2 Ma 0.48 27 out of 27
WC 09-14-14 (12) granitoid 37°43/12.14" 101°55/48.00" 2620 432 + 3 Ma 0.31 12 out of 17
WC 07-29-17 (5) sandstone 35°55/05.33" 95°18/46.06" 4655 100
WC 07-26-17 (2) sandstone 35°57/05.83" 95°17/02.81" 5001 100
WC 07-25-17 (4) meta-sandstone 35°57/52.55" 95°26/47.54" 4764 49
WC 09-13-14 (7) meta-sandstone 37°07/59.77" 101°34/12.75" 2677 98
WC 09-13-14 (8A) quartzite 37°08/09.23" 101°34/13.66" 2715 99
WC 09-13-14 (8B) porphyritic gneiss 37°08/09.23" 101°34/13.66" 2715 99
WC 09-13-14 (10) quartzite 37°19/29.46" 101°24/03.73" 3597 100
WC 09-14-17 (8) quartz sandstone 37°41/19.50" 101°57/53.15" 3101 100

Note: MSWD—mean square weighted deviation.

overlain by cross-bedded arkosic sandstone with
minor marble. Upper Triassic rocks consist of
basal volcanics overlain by conglomerate and
arkosic sandstone (Fig. 7I). The Triassic rocks
are thrust over Cenozoic strata (Fig. 7J), which
are predominantly Neogene and consist of red-
colored fluvial conglomerate and sandstone and
lacustrine mudstone with a clay, marble, or lime-
stone matrix (Fig. 7J). The youngest rocks ex-
posed in the study area are Quaternary alluvial,
fluvial, and glaciofluvial strata.

Structures in the mapping area generally
strike northwest, which parallels the strikes of
sedimentary strata and metamorphic foliation
and the trend of the range (Fig. 6). Cenozoic
folds and faults are widespread in the mapping
area (Fig. 6). Most faults cut Cenozoic and Qua-
ternary strata with the exception of the thrust
which places Paleozoic granitoids atop Protero-
zoic metamorphic rocks (Fig. 6).

RESULTS OF U-PB ZIRCON
GEOCHRONOLOGY

Results of U-Pb zircon geochronology are
presented in Table S3 (see footnote 1). Sample
locations are shown in Table 1. The fractionation
correction and U-Pb results were calculated us-
ing the program GLITTER 4.0. Common Pb
was corrected following the method described
by Andersen (2002). Age calculations and con-
cordia plots were made using Isoplot (Ludwig,
2003). Most analyses are concordant or nearly
concordant and cluster as single age populations.
We report 2Pb/?38U ages for grains younger
than 1000 Ma and 2°’Pb/?*Pb ages for grains
older than 1000 Ma (Ludwig, 2003).

Seventeen zircon grains from granite sample
WC 09-14-14 (12) (Fig. 7K) yield U-Pb ages
ranging from 427 to 464 Ma. The weighted
mean U-Pb age of 12 concordant zircon grains
is 432 + 3 Ma (mean square weighed deviation
[MSWD] = 0.31) (Fig. 8A), which we interpret
as the crystallization age of the granitoid sample.

Twenty-seven zircon grains from granitoid
sample WC 07-16-17 (1) (Fig. 7L) yield con-
cordant ages ranging from 452 to 466 Ma. The
weighted mean U-Pb age of 27 concordant
zircon grains is 457 £ 2 Ma (MSWD = 0.48)
(Fig. 8B), which we interpret as the crystalli-
zation age.

Nineteen zircon grains from sample WC 07-
13-17 (1) (Fig. 7M) yield ages ranging from
249 Ma (*°Pb/?38U) to 1924 Ma (>7Pb/?%Pb).
The largest population of concordant analyses
cluster at ca. 450 Ma and have a weighted mean
age of 446 £ 4 Ma (MSWD = 0.63; n = 6)
(Fig. 8C), which we interpret as the crystalli-
zation age.

Eighteen zircon grains from sample WC 07-
26-17 (6) (Fig. 7TH) yield ages ranging from
237 Ma (*Pb/?8U) to 1434 Ma (**"Pb/?°°Pb).
The largest population of concordant analyses
cluster at ca. 480 Ma and have a weighted mean
age of 477 £7Ma (MSWD =2.1; n=7).
The youngest population of concordant zircon
grains (n = 4) yields a weighted mean age of
244 + 8 Ma (MSWD = 3.8) (Fig. 8D). We in-
terpret that the oldest grains are inherited, and
the youngest population represents the crystal-
lization age of the granitoid sample.

Nineteen zircon grains from granitoid sample
WC 07-26-17 (1) (Fig. 71) yield concordant
ages ranging from 204 to 233 Ma. The weighted
mean U-Pb age of 17 concordant zircon grains is
207 &= 1 Ma MSWD = 0.79) (Fig. 8E), which
we interpret as the crystallization age.

Seven zircon grains from foliated granit-
oid sample WC 07-25-17 (3) (Fig. 7K) yield
concordant ages ranging from 374 to 420 Ma.
The weighted mean U-Pb age of 6 concordant
zircon grains is 407 + 13 Ma (MSWD = 2.1)
(Fig. 8F), which we interpret as the crystalli-
zation age.

Ninety-nine spots from our porphyritic
gneiss sample WC 09-13-14 (8B) (Fig. 7A)
yield concordant ages ranging from ca. 732 Ma
(?°Pb/?8U) to ca. 1091 Ma (?7Pb/?°°Pb)
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(Fig. 8G). One dominant age population with a
peak at ca. 935 Ma accounts for ~90% of the
analyzed grains (Fig. 8G).

Ninety-eight detrital zircon grains were ana-
lyzed from meta-sandstone sample WC 09-13-
14 (7) (Fig. 7B), of which 5 grains yield discor-
dant ages. Ninety-three concordant ages range
from ca. 734 Ma (?%Pb/23U) to ca. 1039 Ma
(?7Pb/?%Pb). This sample has a dominant zircon
population between 824 and 1039 Ma (~95%)
with a peak at ca. 920 Ma (Fig. 8H).

Ninety-nine detrital zircon grains were
analyzed from quartzite sample WC 09-13-
14 (8A) (Fig. 7C), of which 3 grains yield
discordant ages. Ninety-six concordant ages
range from ca. 839 Ma (*Pb/?*U) to ca.
1181 Ma (*“7Pb/?"6Pb). The weighted mean of
the three youngest concordant zircon grains is
846 + 12 Ma (MSWD = 0.98) (Fig. 8I). We
interpret this weighted mean age to represent
the maximum depositional age of the quartzite
sample. The sample has a major zircon popula-
tion between 839 and 1016 Ma (~97%) with a
peak at ca. 960 Ma (Fig. 8I).

One hundred detrital zircon grains were ana-
lyzed from quartzite sample WC 09-13-14 (10)
(Fig. 7D), of which 5 grain yield discordant
ages. Concordant ages range from ca. 445 Ma
(295Pb/238U) to ca. 2939 Ma (?°7Pb/2°Pb). The
weighted mean of the three youngest concordant
zircon grains is 460 £ 26 Ma (MSWD = 2.5)
(Fig. 8J). We interpret this weighted mean age to
represent the maximum depositional age of the
quartzite sample. The sample has a major zircon
population between 799 and 1845 Ma (~86%)
with three peaks at ca. 900 Ma, ca. 1500 Ma, and
ca. 1715 Ma (Fig. 8J). We note one minor age
population at ca. 476 Ma. The oldest two zircon
grains have 297Pb/?%Pb ages of 2859 + 18 and
2939 + 9 Ma (Fig. 8J).

One hundred detrital zircon grains were
analyzed from weakly metamorphosed quartz
sandstone sample WC 09-14-17 (8) (Fig. 7E),
of which 7 grains yield discordant ages.
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Concordant ages range from 313 to 457 Ma.
The weighted mean of the three young-
est concordant zircon grains is 316 £ 8 Ma

(MSWD = 2.9) (Fig. 8K). We interpret the
weighted mean age to represent the maximum
depositional age of the metasandstone sample.
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Figure 8. U-Pb concordia dia-
grams showing results of single-
shot zircon analyses for each
sample. (A) granitoid sample
WC 09-14-14 (12); (B) granit-
oid sample WC 07-16-17 (1);
(C) granitoid sample WC 07-
13-17 (1); (D) granitoid sample
WC 07-26-17 (6); (E) granit-
oid sample WC 07-26-17 (1);
(F) granitoid sample WC 07-25-
17 (3); (G) porphyritic gneiss
sample WC 09-13-14 (8B); (H)
meta-sandstone sample WC (09-
13-14 (7); () quartzite sample
WC 09-13-14 (8A); (J) sand-
stone sample WC 09-13-14 (10);
(K) meta-sandstone sample WC
07-14-17 (8); (L) meta-sand-
stone sample WC 07-25-17 (4);
(M) sandstone sample WC 07-
26-17 (2); (N) sandstone sample
WC 07-29-17 (5). Error ellipses
are 26. MSWD—mean square
weighed deviation.

The sample has a major zircon population of
313-457 Ma (~100%) with two peaks at ca.
329 Ma and ca. 438 Ma (Fig. 8K).
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Forty-nine detrital zircon grains were ana-
lyzed from metasandstone sample WC 07-25-17
(4) (Fig. 7F), of which 26 grains yield discordant
ages. Concordant ages range from ca. 717 Ma
(?%Pb/28U) to ca. 2595 Ma (>"Pb/?%Pb). The
weighted mean of the three youngest concordant
zircon grains is 724 &+ 5 Ma (MSWD = 0.66)
(Fig. 8L). We interpret the weighted mean age to
represent the maximum depositional age of the
metasandstone sample. The sample has two ma-
jor zircon populations at 7201100 Ma (~50%)
and 2320-2595 Ma with two peaks at ca. §70 Ma
and ca. 2500 Ma, respectively. We note one mi-
nor age population at ca. 1840 Ma (Fig. 8L).

One hundred detrital zircon grains were ana-
lyzed from sandstone sample WC 07-26-17 (2)
(Fig. 71), of which 1 grain yields a discordant age.
Concordant ages range from 231 to 282 Ma. The
weighted mean of the three youngest concordant
zircon grains is 232 + 3 Ma (MSWD = 0.067)
(Fig. 8M). We interpret the weighted mean age
to represent the maximum depositional age of
the sandstone sample. The sample has a major
zircon population at 231-247 Ma (~100%) with
one peak at ca. 240 Ma (Fig. 8M).

One hundred detrital zircon grains were ana-
lyzed from sandstone sample WC 07-29-17 (5)
(Fig. 7J), of which 7 grains yield discordant
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ages. Concordant ages range from ca. 196 Ma
(?%Pb/?38U) to ca. 2469 Ma (**’Pb/?%Pb). The
weighted mean of the three youngest concordant
zircon grains is 200 & 10 Ma (MSWD = 1.9)
(Fig. 8N). We interpret the weighted mean age
to represent the maximum depositional age of
the sandstone sample. The sample has a major
zircon population at 201-239 Ma (~90%) with
one peak at ca. 211 Ma (Fig. 8N).

DISCUSSION

Our U-Pb geochronology results of six gran-
itoid samples combined with existing ages in
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Figure 9. Crystallization ages and age versus distance plots of Neoproterozoic, Paleozoic, and Mesozoic plutons exposed in the Qilian Shan

and Eastern Kunlun Range of northern Tibet.

northern Tibet show that Silurian—Late Ordovi-
cian granite bodies (432—457 Ma) intrude Lower
Paleozoic strata in the eastern Qilian Shan and
early Mesozoic (247-207 Ma) granites intrude
Triassic sandstones and Neoproterozoic meta-
morphic rocks in the Eastern Kunlun Range.
Combining these findings with new and existing
detailed field observations allowed us to better
understand the magmatic history of northern
Tibet. In addition, detrital zircon U-Pb ages of
Neoproterozoic metamorphic rocks and Pha-
nerozoic sandstones provide key provenance
information and age populations that can be
compared between the Qilian Shan and Eastern

Kunlun Range. Based on these findings, we bet-
ter constrained the Proterozoic—Phanerozoic tec-
tonic evolution of the Qilian Shan and Eastern
Kunlun Range in northern Tibet.

Magmatic Records Across Northern Tibet

U-Pb zircon ages of intrusive rocks from the
Qilian Shan mostly define with two age groups of
520402 Ma and 961-728 Ma with peaks at ca.
445 Ma and ca. 920 Ma, respectively (Fig. 9A).
Geochronologic results of granitoid samples
from the Qilian Shan support the interpreta-
tion of a prominent magmatic lull in the region
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at 728-520 Ma (Fig. 9B). Permian-Triassic arc
granitoids (235-269 Ma) and Late Devonian
post-orogenic granitoids (392-372 Ma) occur in
the South Qilian Shan and North Qaidam, re-
spectively (e.g., Xie et al., 2014; Hu et al., 2016;
Lietal., 2021; Jia et al., 2017; Wu et al., 2004b,
2007,2009a; Zhou et al., 2021) (Fig. 9B). Meso-
proterozoic granitic gneiss (ca. 1002-1537 Ma)
occurs in the North Qaidam (Wang et al., 2021),
whereas ca. 1116-1150 Ma granitic gneiss oc-
curs in the North Qilian Shan (Dong et al.,
2015) (Figs. 1 and 9B; Table S1). In addition,
the youngest and oldest leucogranites in the re-
gion (ca. 341 Ma and ca. 1908 Ma, respectively)



occur in the Central Qilian Shan (Wu et al.,
2021). Gabbro with 550-529 Ma ages interpret-
ed to represent fossil Qilian oceanic crust and/or
supra-subduction ophiolite occurs in the North
Qilian Shan (Shi et al., 2004; Song et al., 2013)
(Fig. 9B). In contrast to the magmatic record of
the Qilian Shan, zircon ages of granitoid samples
in the Eastern Kunlun Range fall within three
age groups at 944-904 Ma, 503-357 Ma, and
263-194 Ma (Wu et al., 2019a) (Figs. 4 and 9C).

The ca. 1.9 Ga and ca. 1.88 Ga leucogran-
ites in the Qilian Shan and Longshou Shan to
the north, respectively, are interpreted to cor-
relate with the Paleoproterozoic northern North
China orogen (Wu et al., 2018, 2021). The Qil-
ian Shan, Qaidam, and Eastern Kunlun regions
were intruded by 960-900 Ma arc plutons (i.e.,
the Proto-Kunlun arc in the Eastern Kunlun
Range and the Proto-Qilian arc in the Qilian
Shan), which suggests that the regions formed
a contiguous continent by the start of the early
Neoproterozoic. Early Neoproterozoic plutons
have also been documented in the Altyn Tagh
Range and Tarim to the west, and the Qinling
to the southeast, suggesting the existence of a
south-dipping Proterozoic subduction zone that
roughly stretched from Tarim to Qinling (Guo
et al., 2005; Wu et al., 2016a, 2021; Zuza et al.,
2018) (Fig. 9D). The Proto-Kunlun arc is inter-
preted be associated with southward subduction
of Proto-Kunlun oceanic lithosphere beneath
the Qilian-Qaidam-Kunlun continent (Wu et al.,
2016a, 2019a). Granitoids with 900-728 Ma
ages along the northern margin of the Qilian-
Kunlun-Qaidam continent have a northward
younging trend, which is interpreted to reflect
northward steepening of subducting Proto-Kun-
Iun oceanic lithosphere (Fig. 9C).

The geochemical composition of ca. 820 Ma
granitoids in the Qilian Shan suggest generation
during continental breakup, which indicates that
the rifting and ocean basin formation may have
occurred earlier than this time (Wu et al., 2017).
The occurrence of 797-728 Ma granitic intru-
sions in the Qilian Shan has been attributed to
the rifting of the Qilian-Qaidam-Kunlun con-
tinent from the North China-Tarim craton and
subsequent opening of the Qilian Ocean (Tseng
et al., 2006; Song et al., 2013; Wu et al., 2016a,
2017, 2021; Zuza et al., 2018). Alternatively, ca.
675 Ma gabbro and ca. 600 Ma basalt interbed-
ded with thick marble sequences may suggest
that rifting from Tarim-North China and opening
of the Qilian ocean(s) occurred later (Xu et al.,
2015; Song et al., 2016; Tian et al., 2018). At
least one ocean existed in the Qilian Shan be-
tween 550 and 449 Ma, as evidenced by wide-
spread exposures of ophiolite fragments (e.g.,
Shi et al., 2004; Xia et al., 2003, 2016; Song
et al., 2013; Tseng et al., 2007; Zhang et al.,

Wu et al.

2007; Xiao et al., 2009; Zuza et al., 2018; Fu
et al., 2020, 2021). Widespread arc plutons in
the Qilian Shan (i.e., Qilian arc) indicate that a
major subduction system initiated by ca. 520 Ma
and continued throughout the Ordovician, and
younger accretion-related magmatism persisted
until ca. 341 Ma. A major pulse of magmatism in
the Qilian Shan at ca. 445 Ma and coeval meta-
morphism based on monazite ages are reported
by Zuza et al. (2018). In addition, 454442 Ma
PAr/*Ar cooling ages (Liu et al., 2006b) and a
ca. 442 Ma syncollisional granite in North Qaid-
am are documented by Zhang et al. (2017b), sug-
gesting that collision between Kunlun-Qaidam
and North China likely occurred at 445-440 Ma.
A ca. 439 Ma leucogranite also contains Siluri-
an—Devonian ages, which are consistent with in-
tracontinental deformation during collision (Wu
et al.,, 2021). Numerous syn-collisional 430—
410 Ma magmatic intrusions occur throughout
the Qilian Shan. We interpret that the southward
younging trend of magmatic ages reflects south-
ward subduction of Qilian oceanic lithosphere,
whereas the northward younging trend of mag-
matic termination ages reflect northward steep-
ening of subducting Qilian oceanic lithosphere
(Fig. 9E).

The Cambrian—Devonian arc magmatic event
observed in the Eastern Kunlun Range (i.e.,
Paleo-Kunlun arc) is interpreted to be related to
subduction of Paleo-Kunlun oceanic lithosphere
(Wu et al., 2016a, 2019a). Late Cambrian (ca.
494 Ma) granite with high Sr and Y contents re-
flects deep subduction of Paleo-Kunlun oceanic
lithosphere, and arc-related plutons in the Eastern
Kunlun Range indicate that subduction initiated
by ca. 500 Ma and continued throughout the Ear-
ly Devonian (ca. 399 Ma) (Wuetal., 2019a). Late
Devonian (ca. 360 Ma) metaluminous granite
provides an upper age bound on final consump-
tion of Paleo-Kunlun oceanic lithosphere and
subsequent continental collision of the Kunlun-
Qaidam continent and Songpan-Ganzi continent
of South China (Wu et al., 2019a). We interpret
the southward younging trend of magmatic ter-
mination ages to reflect southward steepening of
subducting Paleo-Kunlun oceanic lithosphere
(Fig. 9F). Permo-Triassic granitoids (270-
194 Ma, i.e., the Neo-Kunlun arc) are widespread
in the Kunlun-Qaidam continent across the South
Qilian Shan in the north and the Eastern Kun-
lun Range in the south, and are interpreted to
be associated with subduction of Neo-Kunlun
oceanic lithosphere. The geochemical composi-
tion of 263-229 Ma granites suggests that they
are associated with subduction-related arc mag-
matism (e.g., Li et al., 2015d; Wu et al., 2016a,
2019a; Chen et al., 2017; this study), whereas ca.
209 Ma rhyolites (Shao et al., 2021) and 214~
200 Ma A-type granitoids suggest generation in
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an extension setting during that time (Wu et al.,
2019a). We interpret the southward younging
trend of magmatic termination ages to reflect
southward steepening of subducting Neo-Kunlun
oceanic lithosphere (Fig. 9F).

Tectonic Evolution of Northern Tibet

Basement rocks of the Qilian-Qaidam-
Kunlun continent consist of Mesoproterozoic
passive margin strata in the west and Archean—
Proterozoic metamorphic rocks in the east. The
Archean—Paleoproterozoic Quanji Massif in the
Qilian-Qaidam-Kunlun continent is composed
of basement rocks (e.g., Lu, 2002; Wan et al.,
2006; Wang et al., 2008; Gong et al., 2012; Yu
et al., 2017b) that experienced amphibolite fa-
cies metamorphism at 1.95-1.93 Ga (Hao et al.,
2004; Wang et al., 2008) and were subsequently
intruded by ca. 1.83 Ga mafic dikes and ca.
1.8 Ga Rapakivi granite (Lu et al., 2006; Chen
et al., 2012a; Liao et al., 2014a). The Archean—
Paleoproterozoic Quanji Massif is unconform-
ably overlain by the Neoproterozoic Quanji
Group in North Qaidam. Detrital zircon ages
of Mesoproterozoic metasedimentary rocks in
northern Tibet contain a youngest zircon popu-
lation of 1.15-1.25 Ga in addition to 1.4-1.5 Ga
ages and Paleoproterozoic—Archean zircons that
are remarkably similar to those of the Tarim-
North China craton (e.g., Gehrels et al., 2003a;
Wau et al., 2017, 2021; Liu et al., 2018a; Tung
et al., 2007; Yu et al., 2017b; Zuza et al., 2018)
(Fig. 10). Based on similar lithologies and ages
of Paleo- and Mesoproterozoic basement rocks
located north and south of the Paleo-Qilian
suture, we interpret that opening of the Paleo-
Qilian Ocean between the North China-Tarim
craton and Qilian-Qaidam-Kunlun continent
likely occurred within a Greater North China
craton (Fig. 11) (e.g., Zuza and Yin, 2013; i.e.,
part of the larger Balkatach continent of Zuza
and Yin, 2017).

Paleo- and Mesoproterozoic structures are
overlain by a series of Neoproterozoic rift and
passive margin sequences. The Neoproterozoic
tectonic events in northern Tibet are debated,
however, 1.0-0.8 Ga plutons and detrital zircon
ages of Neoproterozoic strata of the Qilian-
Qaidam-Kunlun continent may correlate with
those of Tarim-North China (Gehrels et al.,
2003a, 2011; Chen et al., 2006a, 2006b; Peng,
2010; Wang et al., 2012; Liu et al., 2012b; Dan
etal., 2014; Yu et al., 2017b) or the South China
craton (e.g., Tung et al., 2013). Neoprotero-
zoic passive margin strata of the central Qilian
Shan have a detrital zircon U-Pb age popula-
tion at 732-1000 Ma with a prominent peak
at ca. 950 Ma and youngest weighted mean
age of 738 £ 12 Ma (MSWD = 0.64, n = 3),
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samples from the Qilian Shan
and Eastern Kunlun Range of
northern Tibet. Data are from
Gehrels et al. (2011); Li et al.
(2021); Xu et al. (2010); Yang
et al. (2009); Zuza et al. (2018);
Wu et al. (2021); Wu et al.
(2017, 2019a, 2019b, 2021); Liu
et al. (2018a); Yan et al. (2015,
2019); Zhang et al. (2018c); Li
et al. (2014); Jin et al. (2015a,
2015b, 2020); Peng et al. (2017);
Pei et al. (2017); Huang et al.
(2017b); Yang et al. (2016); Liu
et al. (2015); Chen (2015).

in addition to ages of 1.4-1.5 Ga, ca. 1.8 Ga,
and 2.5 Ga (Gehrels et al., 2011; this study)
(Fig. 10). The Neoproterozoic Langyashan
Formation in the Eastern Kunlun Range has
detrital zircon U-Pb age populations of 700—
940 Ma with a youngest weighted mean age of
705 £ 10 Ma MSWD = 0.66, n = 3), in addi-
tion to ages of ca. 1.05-1.25 Ga, 1.72-1.95 Ga
with a peak of 1.84 Ga, and 2.35-2.60 Ga with
apeak of 2.5 Ga (Zhang et al., 2018c; this study)
(Fig. 10). The Neoproterozoic Hualong Group/
Complex in the South Qilian Shan contains an

age population at 940-780 Ma with a peak at
ca. 906 Ma and youngest weighted mean age of
721 +£ 3 Ma, in addition to ages of 1.47-1.78 Ga
and 2.35-2.60 Ga with a peak at ca. 2.5 Ga (Yan
et al., 2015). The Neoproterozoic Hualong
Group/Complex also contains two early Paleo-
zoic metamorphic ages of ca. 425 Ma and ca.
475 Ma (Yan et al., 2015) (Fig. 10). The litholo-
gies and ages of Neoproterozoic metamorphic
rocks located between the South Qilian Shan and
Eastern Kunlun Range along the margins of the
Kunlun-Qaidam continent are comparable, but
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distinct from those of the central Qilian Shan and
late Neoproterozoic metamorphic rocks located
along the southwestern margin of the North
China craton. The common older ca. 2.5 Ga age
peak represents typical North China basement
(i.e., Wu et al., 2021). We suggest that two em-
bayed seas existed within the North China cra-
ton, central Qilian Shan, and Kunlun-Qaidam
continent, which are referred to as the North
Qilian and South Qilian oceans, respectively
(Fig. 11). Opening of the North and South Qilian
oceans may have commenced by 740-730 Ma
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based on the exposure of ca. 738 Ma basalt and
ca. 728 Ma arc granitoids (Wu et al., 2016a,
2021) (Fig. 11). Wu et al. (2016a) suggest that
the trace of the South Qilian Ocean traces the
tectonic contact between the North China craton
and the Paleo-Qilian arc (Fig. 11). Magmatism
across the Qilian Shan and southern margin of

the North China craton, in addition to evidence
from a magnetotelluric sounding profile across
the northern Tibetan Plateau, support a model of
bidirectional subduction of North Qilian oceanic
lithosphere (e.g., Li et al., 2021) (Fig. 11).
Opening of the Paleo-Kunlun Ocean between
the Kunlun-Qaidam continent and South China
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craton along the trace of the Proto-Kunlun arc is
inferred to have initiated after ca. 608 Ma based
on the youngest maximum deposition age of the
‘Wanbaogou Group passive margin strata located
along the southern margin of the Eastern Kun-
Iun Range (Wu et al., 2019a). Thus, opening of
the Paleo-Kunlun Ocean occurred later than the
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openings of the North and South Qilian oceans.
In addition, the onset of Paleo-Kunlun subduc-
tion along the southern margin of the Kunlun-
Qaidam continent must have occurred prior to
ca. 502 Ma (Fig. 11). The Cambrian—Ordovi-
cian arc sequence was deposited across the Qil-
ian Shan and subsequently overlain by Silurian
strata. A plot of paleo-crustal thickness versus
crystallization age for the Qilian Shan granitoids
shows a thickening trend from the Ordovician
to Silurian (trace element calibration of Sundell
et al., 2021) (Fig. 12A), which is supported by
the presence of Phanerozoic unconformities. The

265

North, Central, South Qilian Shan, and Eastern
Kunlun Range share four major detrital zircon
age populations at 448-550 Ma, 803-960 Ma,
1465-1750 Ma, and 2478-2590 Ma (Fig. 10).
Given these similarities, we suggest that closure
of the North Qilian and South Qilian oceans
occurred during the Early Silurian (Fig. 11). In
addition, paleo-crustal thickness constraints of
the Qilian Shan shows an overall thinning trend
from the Early Silurian to the Devonian—Early
Carboniferous (trace element calibration of
Sundell et al., 2021) (Fig. 12A). A-type Silu-
rian granitoids emplaced during extension were
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coeval with Devonian intra-arc basin sedimen-
tation in the Eastern Kunlun Range (Wu et al.,
2016a). Exhumation of eclogite-bearing, high-
grade metamorphic rocks and the emplacement
of mafic and ultramafic bodies (Meng et al.,
2013a and 2013b; Dong et al., 2018) in the
Eastern Kunlun Range may have been associated
with forearc thrusting (Wu et al., 2019a). This in-
terpretation is supported by the overall thinning
trend of the paleo-crustal thickness for the Ordo-
vician to Early Devonian (trace element calibra-
tion of Sundell et al., 2021) (Fig. 12B). Devonian
strata exposed across the Qilian-Qaidam-Kunlun
continent were deposited in intermontane and/
or foreland basins during the Qilian and East-
ern Kunlun orogenies (Fig. 11). Devonian strata
unconformably overlie deformed Proterozoic—
early Paleozoic rocks and are disconformably
overlain by younger strata. To the north, the early
Paleozoic Bainaimiao arc were developed along
the northern margin of the North China craton
due to the southward subduction of the Paleo-
Asian oceanic crust (Wu et al., 2016b) (Fig. 11).

Carboniferous strata in the North Qilian Shan
have two major detrital zircon age peaks at
ca. 329 Ma and ca. 438 Ma (Fig. 10). The ca.
329 Ma peak correlates with the crystallization
ages of plutonic rocks in the North China craton
to the north, whereas the ca. 438 Ma peak may
reflect a source from the Qilian arc, Paleo-Kun-
lun arc, and North China craton. The magmatic
Iull across northern Tibet from 360 to 270 Ma
was accompanied by passive continental margin
sedimentation (i.e., Carboniferous Halaguole
Formation and Lower Permian Marezheng For-
mation) in the Eastern Kunlun Range (Fig. 13) as
the Songpan-Ganzi continent rifted away from
the Qilian-Kunlun-Qaidam continent (Fig. 11).
The Devonian Beishan arc and Permian Mongo-
lia arc, placed at the southwestern and northern
margin of the North China craton, respectively,
are associated with the sustained subduction of
the Paleo-Asian oceanic crust (Fig. 11). Early
Permian mafic dike swarms are widespread be-
tween the southern portion of the Paleo-Asian
tectonic domain and north of Qilian Shan (i.e.,
Zhang et al., 2017¢).

Detrital zircon ages from Wu et al. (2019a)
and the observation of ca. 244 Ma and ca.
207 Ma granitic dikes intruding Lower and Up-
per Triassic strata in the Eastern Kunlun Range
(Figs. 7G=T7I) place bounds on deposition of
the Lower Triassic Hongshuichuan Forma-
tion and Upper Triassic Babaoshan Formation
at 250-244 Ma and 220-207 Ma, respectively
(Fig. 13). As discussed above, slab rollback
probably occurred from ca. 225 Ma in the South
Qilian Shan to ca. 194 Ma in the Eastern Kun-
lun Range (Fig. 11), as indicated by the Late
Permian and Early Jurassic younging trend of
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magmatism (Fig. 9F) and paleo-crustal thickness
trends in the Eastern Kunlun Range (calibration
of Sundell et al., 2021) (Fig. 12C). Jurassic ex-
tension resulted in exhumation of older strata,
and the regional extension continued during the
Cretaceous in northern Tibet (Fig. 13). Cenozoic
strata show two major detrital zircon age peaks
at ca. 212 Ma and ca. 427 Ma, and three minor
age peaks at 820-960 Ma, ca. 1700 Ma, and ca.

2450 Ma (Fig. 10), reflecting provenance from
the local Eastern Kunlun Range, although we
acknowledge that recycling of older strata may
have resulted in this age distribution (Wu et al.,
2019a, 2019b).

This protracted Proterozoic—Paleozoic oro-
genic history established a framework of pre-
existing weak zones to be reactivated during the
Cenozoic collision of India and Asia. (Yin et al.,
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2007; Zuza et al., 2019, 2020) (Fig. 11). The Qil-
ian Shan is the northern limit of Cenozoic con-
tractional deformation in the Himalayan-Tibetan
orogen (Clark, 2012; Zuza et al., 2020), which
deformed shortly after initial India-Asia collision
(e.g., Yin et al., 2008a, 2008b; Li et al., 2020).
We interpret that the spatial correlation between
early strain and this complex pre-Cenozoic his-
tory of Paleozoic orogeny and suturing implies
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that the preexisting framework acted as signifi-
cant lithospheric weakness (e.g., Heron et al.,
2016). Although early Paleozoic Qilian ocean(s)
subduction may have been bi-directional, sig-
nificant collision-related continental subduction
occurred to the south, as evidenced by the spatial
location of UHP rocks exposed in the North Qa-
idam thrust belt (Yin et al., 2007; Zhang et al.,
2008a, 2008b) (Fig. 11). Thus, the North China
continent was underthrust south toward Moho
depths, which may have established a south-
dipping Moho-depth crustal ramp in the Pa-
leozoic to be reactivated in the Cenozoic (e.g.,
Yin et al., 2007; Zuza et al., 2019; Chen et al.,
2020b). It is likely that the Paleozoic—-Mesozoic
history of the Qilian Shan generated important
crustal weaknesses in the northern Tibet crust and
lithosphere that were exploited during Cenozoic
crustal shortening, including multiple crustal
subhorizontal detachments that may accommo-
date more shortening than observed at the Earth’s
surface. It remains unclear why the Paleo-Asian
Ocean suture zones to the north (Fig. 1) were not
so readily reactivated in the Cenozoic (Fig. 11).
One hypothesis is that the volume of mafic island
arcs and underplated mafic rocks (e.g., Windley
et al., 2007) strengthened this crust (Liu and Fur-
long, 1994) to resist such strain. Alternatively,
the Paleo-Asian oceanic domain was far enough
from plate-boundary forces that stresses were
not great enough to overcome the competition
with gravitational potential energy, thus driving
predominately strike-slip faulting (Cunningham
et al., 1996; Webb and Johnson, 2006).

Neoproterozoic Paleogeography of
Northern Tibet

Results of geologic mapping and geochronol-
ogy indicate that Precambrian basement rocks

of the Tarim Basin exposed in the Altyn Tagh
Range are correlative with the North China base-
ment rocks and Proterozoic cover sequences in
the Qilian Shan and its foreland region (e.g.,
Gehrels et al., 2003a, 2003b; Cowgill et al.,
2003; Guo et al., 2005; Wu et al., 2021). This
correlation strengthens the interpretation that the
Tarim and North China cratons were parts of a
contiguous Precambrian craton (e.g., Heubeck,
2001; Kusky et al., 2007; Zuza and Yin, 2013,
2017). As discussed above, reconstruction of
Cenozoic slip along the Altyn Tagh fault and
removal of deformation related to early Paleo-
zoic orogenic events in the Qilian Shan (e.g.,
Xiao et al., 2009; Song et al., 2012; Zuza et al.,
2018; Wu et al., 2020) suggest that the combined
Kunlun-Qaidam-Qilian continent was connected
with the North China-Tarim craton in the Neo-
proterozoic. Full-scale plate reconstructions
demonstrate that Tarim and North China have
remained next to each other throughout the Pha-
nerozoic (e.g., Domeier and Torsvik 2014). In
addition, restoration of Cenozoic deformation in
the westernmost Tian Shan (Avouac et al., 1993),
Pamir (Burtman and Molnar, 1993), and western
Kunlun Range (Cowgill et al., 2003) suggests
that the Tarim craton extends farther westward
to the Karakum block (e.g., Biske and Seltmann,
2010) (Fig. 14). A possible suture zone cross-
ing the Tarim Basin separated North and South
Tarim and joined in the Neoproterozoic (e.g.,
Guo etal., 2005; Zuza and Yin, 2017; Yang et al.,
2018; Zhao et al., 2021) (Fig. 14), and therefore
it is possible that Greater North China was fully
assembled at this time. The shape of the northern
margin of the North China-Tarim craton during
the Neoproterozoic has been further modified by
subsequent rifting during the Neoproterozoic—
Cambrian. Neoproterozoic rift-related strata and
bimodal volcanism are widespread in northern
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Tarim, North China, and the microcontinents
of the Central Asian Orogenic System (e.g.,
Meert et al., 2011; Shu et al., 2011, Levashova
etal., 2011).

The stratigraphy of the Songpan-Ganzi con-
tinent is well defined (Weislogel, 2008), how-
ever, its tectonic evolution is poorly understood
(Burchfiel and Chen, 2012). Existing end-
member models regarding the tectonic origin
of the Songpan-Ganzi continent include: (1) an
accretionary complex (Sengor et al., 1988);
(2) remnant ocean basin (Yin and Nie, 1996);
and (3) relic of backarc basin (Pullen et al.,
2008). The Songpan-Ganzi continent is a narrow
strip that extends from east to west through the
Bayan Har, Hoh Xil, Tianshuihai, and Karakul-
Mazar regions (Fig. 14). Geologic observations
and geochronologic results suggest that the
Songpan-Ganzi continent has been the western
extension of the Yangtze craton of South China
since the early Neoproterozoic and experienced
extensional deformation in the Triassic (Wu
et al., 2016a). Triassic flysch strata and underly-
ing basement rocks are only exposed in its east-
ernmost portion, whereas crystalline basement
of the westernmost South China craton beneath a
passive-margin sequence contains 825-750 Ma
felsic arc rocks. Triassic granite of the eastern
Songpan-Ganzi continent have a 0.9-1.1 Ga
Nd model age, which is similar to those of the
western South China craton (Roger et al., 2004)
and the basement rocks of the South China cra-
ton that occur in Triassic gneiss domes of the
eastern Songpan-Ganzi continent (Roger et al.,
2010). Triassic granite in the central Songpan-
Ganzi continent was sourced from 1.1 to 1.6 Ga
basement based on the Nd model age, indicat-
ing correlation with the South China craton and
Kunlun-Qaidam basement (Zhang et al., 2014b).
High-grade gneiss with Triassic protolith ages



occurs in the western Songpan-Ganzi continent
(Robinson, 2015). A ca. 2.5 Ga meta-volcanic
rock is reported in the basement (Ji et al., 2011),
which is similar to the ca. 2.5 Ga Kangding
orthogneiss in the western South China craton
(Wang et al., 2013c) and correlatives to the
North China craton. Due to a lack of studies on
the basement of Qiangtang terrane, the southern
extent of the Greater South China continent is
not well constrained (Fig. 14).

In summary, we emphasize that plate recon-
structions of central Asia should consider larger
continents instead of smaller fragments. The
relatively small continental fragments may be
illusionary due to distributed deformation dur-
ing collisions and subsequent reactivation by
later phases of accretionary or collisional orog-
eny. Two Greater North China and South China
continents, located along the southern margin of
Laurasia, were separated in the early Neoprotero-
zoic along the future Kunlun-Qinling-Dabie su-
ture (i.e., Proto-Kunlun suture; Wu et al., 2019a)
(Fig. 14). Subsequent Neoproterozoic rifting
opened the Paleo-Asian and Tethyan oceans
along the northern margins of Greater North
China craton and Greater South China craton,
respectively. Greater North China likely contrib-
uted the micro-continental fragments that were
the eventual building blocks for the Paleozoic
Central Asian Orogenic System, and this rifting
also explains the heredity of some of the Central
Asian microcontinents. Paleozoic—early Meso-
zoic arc-continent collisions across central Asia
and later Cenozoic intra-continental deformation
induced by the India-Asia collision significantly
modified the original shape of the Greater North
China and South China continents.

The existence of these greater continents is
especially important for global plate reconstruc-
tions of Neoproterozoic Earth. For example,
recent paleomagnetic data have individually
placed Tarim and North China against western
Laurentia (Wen et al., 2017, 2018; Ding et al.,
2021). These distinct interpretations so far sup-
port the model of Zuza and Yin (2013, 2017)
that the strip of Greater North China (Balk-
atach of Zuza and Yin, 2017) may have been
affixed against western Laurentia in the Rodin-
ian supercontinent. The rifting of Greater North
China from Laurentia would have thus opened
the twin Paleo-Pacific and Paleo-Asian oceans.
Future geologic and paleomagnetic research
should test this hypothesis while considering
continuity between the Tarim and North China
continents.

CONCLUSIONS

In this study, we present new constraints on
the Proterozoic—Phanerozoic tectonic evolution

Wu et al.

of the Qilian Shan, Qaidam, and Eastern Kun-
lun Range of northern Tibet based on a synthe-
sis of field observations and new U-Pb zircon
geochronology. Our work shows that early Neo-
proterozoic subduction and subsequent collision
occurred between the Tarim-North China, Qilian-
Qaidam-Kunlun, and South China continents.
Arc plutons generated along two subduction sys-
tems are exposed throughout the Qilian Shan and
Eastern Kunlun Range. We suggest that Neopro-
terozoic rifting resulted in opening of the North
Qilian, South Qilian, and Paleo-Kunlun mar-
ginal oceans, and separation of South Qilian and
Paleo-Kunlun oceans occurred along the trace
of an early Neoproterozoic suture zone. Open-
ing of the Paleo-Kunlun Ocean at ca. 600 Ma
occurred later compared to the openings of the
North and South Qilian oceans at 740-730 Ma.
The closure of the North Qilian and South Qil-
ian oceans occurred during the Early Silurian
(ca. 440 Ma), whereas final consumption of the
Paleo-Kunlun Ocean may have lasted until the
Devonian (ca. 360 Ma). The ca. 244 Ma granitic
dike intruding the Lower Triassic Hongshui-
chuan Formation suggests that the unit was
deposited between 250 and 244 Ma. Similarly,
the ca. 207 Ma granitic dike intruding the Up-
per Triassic Babaoshan Formation suggests that
the unit was deposited between 220 and 207 Ma.
Northward subduction of Neo-Kunlun oceanic
lithosphere initiated at ca. 270 Ma, followed by
slab rollback at ca. 225 Ma recorded in the South
Qilian Shan, and ca. 194 Ma recorded slab roll-
back in the Eastern Kunlun Range. Magmatic
and paleo-crustal thickness histories across the
Qilian-Qaidam-Kunlun continent supports the
interpreted tectonic evolution of the region. In
addition, after removing the effects of Phanero-
zoic deformation, we interpret that two Greater
North China and South China continents, located
south of Laurasia, were separated in the early
Neoproterozoic along the future Kunlun-Qin-
ling-Dabie suture.
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