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ABSTRACT

The Proterozoic–Phanerozoic tectonic 
evolution of the Qilian Shan, Qaidam Ba-
sin, and Eastern Kunlun Range was key to 
the construction of the Asian continent, and 
understanding the paleogeography of these 
regions is critical to reconstructing the an-
cient oceanic domains of central Asia. This 
issue is particularly important regarding the 
paleogeography of the North China-Tarim 
continent and South China craton, which 
have experienced significant late Neoprotero-
zoic rifting and Phanerozoic deformation. In 
this study, we integrated new and existing 
geologic field observations and geochronol-
ogy across northern Tibet to examine the tec-
tonic evolution of the Qilian-Qaidam-Kunlun 
continent and its relationships with the North 
China-Tarim continent to the north and 
South China craton to the south. Our re-
sults show that subduction and subsequent 
collision between the Tarim-North China, 
Qilian-Qaidam-Kunlun, and South China 
continents occurred in the early Neopro-
terozoic. Late Neoproterozoic rifting opened 
the North Qilian, South Qilian, and Paleo-
Kunlun oceans. Opening of the South Qilian 
and Paleo-Kunlun oceans followed the trace 
of an early Neoproterozoic suture. The open-
ing of the Paleo-Kunlun Ocean (ca. 600 Ma) 
occurred later than the opening of the North 
and South Qilian oceans (ca. 740–730 Ma). 
Closure of the North Qilian and South Qil-
ian oceans occurred in the Early Silurian 
(ca. 440 Ma), whereas the final consump-
tion of the Paleo-Kunlun Ocean occurred 
in the Devonian (ca. 360 Ma). Northward 

subduction of the Neo-Kunlun oceanic litho-
sphere initiated at ca. 270 Ma, followed by 
slab rollback beginning at ca. 225 Ma evi-
denced in the South Qilian Shan and at ca. 
194 Ma evidenced in the Eastern Kunlun 
Range. This tectonic evolution is supported 
by spatial trends in the timing of magma-
tism and paleo-crustal thickness across the 
Qilian-Qaidam-Kunlun continent. Lastly, we 
suggest that two Greater North China and 
South China continents, located along the 
southern margin of Laurasia, were separated 
in the early Neoproterozoic along the future 
Kunlun-Qinling-Dabie suture.

INTRODUCTION

The Kunlun-Qaidam-Qilian continent, locat-
ed along the northeastern margin of the Tethyan 
orogenic system, is a key continental fragment 
that contributed to the tectonic development 
of Asia (e.g., Şengör, 1984; Jiang et al., 1992; 
Yin and Harrison, 2000; Wu et al., 2016a; Xiao 
et al., 2009; Song et al., 2013; Zuza et al., 2018). 
Despite the regional importance of the Kunlun-
Qaidam-Qilian continent, its Proterozoic–Pha-
nerozoic evolution has remained inadequately 
examined. A major unresolved issue is the 
paleogeographic relationship of the Kunlun-
Qaidam-Qilian continent with the North China-
Tarim cratons and the adjacent Songpan-Ganzi 
continent of the South China craton (Fig. 1) (e.g., 
Wu et al., 2016a). These continental fragments 
are presently separated by the Cenozoic Qilian 
Shan-Nan Shan thrust belt to the north and left-
slip Kunlun fault to the south. Several active 
structures deform Archean–Proterozoic base-
ment rocks and overprint rocks emplaced during 
Mesozoic extension and punctuated magmatism 
during the Neoproterozoic–early Mesozoic (e.g., 
Xiao et al., 2009; Song et al., 2013, 2019a; Zuza 
et al., 2016, 2018; Wu et al., 2016a, 2019a; Dong 

et al., 2018; Yu et al., 2021), which has provided 
a challenge in understanding the evolution of 
northern Tibet.

Several important first-order questions regard-
ing the evolution of the Qilian orogen remain un-
answered: (1) the relationships between North, 
Central, and South Qilian Shan basement rocks 
with those of the North China, Tarim, and South 
China cratons, respectively; (2) whether subduc-
tion of the Qilian Ocean faced to the north (Song 
et al., 2013), south (Yin et al., 2007; Zuza et al., 
2018), or was bi-directional (Xiao et al., 2009; 
Li et al., 2021); (3) whether final closure of the 
Qilian Ocean occurred during the Devonian or 
Silurian; (4) the number and composition (i.e., 
oceanic versus continental) of magmatic arcs 
involved; and (5) whether the North and South 
Qilian sutures formed via distinct ocean closure 
events (Fig. 1). Similarly, the number and clo-
sure timing of sutures of the Eastern Kunlun oro-
gen remain debated. One set of models involve 
the one-time closure of a single Kunlun Ocean 
in the Neoproterozoic (Şengör et al., 1988; Wu 
et al., 2016a, 2019a) or Devonian (Stampfli and 
Borel, 2002). Alternatively, Yin and Harrison 
(2000) proposed that a single Kunlun Ocean su-
ture existed prior to the Ordovician and closed 
once in the Early Carboniferous and again in the 
latest Triassic. A third set of models involve the 
closure of two to three oceans along distinct su-
tures (Jiang et al., 1992; Yang et al., 1996; Meng 
et al., 2013a, 2015; Dong et al., 2018).

Here we present findings of the structural 
framework of the Qilian and Eastern Kunlun 
orogens located between the Kunlun-Qaidam-
Qilian, Tarim-North China, and Songpan-Ganzi 
continents based on a compilation of new and ex-
isting field observations from geologic mapping, 
geo-/thermochronologic ages, and geochemical 
data. Our results allowed us to construct regional 
tectonostratigraphic sections, constrain the spa-
tial and temporal extents of arc magmatism, and 
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correlate basement rocks and assign possible 
provenance which provided new constraints on 
the Proterozoic–Phanerozoic tectonic evolution 
of the Qilian and Eastern Kunlun orogens and 
the formation of the Asian continent.

REGIONAL GEOLOGIC SETTING

The Qilian Shan is located along the north-
eastern margin of the Tibetan Plateau, separating 
the Hexi Corridor to the north from the Qaidam 
Basin to the south. The Qilian Shan is truncat-
ed to the northwest by the sinistral strike-slip 
Altyn Tagh fault and links to the east with the 
Qinling orogen (e.g., Yin and Harrison, 2000; 
Zuza et al., 2016) (Fig. 1). The early Paleozoic 
Qilian orogen exposed in the Qilian Shan con-
tains ophiolitic mélange complexes of the North 
and South Qilian suture zones (Figs. 1 and 2) 
that formed during the collision of the Kunlun-
Qaidam continent with the southern margin of 
the combined Tarim-North China cratons (e.g., 
Xiao et al., 2009; Song et al., 2013; Wu et al., 
2017; Zuza et al., 2018; Fu et al., 2020; Li et al., 
2021; Fu et al., 2019, 2021). In general, the Qil-
ian orogen contains three tectonic units separat-
ed by the North and South Qilian sutures: (1) the 
North Qilian Shan consisting of Neoproterozoic 
passive-continent margin strata and post-colli-
sional intrusions, (2) the Central Qilian Shan 
consisting of Precambrian basement intruded 

by 1.1–0.9 Ga plutons, and (3) the South Qilian 
Shan consisting of the early Paleozoic Qilian 
arc sequence emplaced atop Precambrian am-
phibolite-grade continental basement (e.g., Yin 
and Harrison, 2000; Pan et al., 2004; Wu et al., 
2016a; Zuza et al., 2018) (Fig. 2). The southern 
margin of the North China craton and Kunlun-
Qaidam continent may contain correlative Pa-
leoproterozoic (ca. 2.3–1.8 Ga) basement rocks 
and overlying Mesoproterozoic cover sequences 
(e.g., Chen et al., 2013f; Yu et al., 2017b, 2019; 
Wu et al., 2017, 2021). The tectonostratigraphic 
evolution of the Qilian orogen is described by 
Zuza et al. (2018) and Wu et al. (2017). Key 
geologic relationships and geochronologic ages 
of the North, Central, and South Qilian Shan are 
summarized in a simplified tectonostratigraph-
ic column (Fig. 3) and regional-scale geologic 
map (Fig. 4).

The Eastern Kunlun Range is located be-
tween the Qaidam Basin of the Kunlun-Qaidam 
continent to the north and the active left-slip 
Kunlun fault to the south, the latter of which 
follows the Triassic Neo-Kunlun suture (e.g., 
Jiang et al., 1992; Yang et al., 1996; Wu et al., 
2016a, 2019a; Dong et al., 2018) (Fig. 4). The 
Eastern Kunlun orogen exposed in the range 
formed via three major deformation events in 
the Neoproterozoic, early Paleozoic, and late 
Paleozoic–early Mesozoic associated with col-
lision of the Proto-, Paleo-, and Neo-Kunlun 

arcs, respectively (Wu et  al., 2016a, 2019a) 
(Fig.  4). The late Paleozoic–early Mesozoic 
closure of the Neo-Kunlun ocean occurred as 
the Qaidam-Kunlun continent collided with 
the Songpan-Ganzi continent along the west-
ern margin of the South China craton (Wu 
et al., 2016a, 2019a). The Eastern Kunlun oro-
gen primarily contains three tectonic units that 
consist from north to south of: (1) Paleopro-
terozoic basement rocks and Phanerozoic cover 
sequences along the southern margin of the 
Kunlun-Qaidam continent; (2) a central zone 
of volcanic and plutonic rocks associated with 
the Kunlun arc(s), and intermittently exposed 
ultramafic-mafic rocks and ophiolitic fragments 
that occur within Precambrian–early Paleozoic 
metamorphic complexes; and (3) the Triassic 
Neo-Kunlun suture that separates the Kunlun 
arc(s) to the north and South China craton base-
ment rocks overlain by Triassic submarine-fan 
turbidite deposits of the Songpan-Ganzi flysch 
complex to the south (e.g., Yin and Harrison, 
2000; Jiang et al., 1992; Yang et al., 1996; Ding 
et al., 2013; Wu et al., 2016a). Detailed descrip-
tions of the Eastern Kunlun tectonostratigraphy 
are presented in Wu et al. (2016a, 2019a).

The northwest-striking, early Paleozoic 
intra-arc North Qaidam ultrahigh pressure 
(UHP) metamorphic belt is located along the 
northeastern margin of the Qaidam Basin and 
is truncated by the left-slip Altyn Tagh fault to 

Figure 1. Simplified tectonic map across the Tibetan Plateau and central Asia, modified after Yin and Nie (1996) and Yin and Harrison 
(2000). UHP—ultrahigh pressure.
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the northwest (e.g., Yin et al., 2007; Yu et al., 
2021; Song et al., 2013, 2019b) (Figs. 1 and 2). 
This UHP metamorphic belt includes the tightly 
folded eclogite blocks and ophiolitic rocks that 
experienced regional epidote-amphibolite fa-
cies metamorphism (Menold et al., 2009). The 
present-day exposure of the belt is strongly con-
trolled by north-dipping Cenozoic thrust faults 
(e.g., Sobel and Arnaud, 1999, Yin et al., 2007) 
(Fig. 2) and thus is not interpreted to represent an 

in situ early Paleozoic suture. In the Qilian Shan, 
two or even three subparallel ophiolitic mélange 
belts have been identified (e.g., Song et al., 2013, 
2019a; Fu et al., 2020) (Figs. 2 and 3). These 
ophiolitic mélange belts consist, from north to 
south, of: (1) the ca. 517–487 Ma forearc and 
ca. 490–445 Ma backarc North Qilian ophiolitic 
mélange belts; (2) the ca. 550–495 Ma Central 
Qilian ophiolitic mélange belt (?); and (3) the 
ca. 525–500 Ma South Qilian ophiolitic mélange 

belt. Similarly, three subparallel ophiolitic mé-
lange belts have been identified in the Eastern 
Kunlun Range (Fig.  4) including: (1) the ca. 
486–423 Ma(?) North Kunlun ophiolitic mé-
lange zone; (2) the ca. 555–243 Ma(?) Central 
Kunlun ophiolitic mélange zone; and (3) the ca. 
535–260 Ma(?) South Kunlun ophiolitic mé-
lange zone (e.g., Yang et al., 1996; Meng et al., 
2015; Dong et al., 2018; Yu et al., 2017a). Ophi-
olitic mélange belts exposed in the Qilian Shan 

Figure 2. Geologic map of the Qilian Shan of northern Tibet showing regional geochronologic results of magmatic events. The map is 
compiled from Pan et al. (2004), Wang et al. (2013b), and this study. Data are compiled from: 1—H. Yang et al. (2020); 2—C.Y. Tseng et al. 
(2009); 3—S.Y. Yu et al. (2015); 4—S. Chen et al. (2016c); 5—Z.L. Xiong et al. (2012); 6—Q. Qian et al. (1998); 7—C.L. Wu et al. (2004b); 
8—S. Chen et al. (2015a); 9—L.Q. Zhang et al. (2017b); 10—C.L. Wu et al. (2011a); 11—C.L. Wu et al. (2010); 12—Y.X. Chen et al. (2014); 
13—H. Huang et al. (2017a); 14—Y.X. Chen et al. (2012c); 15—X.M. Zhao et al. (2014); 16—Y.S. Li et al. (2019); 17—J.W. Mao et al. (2000); 
18—G.E. Gehrels et al. (2003b); 19—C.Y. Wang et al. (2021); 20—B. Li et al. (2021); 21—Y.B. Peng et al. (2019); 22—J.J. Guo et al. (2000); 
23—Y.S. Wan et al. (2001, 2003); 24—K.A. Tung et al. (2007); 25—W.C. Xu et al. (2007); 26—Y. Yong et al. (2008); 27—N. Xue et al. (2009); 
28—K.A. Tung et al. (2013); 29—S.Y. Yu et al. (2013a); 30—H. Huang et al. (2015); 31—Z. Yan et al. (2015); 32—J.X. Zhang et al. (2008b); 
33—Y.L. Xu et al. (2011); 34—S.G. Song et al. (2012); 35—J.D. Liu et al. (2015); 36—J.S. Dong et al. (2015); 37—Z.P. Guo et al. (2015a); 
38—M. Li et al. (2015c); 39—Z.W. Zhang et al. (2015b); 40—R.N. Hou et al. (2015); 41—J.P. Shi et al. (2015); 42—Z.W. Luo et al. (2015); 
43—Z.B. Song et al. (2004); 44—J.P. Su et al. (2004a); 45—J.P. Su et al. (2004b); 46—J.P. Su et al. (2004c); 47—C.Y. Tseng et al. (2006); 
48—J.J. Ma et al. (2018); 49—T.Z. Song et al. (2016, C.X. Tian et al. (2018); 50—S.G. Song et al. (2013); 51—H.P. Qin et al. (2014a); 52—
H.P. Qin et al. (2014b); 53—M. Liu et al. (2014); 54—Q.F. Xie et al. (2014); 55—J.F. Li et al. (2010); 56—Z.B. Huang et al. (2014b); 57—Z.B. 
Huang et al. (2018); 58—C.L. Wu et al. (2009a); 59—Z.B. Huang et al. (2010); 60—Ding and Huang, 2019); 61—G.L. Wang et al. (2018a); 
62—J. Wang et al. (2018b); 63—Y.B. Peng et al. (2017b); 64—B. Li et al. (2017); 65—X.M. Zhao et al. (2018); 66—G.B. Zhao et al. (2013); 
67—Q. Liu et al. (2019); 68—Z.P. Guo et al. (2015a); 69—W.Z. Wu et al. (2019c); 70—L.T. Zhang et al. (2018a); 71—Y.X. Liu et al. (2018b); 
72—B.S. Liu et al. (2016); 73—H.R. Zhang et al. (2019); 74—N. Wang et al. (2017a); 75—X.X. Fan et al. (2020); 76—T. Bu et al. (2019); 
77—M.Q. Liu (2013); 78—Q.H. Wang et al. (2017b); 79—Y.J. Chen et al. (2019); 80—Z.L. Jia et al. (2017); 81—X.Y. Zhang et al. (2018d); 
82—H. Liao et al. (2014b); 83—J.P. Shi et al. (2017); 84—X.L. Zhu et al. (2019); 85—W.F. Li et al. (2020); 86—W.L. Hu et al. (2016); 87—
X.L. Yu et al. (2018a); 88—B. Ji et al. (2019); 89—X.L. Yu et al. (2018b); 90—Z.W. Zhang et al. (2012b); 91—G. Tao et al. (2017); 92—L. 
Gao et al. (2017); 93—J.S. Cao et al. (2019); 94—D.Y. Lv et al. (2021); 95—J.L. Chen et al. (2008a); 96—Y. Zheng et al. (2017); 97—J.M. 
Zhang et al. (2018b); 98—R.R. Qi (2012); 99—Q.L. Chen (2009); 100—L.L. Zhang (2014); 101—P.Y. Chang (2017); 102—Y. Qin (2018); 
103—X.T. Liu (2019); 104—H. Yang (2016); 105—Y.L. An (2015); 106—A.V. Zuza et al. (2018); 107—X.H. Zhu et al. (2013); 108—B. Zhou 
et al. (2014); 109—C.L. Wu et al. (2007); 110—X.X. Lu et al. (2007); 111—X. Zhang et al. (2015a); 112—X.H. Zhu et al. (2016); 113—X.Y. 
He et al. (2020); 114—G.D. Zhang et al. (2016a); 115—J.W. Cui et al. (2016); 116—C. Wu et al. (2021); 117—this study.
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Figure 3. Lithostratigraphy of 
the North Qilian Shan, Central 
Qilian Shan, and South Qilian 
Shan of northern Tibet. Ages 
are compiled from Qinghai Bu-
reau of Geology and Mineral 
Resources (1997), Pan et  al. 
(2004), Wang et al. (2013c), and 
this study. cl—clay; si—silt; 
ss—sand; cg—conglomerate.

A B C

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/doi/10.1130/B36306.1/5496262/b36306.pdf
by University of Nevada Reno user
on 10 February 2022



Tectonic evolution of North Tibet

	 Geological Society of America Bulletin, v. 130, no. XX/XX	 5

and Eastern Kunlun Range are truncated to the 
northwest by the left-slip Altyn Tagh fault and 
occur in the hanging walls of Cenozoic thrusts 
(e.g., Yin et al., 2007) (Figs. 2 and 4). The trace 
of the South Qilian suture appears to link to the 
southeast with the North Qinling Erlangping 
suture (Yin and Nie, 1996; Tseng et al., 2009), 
whereas the Neo-Kunlun suture correlates with 
the Shangdan suture exposed in the central Qin-
ling region to the east (Ratschbacher et al., 2003; 
Dong and Santosh, 2016). Whether the ophiol-
itic mélange belts exposed in the Qilian Shan 
and Eastern Kunlun Range represent individual 
in situ sutures formed via distinct ocean closure 
events or intracontinental and/or backarc pro-
cesses remains debated.

Numerous Neoproterozoic and early Paleozoic 
granitoid plutons are exposed throughout the 

Qilian Shan (Fig. 2; Table S11). These plutons 
have ages ranging between 1030 and 728 Ma and 
520–340 Ma (Table S1), and have been mostly 
attributed to subduction-related arc magmatism 
and/or syn- to post-orogenic magmatism (e.g., 

Gehrels et al., 2003b; Wu et al., 2017; Zuza et al., 
2018; Huang et al., 2015; Fu et al., 2018). In ad-
dition, ca. 235–269 Ma granitoids are distributed 
throughout the southern Qilian Shan along the 
northern margin of the Kunlun-Qaidam conti-
nent (Xie et al., 2014; Hu et al., 2016; Li et al., 
2021; Jia et al., 2017; Wu et al., 2009a, 2009b). 
Three distinct generations of Neoproterozoic–
Mesozoic granitoid plutons are exposed along 
the southern margin of the Kunlun-Qaidam ter-
rane, two of which are widely exposed in the 
Eastern Kunlun Range (ca. 500–360 Ma and ca. 
263–194 Ma) (Cowgill et al., 2003; Wu et al., 
2016a, 2019a) (Fig. 4; Table S2; see footnote 1).

As part of this study, we performed local- and 
regional-scale geologic mapping of major tec-
tonic units exposed in the eastern portion of the 
Qilian Shan (Fig. 5) and Wenquan area of the 

1Supplemental Material. Table S1: Summary of 
Geochronology Results of Intrusive rocks in the 
Qilian Shan; Table S2: Summary of Geochronology 
Results of Intrusive rocks in the East Kunlun Range; 
Table S3: LA-ICP-MS results for zircons U-Pb ages 
of igneous, sandstone, and metamorphic sedimentary 
samples in this study; Table S4: Geochemistry Data 
for Plots of age against crustal thickness of the Qilian 
Shan; Table S5: Geochemistry Data for Plots of age 
against crustal thickness of the Eastern Kunlun 
Range. Please visit https://doi​.org​/10​.1130​/GSAB​
.S.17138867 to access the supplemental material, and 
contact editing@geosociety.org with any questions.

Figure 4. Simplified geologic map of the Eastern Kunlun Range of northern Tibet showing regional geochronologic results of magmatic 
events. The map is compiled from Pan et al. (2004), Wang et al. (2013c), and this study. Data are compiled from: 1—C. Wu et al. (2019a); 
2—C. Wu et al. (2016a); 3—C.C. Wu et al. (2004a); 4—C.D. Liu et al. (2004); 5—X.H. Chen et al. (2012b); 6—H.W. Chen et al. (2006a); 
7—Y.H. Liu et al. (2006a); 8—F. Roger et al. (2003); 9—W. Li et al. (2013); 10—Q.F. Ding et al. (2014); 11—L.Y. Zhang et al. (2014b); 
12—N.B. Harris et al. (1988); 13—J.G. Dai et al. (2013); 14—H. Huang et al. (2014a); 15—B. Liu et al. (2012a); 16—Q.T. Bian et al. (2004); 
17—Q.T. Bian et al. (2000); 18—J.Y. Zhang et al. (2012a); 19—G.C. Wang et al. (2003); 20—A.L. Guo et al. (2009); 21—K.A. Tung et al. 
(2007); 22—Y.B. Peng et al. (2019); 23—S.Y. Yu et al. (2013a); 24—S.G. Song et al. (2012); 25—C.G. Mattinson et al. (2006); 26—S.Y. Yu 
et al. (2013b); 27—K.A. Tung et al. (2013); 28—Y. Yong et al. (2008); 29—H. Huang et al. (2015); 30—Z. Yan et al. (2015); 31—J.Y. Yu et al. 
(2012); 32—W.C. Xu et al. (2007); 33—J.J. Guo et al. (2000); 34—G. Wang et al. (2016); 35—F.C. Meng et al. (2013b); 36—N.S. Chen et al. 
(2006b); 37—Y.X. Chen et al. (2015b); 38—D.F. He et al. (2016); 39—X.L. Wei et al. (2016); 40—D.F. He et al. (2018); 41—Y.L. Xu et al. 
(2011); 42—J.H. Cao et al. (2015); 43—N.S. Chen et al. (2008b); 44—G.C. Chen et al. (2013a); 45—G.C. Chen et al. (2013b); 46—G.C. Chen 
et al. (2013c); 47—J. Chen et al. (2013d); 48—J. Chen et al. (2013e); 49—J.J. Chen et al. (2016b); 50—G.T. Chen et al. (2016a); 51—W.D. 
Liu (2016); 52—X.Z. Guo et al. (2016); 53—W.B. Deng et al. (2016); 54—L. Lu et al. (2013); 55—B.Z. Wang et al. (2011); 56—Gao and Li 
(2011); 57—Z.Z. Wang et al. (2014); 58—G.C. Li et al. (2012); 59—J.H. Zhou et al. (2016); 60—X.K. Wu et al. (2011b); 61—S.X. Tan et al. 
(2011); 62—Z.M. Zhao et al. (2008); 63—L. Yao et al. (2016); 64—Y. Zhang et al. (2016b); 65—N.N. Hao et al. (2014); 66—G.L. Wang et al. 
(2013b); 67—K. Li et al. (2015b); 68—C.S. Li et al. (2015a); 69—G. Wang et al. (2013a); 70—J.Y. Zhang et al. (2014a); 71—F.C. Meng 
et al. (2015); 72—C.Y Feng (2012); 73—Y.B. Gao et al. (2014); 74—Z.W. Zhang et al. (2014c); 75—Y.B. Gao et al. (2012); 76—R.G. Xi et al. 
(2010); 77—C. Ao et al. (2015); 78—Y. Xiao et al. (2013); 79—B. Qian et al. (2015); 80—J.H. Zhou et al. (2015); 81—S.J. Li et al. (2008); 
82—this study. F.—Fault.
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A B

Figure 5. Geologic map of the eastern Qilian Shan of northern Tibet based on the results of this study, Pan et al. (2004), and Wu et al. (2021). 
The locations of the samples of this study are shown.
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Eastern Kunlun Range (Fig. 6). In the following 
sections, we present the results of our mapping 
combined with constraints from existing geo-
logic maps in the regions (e.g., Pan et al., 2004; 
Wu et al., 2021).

GEOLOGY OF THE EASTERN QILIAN 
SHAN

The eastern Qilian Shan region, including 
North and Central Qilian, exposes rocks vary-
ing in age from Neoproterozoic to Quaternary 
(Fig.  5). Precambrian metamorphic basement 
rocks are mainly exposed in the southern part 
of the mapping area and consist of porphyritic 

gneiss (Fig. 7A), phyllite, slate, meta-sandstone 
(Fig. 7B), quartzite (Fig. 7C), and schist. Cam-
brian volcanic, volcaniclastic, and siltstone rocks 
are exposed in the northern margin of the study 
area (Fig. 5). Ordovician rocks are widespread 
throughout the study area and consist of sand-
stone, siltstone, and volcaniclastic deposits. 
Ordovician rocks may represent a sequence 
of forearc, accretionary wedge, and foreland-
basin strata (e.g., Xiao et  al., 2009). Silurian 
rocks unconformably overlie Ordovician strata 
and often feature isoclinal folds and transposed 
bedding (Fig. 5). The Ordovician strata consist 
of minor conglomerate layers interbedded with 
siltstone, shale, and sandstone (Fig. 7D), which 

are considered to represent a flysch basin that 
transitions to a molasse sequence (e.g., Du et al., 
2003; Yang et al., 2009; Yan et al., 2010).

Devonian strata do not exceed 350 m in thick-
ness (Fig. 5) and consist of terrestrial conglomer-
ate, sandstone, and minor volcanic rocks. These 
strata are interpreted to represent molasse that 
was deposited in intermontane and/or foreland 
basins during the Qilian orogeny (e.g., Xia et al., 
2003; Yan et al., 2007). Devonian strata uncon-
formably overlie deformed Proterozoic–early 
Paleozoic rocks. A disconformity forms the up-
per contact of the Devonian strata with Carbon-
iferous strata (Zuza et al., 2018; Li et al., 2021). 
Throughout most of the eastern Qilian Shan, 

BA

Figure 6. Geologic map of the Reshui region in the Eastern Kunlun Range of northern Tibet based on the results of this study and Pan et al. 
(2004). The locations of the samples of this study are shown. Fm.—Formation.
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Carboniferous strata overlie Ordovician–Devo-
nian rocks along an angular unconformity, and 
often feature isoclinal folds and transposed bed-
ding (Zuza et al., 2018; Wu et al., 2021) (Fig. 5). 
Carboniferous strata consist of quartz sandstone 
(Fig. 7E) interbedded with siltstone and minor 
carbon-rich shale and coal. Permian strata con-
sist of the coarse sandstone interbedded with 
siltstone and shale.

Triassic shallow marine and lacustrine strata 
conformably overlie Permian strata and consist 
of a basal conglomerate and overlying arkosic 
sandstone interbedded with calcareous siltstone 
(Fig.  5). Jurassic strata overlie Triassic strata 
along a regional disconformity and consist of a 
basal conglomerate and overlying arkosic sand-
stone interbedded with siltstone, shale, and nu-
merous coal beds (Fig. 5). Overlying the Jurassic 

strata are Cretaceous and Cenozoic red-colored 
strata consisting of polymictic conglomerate and 
coarse sandstone. Gypsum layers are prevalent 
within the Cenozoic fluvial and lacustrine sedi-
ments (Fig. 5). The youngest strata are Quater-
nary alluvial and fluvial deposits (Fig. 5).

Four distinct Phanerozoic unconformities are 
recognized in the eastern Qilian Shan: (1) an old-
est and most widespread unconformity between 

Figure 7. Field photographs of 
the Neoproterozoic Qilian Shan 
of northern Tibet metamorphic 
rocks including (A) porphyritic 
gneiss, (B) meta-sandstone, 
and (C) quartzite. Also shown 
are (D) Silurian quartzite, 
(E)  Carboniferous slightly 
metamorphic sandstone, (F) 
Neoproterozoic metasandstone 
of the Langyashan Formation 
in the Eastern Kunlun Range, 
(G–H) a Triassic granite dike 
intruding Lower Triassic sand-
stone, (I) a Late Triassic granite 
dike intruding Upper Triassic 
sandstone, (J) weakly meta-
morphosed Lower Triassic 
sedimentary rocks thrust atop 
Cenozoic red deposits, and (K–
M) granitoid samples collected 
as part of this study.

A B

C D

E F

G H
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overlying Carboniferous strata (locally Devonian 
and/or Permian strata) and Proterozoic metamor-
phic basement and Ordovician–Silurian strata; 
(2) an unconformity between overlying Triassic 
strata and Carboniferous strata in the North Qil-
ian; and (3) two youngest unconformities along 
the basal contacts of Cretaceous and Cenozoic 
strata. These youngest strata are interpreted to 
reflect regionally extensive tectonic events.

Numerous early Paleozoic granitoid plutons 
with ca. 503–424 Ma crystallization ages are 
exposed throughout the eastern Qilian Shan re-
gion (e.g., Chen et al., 2019; Ding and Huang, 
2019; Huang et al., 2018; Xiong et al., 2012; Yu 
et al., 2013a, 2015; H. Huang et al., 2015; Guo 
et al., 2015a, 2015b; Liu et al., 2019; Peng et al., 
2017a, 2017b; Tung et al., 2013; Wu et al., 2021; 
this study) (Fig. 5). In addition, Paleoproterozo-
ic leucogranites (ca. 1.91 Ga), Neoproterozoic 

granitic intrusions (ca. 920–935 Ma), and late 
Paleozoic leucogranites (ca. 345 Ma) and alka-
line rocks (ca. 410 Ma) are reported in the study 
area (e.g., Wu et al., 2021; Huang et al., 2018).

GEOLOGY OF THE EASTERN 
EASTERN KUNLUN RANGE

The oldest rocks exposed in the eastern East-
ern Kunlun Range are Meso- to Neoproterozoic, 
low-grade metamorphic and unmetamorphosed 
strata of the Langyashan Formation (Fig.  6). 
These rocks are exposed in the northern corner 
of the mapping area and consist of marble and 
interbedded limestone and tuffeous sandstone 
(Zhang et al., 2018c) (Fig. 7F). The Langyas-
han Formation is thrust atop the Ordovician 
Naijtal Group which consists of weakly meta-
morphosed, shallow- and deep-marine clastic, 

carbonate, and volcaniclastic strata and volcanic 
rocks. Wu et al. (2019a) suggest that the Nai-
jtal Group was deposited between ca. 447 and 
440 Ma based on the detrital zircon U-Pb ages 
and the presence of Late Ordovician–Early Si-
lurian granitoid intrusions. It remains unclear 
whether Paleozoic granitoids in the study area 
are thrust atop or intrude Proterozoic meta-
morphic rocks. The Carboniferous Haoteluowa 
Formation is thrust atop Triassic strata and vol-
canic rocks and consists of limestone interbed-
ded with sandy slate (Fig. 6). Triassic rocks are 
divided into Lower, Middle, and Upper Triassic 
units, which are all intruded by granitic dikes 
(Figs. 7G–7I). The Lower Triassic Hongshuich-
uan Formation consists of a basal unit of massive 
cross-bedded gray sandstone overlain by silt-
stone and sandy slate (Figs. 7G and 7H). Middle 
Triassic strata are dominated by basal limestone 

I J

K L

M N

Figure 7. (Continued)
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overlain by cross-bedded arkosic sandstone with 
minor marble. Upper Triassic rocks consist of 
basal volcanics overlain by conglomerate and 
arkosic sandstone (Fig. 7I). The Triassic rocks 
are thrust over Cenozoic strata (Fig. 7J), which 
are predominantly Neogene and consist of red-
colored fluvial conglomerate and sandstone and 
lacustrine mudstone with a clay, marble, or lime-
stone matrix (Fig. 7J). The youngest rocks ex-
posed in the study area are Quaternary alluvial, 
fluvial, and glaciofluvial strata.

Structures in the mapping area generally 
strike northwest, which parallels the strikes of 
sedimentary strata and metamorphic foliation 
and the trend of the range (Fig.  6). Cenozoic 
folds and faults are widespread in the mapping 
area (Fig. 6). Most faults cut Cenozoic and Qua-
ternary strata with the exception of the thrust 
which places Paleozoic granitoids atop Protero-
zoic metamorphic rocks (Fig. 6).

RESULTS OF U-PB ZIRCON 
GEOCHRONOLOGY

Results of U-Pb zircon geochronology are 
presented in Table S3 (see footnote 1). Sample 
locations are shown in Table 1. The fractionation 
correction and U-Pb results were calculated us-
ing the program GLITTER 4.0. Common Pb 
was corrected following the method described 
by Andersen (2002). Age calculations and con-
cordia plots were made using Isoplot (Ludwig, 
2003). Most analyses are concordant or nearly 
concordant and cluster as single age populations. 
We report 206Pb/238U ages for grains younger 
than 1000 Ma and 207Pb/206Pb ages for grains 
older than 1000 Ma (Ludwig, 2003).

Seventeen zircon grains from granite sample 
WC 09-14-14 (12) (Fig. 7K) yield U-Pb ages 
ranging from 427 to 464 Ma. The weighted 
mean U-Pb age of 12 concordant zircon grains 
is 432 ± 3 Ma (mean square weighed deviation 
[MSWD] = 0.31) (Fig. 8A), which we interpret 
as the crystallization age of the granitoid sample.

Twenty-seven zircon grains from granitoid 
sample WC 07-16-17 (1) (Fig. 7L) yield con-
cordant ages ranging from 452 to 466 Ma. The 
weighted mean U-Pb age of 27 concordant 
zircon grains is 457 ± 2 Ma (MSWD = 0.48) 
(Fig. 8B), which we interpret as the crystalli-
zation age.

Nineteen zircon grains from sample WC 07-
13-17 (1) (Fig.  7M) yield ages ranging from 
249 Ma (206Pb/238U) to 1924 Ma (207Pb/206Pb). 
The largest population of concordant analyses 
cluster at ca. 450 Ma and have a weighted mean 
age of 446 ± 4 Ma (MSWD = 0.63; n = 6) 
(Fig. 8C), which we interpret as the crystalli-
zation age.

Eighteen zircon grains from sample WC 07-
26-17 (6) (Fig.  7H) yield ages ranging from 
237 Ma (206Pb/238U) to 1434 Ma (207Pb/206Pb). 
The largest population of concordant analyses 
cluster at ca. 480 Ma and have a weighted mean 
age of 477 ± 7 Ma (MSWD = 2.1; n = 7). 
The youngest population of concordant zircon 
grains (n = 4) yields a weighted mean age of 
244 ± 8 Ma (MSWD = 3.8) (Fig. 8D). We in-
terpret that the oldest grains are inherited, and 
the youngest population represents the crystal-
lization age of the granitoid sample.

Nineteen zircon grains from granitoid sample 
WC 07-26-17 (1) (Fig.  7I) yield concordant 
ages ranging from 204 to 233 Ma. The weighted 
mean U-Pb age of 17 concordant zircon grains is 
207 ± 1 Ma (MSWD = 0.79) (Fig. 8E), which 
we interpret as the crystallization age.

Seven zircon grains from foliated granit-
oid sample WC 07-25-17 (3) (Fig.  7K) yield 
concordant ages ranging from 374 to 420 Ma. 
The weighted mean U-Pb age of 6 concordant 
zircon grains is 407 ± 13 Ma (MSWD = 2.1) 
(Fig. 8F), which we interpret as the crystalli-
zation age.

Ninety-nine spots from our porphyritic 
gneiss sample WC 09-13-14 (8B) (Fig.  7A) 
yield concordant ages ranging from ca. 732 Ma 
(206Pb/238U) to ca. 1091 Ma (207Pb/206Pb) 

(Fig. 8G). One dominant age population with a 
peak at ca. 935 Ma accounts for ∼90% of the 
analyzed grains (Fig. 8G).

Ninety-eight detrital zircon grains were ana-
lyzed from meta-sandstone sample WC 09-13-
14 (7) (Fig. 7B), of which 5 grains yield discor-
dant ages. Ninety-three concordant ages range 
from ca. 734 Ma (206Pb/238U) to ca. 1039 Ma 
(207Pb/206Pb). This sample has a dominant zircon 
population between 824 and 1039 Ma (∼95%) 
with a peak at ca. 920 Ma (Fig. 8H).

Ninety-nine detrital zircon grains were 
analyzed from quartzite sample WC 09-13-
14 (8A) (Fig.  7C), of which 3 grains yield 
discordant ages. Ninety-six concordant ages 
range from ca. 839 Ma (206Pb/238U) to ca. 
1181 Ma (207Pb/206Pb). The weighted mean of 
the three youngest concordant zircon grains is 
846 ± 12 Ma (MSWD = 0.98) (Fig.  8I). We 
interpret this weighted mean age to represent 
the maximum depositional age of the quartzite 
sample. The sample has a major zircon popula-
tion between 839 and 1016 Ma (∼97%) with a 
peak at ca. 960 Ma (Fig. 8I).

One hundred detrital zircon grains were ana-
lyzed from quartzite sample WC 09-13-14 (10) 
(Fig.  7D), of which 5 grain yield discordant 
ages. Concordant ages range from ca. 445 Ma 
(206Pb/238U) to ca. 2939 Ma (207Pb/206Pb). The 
weighted mean of the three youngest concordant 
zircon grains is 460 ± 26 Ma (MSWD = 2.5) 
(Fig. 8J). We interpret this weighted mean age to 
represent the maximum depositional age of the 
quartzite sample. The sample has a major zircon 
population between 799 and 1845 Ma (∼86%) 
with three peaks at ca. 900 Ma, ca. 1500 Ma, and 
ca. 1715 Ma (Fig. 8J). We note one minor age 
population at ca. 476 Ma. The oldest two zircon 
grains have 207Pb/206Pb ages of 2859 ± 18 and 
2939 ± 9 Ma (Fig. 8J).

One hundred detrital zircon grains were 
analyzed from weakly metamorphosed quartz 
sandstone sample WC 09-14-17 (8) (Fig. 7E), 
of which 7 grains yield discordant ages. 

TABLE 1. SUMMARY OF SAMPLE LOCATIONS IN THE QILIAN SHAN AND EASTERN KUNLUN RANGE, NORTHERN TIBET

Sample number Description Latitude
(°N)

Longitude
(°E)

Elevation
(m)

Crystallization age MSWD n

WC 07-26-17 (6) granitoid 35°55′11.60″ 95°20′03.39″ 5312 244 ± 8 Ma 3.8 4 out of 18
WC 07-26-17 (1) granitoid 35°57′30.93″ 95°16′25.01″ 4929 207 ± 1 Ma 0.79 17 out of 19
WC 07-25-17 (3) granitoid 35°58′34.12″ 95°26′03.87″ 4765 407 ± 13 Ma 2.1 6 out of 7
WC 07-13-17 (1) granitoid 37°15′22.54″ 101°36′32.85″ 3943 446 ± 4 Ma 0.63 3 out of 19
WC 07-16-17 (1) granitoid 37°34′42.88″ 102°02′18.27″ 4406 457 ± 2 Ma 0.48 27 out of 27
WC 09-14-14 (12) granitoid 37°43′12.14″ 101°55′48.00″ 2620 432 ± 3 Ma 0.31 12 out of 17
WC 07-29-17 (5) sandstone 35°55′05.33″ 95°18′46.06″ 4655 100
WC 07-26-17 (2) sandstone 35°57′05.83″ 95°17′02.81″ 5001 100
WC 07-25-17 (4) meta-sandstone 35°57′52.55″ 95°26′47.54″ 4764 49
WC 09-13-14 (7) meta-sandstone 37°07′59.77″ 101°34′12.75″ 2677 98
WC 09-13-14 (8A) quartzite 37°08′09.23″ 101°34′13.66″ 2715 99
WC 09-13-14 (8B) porphyritic gneiss 37°08′09.23″ 101°34′13.66″ 2715 99
WC 09-13-14 (10) quartzite 37°19′29.46″ 101°24′03.73″ 3597 100
WC 09-14-17 (8) quartz sandstone 37°41′19.50″ 101°57′53.15″ 3101 100

Note: MSWD—mean square weighted deviation.
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Concordant ages range from 313 to 457 Ma. 
The weighted mean of the three young-
est concordant zircon grains is 316 ± 8 Ma 

(MSWD = 2.9) (Fig.  8K). We interpret the 
weighted mean age to represent the maximum 
depositional age of the metasandstone sample. 

The sample has a major zircon population of 
313–457 Ma (∼100%) with two peaks at ca. 
329 Ma and ca. 438 Ma (Fig. 8K).

A B

C D

E F

G H

Figure 8. U-Pb concordia dia-
grams showing results of single-
shot zircon analyses for each 
sample. (A) granitoid sample 
WC 09-14-14 (12); (B) granit-
oid sample WC 07-16-17 (1); 
(C)  granitoid sample WC 07-
13-17 (1); (D) granitoid sample 
WC 07-26-17 (6); (E)  granit-
oid sample WC 07-26-17 (1); 
(F) granitoid sample WC 07-25-
17 (3); (G) porphyritic gneiss 
sample WC 09-13-14 (8B); (H) 
meta-sandstone sample WC 09-
13-14 (7); (I)  quartzite sample 
WC 09-13-14 (8A); (J) sand-
stone sample WC 09-13-14 (10); 
(K) meta-sandstone sample WC 
07-14-17 (8); (L) meta-sand-
stone sample WC 07-25-17 (4); 
(M) sandstone sample WC 07-
26-17 (2); (N) sandstone sample 
WC 07-29-17 (5). Error ellipses 
are 2σ. MSWD—mean square 
weighed deviation.
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Forty-nine detrital zircon grains were ana-
lyzed from metasandstone sample WC 07-25-17 
(4) (Fig. 7F), of which 26 grains yield discordant 
ages. Concordant ages range from ca. 717 Ma 
(206Pb/238U) to ca. 2595 Ma (207Pb/206Pb). The 
weighted mean of the three youngest concordant 
zircon grains is 724 ± 5 Ma (MSWD = 0.66) 
(Fig. 8L). We interpret the weighted mean age to 
represent the maximum depositional age of the 
metasandstone sample. The sample has two ma-
jor zircon populations at 720–1100 Ma (∼50%) 
and 2320–2595 Ma with two peaks at ca. 870 Ma 
and ca. 2500 Ma, respectively. We note one mi-
nor age population at ca. 1840 Ma (Fig. 8L).

One hundred detrital zircon grains were ana-
lyzed from sandstone sample WC 07-26-17 (2) 
(Fig. 7I), of which 1 grain yields a discordant age. 
Concordant ages range from 231 to 282 Ma. The 
weighted mean of the three youngest concordant 
zircon grains is 232 ± 3 Ma (MSWD = 0.067) 
(Fig. 8M). We interpret the weighted mean age 
to represent the maximum depositional age of 
the sandstone sample. The sample has a major 
zircon population at 231–247 Ma (∼100%) with 
one peak at ca. 240 Ma (Fig. 8M).

One hundred detrital zircon grains were ana-
lyzed from sandstone sample WC 07-29-17 (5) 
(Fig.  7J), of which 7 grains yield discordant 

ages. Concordant ages range from ca. 196 Ma 
(206Pb/238U) to ca. 2469 Ma (207Pb/206Pb). The 
weighted mean of the three youngest concordant 
zircon grains is 200 ± 10 Ma (MSWD = 1.9) 
(Fig. 8N). We interpret the weighted mean age 
to represent the maximum depositional age of 
the sandstone sample. The sample has a major 
zircon population at 201–239 Ma (∼90%) with 
one peak at ca. 211 Ma (Fig. 8N).

DISCUSSION

Our U-Pb geochronology results of six gran-
itoid samples combined with existing ages in 

Figure 8. (Continued)
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northern Tibet show that Silurian–Late Ordovi-
cian granite bodies (432–457 Ma) intrude Lower 
Paleozoic strata in the eastern Qilian Shan and 
early Mesozoic (247–207 Ma) granites intrude 
Triassic sandstones and Neoproterozoic meta-
morphic rocks in the Eastern Kunlun Range. 
Combining these findings with new and existing 
detailed field observations allowed us to better 
understand the magmatic history of northern 
Tibet. In addition, detrital zircon U-Pb ages of 
Neoproterozoic metamorphic rocks and Pha-
nerozoic sandstones provide key provenance 
information and age populations that can be 
compared between the Qilian Shan and Eastern 

Kunlun Range. Based on these findings, we bet-
ter constrained the Proterozoic–Phanerozoic tec-
tonic evolution of the Qilian Shan and Eastern 
Kunlun Range in northern Tibet.

Magmatic Records Across Northern Tibet

U-Pb zircon ages of intrusive rocks from the 
Qilian Shan mostly define with two age groups of 
520–402 Ma and 961–728 Ma with peaks at ca. 
445 Ma and ca. 920 Ma, respectively (Fig. 9A). 
Geochronologic results of granitoid samples 
from the Qilian Shan support the interpreta-
tion of a prominent magmatic lull in the region 

at 728–520 Ma (Fig. 9B). Permian-Triassic arc 
granitoids (235–269 Ma) and Late Devonian 
post-orogenic granitoids (392–372 Ma) occur in 
the South Qilian Shan and North Qaidam, re-
spectively (e.g., Xie et al., 2014; Hu et al., 2016; 
Li et al., 2021; Jia et al., 2017; Wu et al., 2004b, 
2007, 2009a; Zhou et al., 2021) (Fig. 9B). Meso-
proterozoic granitic gneiss (ca. 1002–1537 Ma) 
occurs in the North Qaidam (Wang et al., 2021), 
whereas ca. 1116–1150 Ma granitic gneiss oc-
curs in the North Qilian Shan (Dong et  al., 
2015) (Figs. 1 and 9B; Table S1). In addition, 
the youngest and oldest leucogranites in the re-
gion (ca. 341 Ma and ca. 1908 Ma, respectively) 
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Figure 9. Crystallization ages and age versus distance plots of Neoproterozoic, Paleozoic, and Mesozoic plutons exposed in the Qilian Shan 
and Eastern Kunlun Range of northern Tibet.
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occur in the Central Qilian Shan (Wu et  al., 
2021). Gabbro with 550–529 Ma ages interpret-
ed to represent fossil Qilian oceanic crust and/or 
supra-subduction ophiolite occurs in the North 
Qilian Shan (Shi et al., 2004; Song et al., 2013) 
(Fig. 9B). In contrast to the magmatic record of 
the Qilian Shan, zircon ages of granitoid samples 
in the Eastern Kunlun Range fall within three 
age groups at 944–904 Ma, 503–357 Ma, and 
263–194 Ma (Wu et al., 2019a) (Figs. 4 and 9C).

The ca. 1.9 Ga and ca. 1.88 Ga leucogran-
ites in the Qilian Shan and Longshou Shan to 
the north, respectively, are interpreted to cor-
relate with the Paleoproterozoic northern North 
China orogen (Wu et al., 2018, 2021). The Qil-
ian Shan, Qaidam, and Eastern Kunlun regions 
were intruded by 960–900 Ma arc plutons (i.e., 
the Proto-Kunlun arc in the Eastern Kunlun 
Range and the Proto-Qilian arc in the Qilian 
Shan), which suggests that the regions formed 
a contiguous continent by the start of the early 
Neoproterozoic. Early Neoproterozoic plutons 
have also been documented in the Altyn Tagh 
Range and Tarim to the west, and the Qinling 
to the southeast, suggesting the existence of a 
south-dipping Proterozoic subduction zone that 
roughly stretched from Tarim to Qinling (Guo 
et al., 2005; Wu et al., 2016a, 2021; Zuza et al., 
2018) (Fig. 9D). The Proto-Kunlun arc is inter-
preted be associated with southward subduction 
of Proto-Kunlun oceanic lithosphere beneath 
the Qilian-Qaidam-Kunlun continent (Wu et al., 
2016a, 2019a). Granitoids with 900–728 Ma 
ages along the northern margin of the Qilian-
Kunlun-Qaidam continent have a northward 
younging trend, which is interpreted to reflect 
northward steepening of subducting Proto-Kun-
lun oceanic lithosphere (Fig. 9C).

The geochemical composition of ca. 820 Ma 
granitoids in the Qilian Shan suggest generation 
during continental breakup, which indicates that 
the rifting and ocean basin formation may have 
occurred earlier than this time (Wu et al., 2017). 
The occurrence of 797–728 Ma granitic intru-
sions in the Qilian Shan has been attributed to 
the rifting of the Qilian-Qaidam-Kunlun con-
tinent from the North China-Tarim craton and 
subsequent opening of the Qilian Ocean (Tseng 
et al., 2006; Song et al., 2013; Wu et al., 2016a, 
2017, 2021; Zuza et al., 2018). Alternatively, ca. 
675 Ma gabbro and ca. 600 Ma basalt interbed-
ded with thick marble sequences may suggest 
that rifting from Tarim-North China and opening 
of the Qilian ocean(s) occurred later (Xu et al., 
2015; Song et al., 2016; Tian et al., 2018). At 
least one ocean existed in the Qilian Shan be-
tween 550 and 449 Ma, as evidenced by wide-
spread exposures of ophiolite fragments (e.g., 
Shi et  al., 2004; Xia et  al., 2003, 2016; Song 
et  al., 2013; Tseng et  al., 2007; Zhang et  al., 

2007; Xiao et al., 2009; Zuza et al., 2018; Fu 
et al., 2020, 2021). Widespread arc plutons in 
the Qilian Shan (i.e., Qilian arc) indicate that a 
major subduction system initiated by ca. 520 Ma 
and continued throughout the Ordovician, and 
younger accretion-related magmatism persisted 
until ca. 341 Ma. A major pulse of magmatism in 
the Qilian Shan at ca. 445 Ma and coeval meta-
morphism based on monazite ages are reported 
by Zuza et al. (2018). In addition, 454–442 Ma 
39Ar/40Ar cooling ages (Liu et al., 2006b) and a 
ca. 442 Ma syncollisional granite in North Qaid-
am are documented by Zhang et al. (2017b), sug-
gesting that collision between Kunlun-Qaidam 
and North China likely occurred at 445–440 Ma. 
A ca. 439 Ma leucogranite also contains Siluri-
an–Devonian ages, which are consistent with in-
tracontinental deformation during collision (Wu 
et  al., 2021). Numerous syn-collisional 430–
410 Ma magmatic intrusions occur throughout 
the Qilian Shan. We interpret that the southward 
younging trend of magmatic ages reflects south-
ward subduction of Qilian oceanic lithosphere, 
whereas the northward younging trend of mag-
matic termination ages reflect northward steep-
ening of subducting Qilian oceanic lithosphere 
(Fig. 9E).

The Cambrian–Devonian arc magmatic event 
observed in the Eastern Kunlun Range (i.e., 
Paleo-Kunlun arc) is interpreted to be related to 
subduction of Paleo-Kunlun oceanic lithosphere 
(Wu et al., 2016a, 2019a). Late Cambrian (ca. 
494 Ma) granite with high Sr and Y contents re-
flects deep subduction of Paleo-Kunlun oceanic 
lithosphere, and arc-related plutons in the Eastern 
Kunlun Range indicate that subduction initiated 
by ca. 500 Ma and continued throughout the Ear-
ly Devonian (ca. 399 Ma) (Wu et al., 2019a). Late 
Devonian (ca. 360 Ma) metaluminous granite 
provides an upper age bound on final consump-
tion of Paleo-Kunlun oceanic lithosphere and 
subsequent continental collision of the Kunlun-
Qaidam continent and Songpan-Ganzi continent 
of South China (Wu et al., 2019a). We interpret 
the southward younging trend of magmatic ter-
mination ages to reflect southward steepening of 
subducting Paleo-Kunlun oceanic lithosphere 
(Fig.  9F). Permo-Triassic granitoids (270–
194 Ma, i.e., the Neo-Kunlun arc) are widespread 
in the Kunlun-Qaidam continent across the South 
Qilian Shan in the north and the Eastern Kun-
lun Range in the south, and are interpreted to 
be associated with subduction of Neo-Kunlun 
oceanic lithosphere. The geochemical composi-
tion of 263–229 Ma granites suggests that they 
are associated with subduction-related arc mag-
matism (e.g., Li et al., 2015d; Wu et al., 2016a, 
2019a; Chen et al., 2017; this study), whereas ca. 
209 Ma rhyolites (Shao et al., 2021) and 214–
200 Ma A-type granitoids suggest generation in 

an extension setting during that time (Wu et al., 
2019a). We interpret the southward younging 
trend of magmatic termination ages to reflect 
southward steepening of subducting Neo-Kunlun 
oceanic lithosphere (Fig. 9F).

Tectonic Evolution of Northern Tibet

Basement rocks of the Qilian-Qaidam-
Kunlun continent consist of Mesoproterozoic 
passive margin strata in the west and Archean–
Proterozoic metamorphic rocks in the east. The 
Archean–Paleoproterozoic Quanji Massif in the 
Qilian-Qaidam-Kunlun continent is composed 
of basement rocks (e.g., Lu, 2002; Wan et al., 
2006; Wang et al., 2008; Gong et al., 2012; Yu 
et al., 2017b) that experienced amphibolite fa-
cies metamorphism at 1.95–1.93 Ga (Hao et al., 
2004; Wang et al., 2008) and were subsequently 
intruded by ca. 1.83 Ga mafic dikes and ca. 
1.8 Ga Rapakivi granite (Lu et al., 2006; Chen 
et al., 2012a; Liao et al., 2014a). The Archean–
Paleoproterozoic Quanji Massif is unconform-
ably overlain by the Neoproterozoic Quanji 
Group in North Qaidam. Detrital zircon ages 
of Mesoproterozoic metasedimentary rocks in 
northern Tibet contain a youngest zircon popu-
lation of 1.15–1.25 Ga in addition to 1.4–1.5 Ga 
ages and Paleoproterozoic–Archean zircons that 
are remarkably similar to those of the Tarim-
North China craton (e.g., Gehrels et al., 2003a; 
Wu et al., 2017, 2021; Liu et al., 2018a; Tung 
et al., 2007; Yu et al., 2017b; Zuza et al., 2018) 
(Fig. 10). Based on similar lithologies and ages 
of Paleo- and Mesoproterozoic basement rocks 
located north and south of the Paleo-Qilian 
suture, we interpret that opening of the Paleo-
Qilian Ocean between the North China-Tarim 
craton and Qilian-Qaidam-Kunlun continent 
likely occurred within a Greater North China 
craton (Fig. 11) (e.g., Zuza and Yin, 2013; i.e., 
part of the larger Balkatach continent of Zuza 
and Yin, 2017).

Paleo- and Mesoproterozoic structures are 
overlain by a series of Neoproterozoic rift and 
passive margin sequences. The Neoproterozoic 
tectonic events in northern Tibet are debated, 
however, 1.0–0.8 Ga plutons and detrital zircon 
ages of Neoproterozoic strata of the Qilian-
Qaidam-Kunlun continent may correlate with 
those of Tarim-North China (Gehrels et  al., 
2003a, 2011; Chen et al., 2006a, 2006b; Peng, 
2010; Wang et al., 2012; Liu et al., 2012b; Dan 
et al., 2014; Yu et al., 2017b) or the South China 
craton (e.g., Tung et  al., 2013). Neoprotero-
zoic passive margin strata of the central Qilian 
Shan have a detrital zircon U-Pb age popula-
tion at 732–1000 Ma with a prominent peak 
at ca. 950 Ma and youngest weighted mean 
age of 738 ± 12 Ma (MSWD = 0.64, n = 3), 
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in addition to ages of 1.4–1.5 Ga, ca. 1.8 Ga, 
and 2.5 Ga (Gehrels et  al., 2011; this study) 
(Fig.  10). The Neoproterozoic Langyashan 
Formation in the Eastern Kunlun Range has 
detrital zircon U-Pb age populations of 700–
940 Ma with a youngest weighted mean age of 
705 ± 10 Ma (MSWD = 0.66, n = 3), in addi-
tion to ages of ca. 1.05–1.25 Ga, 1.72–1.95 Ga 
with a peak of 1.84 Ga, and 2.35–2.60 Ga with 
a peak of 2.5 Ga (Zhang et al., 2018c; this study) 
(Fig. 10). The Neoproterozoic Hualong Group/
Complex in the South Qilian Shan contains an 

age population at 940–780 Ma with a peak at 
ca. 906 Ma and youngest weighted mean age of 
721 ± 3 Ma, in addition to ages of 1.47–1.78 Ga 
and 2.35–2.60 Ga with a peak at ca. 2.5 Ga (Yan 
et  al., 2015). The Neoproterozoic Hualong 
Group/Complex also contains two early Paleo-
zoic metamorphic ages of ca. 425 Ma and ca. 
475 Ma (Yan et al., 2015) (Fig. 10). The litholo-
gies and ages of Neoproterozoic metamorphic 
rocks located between the South Qilian Shan and 
Eastern Kunlun Range along the margins of the 
Kunlun-Qaidam continent are comparable, but 

distinct from those of the central Qilian Shan and 
late Neoproterozoic metamorphic rocks located 
along the southwestern margin of the North 
China craton. The common older ca. 2.5 Ga age 
peak represents typical North China basement 
(i.e., Wu et al., 2021). We suggest that two em-
bayed seas existed within the North China cra-
ton, central Qilian Shan, and Kunlun-Qaidam 
continent, which are referred to as the North 
Qilian and South Qilian oceans, respectively 
(Fig. 11). Opening of the North and South Qilian 
oceans may have commenced by 740–730 Ma 

Figure 10. Mesoproterozoic–
Cenozoic relative probability 
plots of detrital zircon ages of 
samples from the Qilian Shan 
and Eastern Kunlun Range of 
northern Tibet. Data are from 
Gehrels et  al. (2011); Li et  al. 
(2021); Xu et  al. (2010); Yang 
et al. (2009); Zuza et al. (2018); 
Wu et  al. (2021); Wu et  al. 
(2017, 2019a, 2019b, 2021); Liu 
et al. (2018a); Yan et al. (2015, 
2019); Zhang et al. (2018c); Li 
et  al. (2014); Jin et  al. (2015a, 
2015b, 2020); Peng et al. (2017); 
Pei et  al. (2017); Huang et  al. 
(2017b); Yang et al. (2016); Liu 
et al. (2015); Chen (2015).
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based on the exposure of ca. 738 Ma basalt and 
ca. 728 Ma arc granitoids (Wu et  al., 2016a, 
2021) (Fig. 11). Wu et al. (2016a) suggest that 
the trace of the South Qilian Ocean traces the 
tectonic contact between the North China craton 
and the Paleo-Qilian arc (Fig. 11). Magmatism 
across the Qilian Shan and southern margin of 

the North China craton, in addition to evidence 
from a magnetotelluric sounding profile across 
the northern Tibetan Plateau, support a model of 
bidirectional subduction of North Qilian oceanic 
lithosphere (e.g., Li et al., 2021) (Fig. 11).

Opening of the Paleo-Kunlun Ocean between 
the Kunlun-Qaidam continent and South China 

craton along the trace of the Proto-Kunlun arc is 
inferred to have initiated after ca. 608 Ma based 
on the youngest maximum deposition age of the 
Wanbaogou Group passive margin strata located 
along the southern margin of the Eastern Kun-
lun Range (Wu et al., 2019a). Thus, opening of 
the Paleo-Kunlun Ocean occurred later than the 

Figure 11. Neoproterozoic–Early Jurassic tectonic evolution of the Qilian-Qaidam-Kunlun continent of northern Tibet. T—temperature.
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openings of the North and South Qilian oceans. 
In addition, the onset of Paleo-Kunlun subduc-
tion along the southern margin of the Kunlun-
Qaidam continent must have occurred prior to 
ca. 502 Ma (Fig.  11). The Cambrian–Ordovi-
cian arc sequence was deposited across the Qil-
ian Shan and subsequently overlain by Silurian 
strata. A plot of paleo-crustal thickness versus 
crystallization age for the Qilian Shan granitoids 
shows a thickening trend from the Ordovician 
to Silurian (trace element calibration of Sundell 
et al., 2021) (Fig. 12A), which is supported by 
the presence of Phanerozoic unconformities. The 

North, Central, South Qilian Shan, and Eastern 
Kunlun Range share four major detrital zircon 
age populations at 448–550 Ma, 803–960 Ma, 
1465–1750 Ma, and 2478–2590 Ma (Fig. 10). 
Given these similarities, we suggest that closure 
of the North Qilian and South Qilian oceans 
occurred during the Early Silurian (Fig. 11). In 
addition, paleo-crustal thickness constraints of 
the Qilian Shan shows an overall thinning trend 
from the Early Silurian to the Devonian–Early 
Carboniferous (trace element calibration of 
Sundell et  al., 2021) (Fig. 12A). A-type Silu-
rian granitoids emplaced during extension were 

coeval with Devonian intra-arc basin sedimen-
tation in the Eastern Kunlun Range (Wu et al., 
2016a). Exhumation of eclogite-bearing, high-
grade metamorphic rocks and the emplacement 
of mafic and ultramafic bodies (Meng et  al., 
2013a and 2013b; Dong et  al., 2018) in the 
Eastern Kunlun Range may have been associated 
with forearc thrusting (Wu et al., 2019a). This in-
terpretation is supported by the overall thinning 
trend of the paleo-crustal thickness for the Ordo-
vician to Early Devonian (trace element calibra-
tion of Sundell et al., 2021) (Fig. 12B). Devonian 
strata exposed across the Qilian-Qaidam-Kunlun 
continent were deposited in intermontane and/
or foreland basins during the Qilian and East-
ern Kunlun orogenies (Fig. 11). Devonian strata 
unconformably overlie deformed Proterozoic–
early Paleozoic rocks and are disconformably 
overlain by younger strata. To the north, the early 
Paleozoic Bainaimiao arc were developed along 
the northern margin of the North China craton 
due to the southward subduction of the Paleo-
Asian oceanic crust (Wu et al., 2016b) (Fig. 11).

Carboniferous strata in the North Qilian Shan 
have two major detrital zircon age peaks at 
ca. 329 Ma and ca. 438 Ma (Fig. 10). The ca. 
329 Ma peak correlates with the crystallization 
ages of plutonic rocks in the North China craton 
to the north, whereas the ca. 438 Ma peak may 
reflect a source from the Qilian arc, Paleo-Kun-
lun arc, and North China craton. The magmatic 
lull across northern Tibet from 360 to 270 Ma 
was accompanied by passive continental margin 
sedimentation (i.e., Carboniferous Halaguole 
Formation and Lower Permian Marezheng For-
mation) in the Eastern Kunlun Range (Fig. 13) as 
the Songpan-Ganzi continent rifted away from 
the Qilian-Kunlun-Qaidam continent (Fig. 11). 
The Devonian Beishan arc and Permian Mongo-
lia arc, placed at the southwestern and northern 
margin of the North China craton, respectively, 
are associated with the sustained subduction of 
the Paleo-Asian oceanic crust (Fig. 11). Early 
Permian mafic dike swarms are widespread be-
tween the southern portion of the Paleo-Asian 
tectonic domain and north of Qilian Shan (i.e., 
Zhang et al., 2017c).

Detrital zircon ages from Wu et al. (2019a) 
and the observation of ca. 244 Ma and ca. 
207 Ma granitic dikes intruding Lower and Up-
per Triassic strata in the Eastern Kunlun Range 
(Figs.  7G–7I) place bounds on deposition of 
the Lower Triassic Hongshuichuan Forma-
tion and Upper Triassic Babaoshan Formation 
at 250–244 Ma and 220–207 Ma, respectively 
(Fig.  13). As discussed above, slab rollback 
probably occurred from ca. 225 Ma in the South 
Qilian Shan to ca. 194 Ma in the Eastern Kun-
lun Range (Fig. 11), as indicated by the Late 
Permian and Early Jurassic younging trend of 

Figure 12. Plots of age versus 
crustal thickness of the Qil-
ian Shan and Eastern Kunlun 
Range of northern Tibet using 
the La/Yb(n) calibration of 
Sundell et al. (2021). Geochem-
ical data are listed in Tables S4 
and S5 (see footnote 1).

A

B

C
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magmatism (Fig. 9F) and paleo-crustal thickness 
trends in the Eastern Kunlun Range (calibration 
of Sundell et al., 2021) (Fig. 12C). Jurassic ex-
tension resulted in exhumation of older strata, 
and the regional extension continued during the 
Cretaceous in northern Tibet (Fig. 13). Cenozoic 
strata show two major detrital zircon age peaks 
at ca. 212 Ma and ca. 427 Ma, and three minor 
age peaks at 820–960 Ma, ca. 1700 Ma, and ca. 

2450 Ma (Fig. 10), reflecting provenance from 
the local Eastern Kunlun Range, although we 
acknowledge that recycling of older strata may 
have resulted in this age distribution (Wu et al., 
2019a, 2019b).

This protracted Proterozoic–Paleozoic oro-
genic history established a framework of pre-
existing weak zones to be reactivated during the 
Cenozoic collision of India and Asia. (Yin et al., 

2007; Zuza et al., 2019, 2020) (Fig. 11). The Qil-
ian Shan is the northern limit of Cenozoic con-
tractional deformation in the Himalayan-Tibetan 
orogen (Clark, 2012; Zuza et al., 2020), which 
deformed shortly after initial India-Asia collision 
(e.g., Yin et al., 2008a, 2008b; Li et al., 2020). 
We interpret that the spatial correlation between 
early strain and this complex pre-Cenozoic his-
tory of Paleozoic orogeny and suturing implies 

Figure 13. Permian–Jurassic lithostratigraphy of the Eastern Kunlun Range of northern Tibet. Fm.—Formation; cl—clay; si—silt; ss—
sand; cg—conglomerate.
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that the preexisting framework acted as signifi-
cant lithospheric weakness (e.g., Heron et  al., 
2016). Although early Paleozoic Qilian ocean(s) 
subduction may have been bi-directional, sig-
nificant collision-related continental subduction 
occurred to the south, as evidenced by the spatial 
location of UHP rocks exposed in the North Qa-
idam thrust belt (Yin et al., 2007; Zhang et al., 
2008a, 2008b) (Fig. 11). Thus, the North China 
continent was underthrust south toward Moho 
depths, which may have established a south-
dipping Moho-depth crustal ramp in the Pa-
leozoic to be reactivated in the Cenozoic (e.g., 
Yin et al., 2007; Zuza et al., 2019; Chen et al., 
2020b). It is likely that the Paleozoic–Mesozoic 
history of the Qilian Shan generated important 
crustal weaknesses in the northern Tibet crust and 
lithosphere that were exploited during Cenozoic 
crustal shortening, including multiple crustal 
subhorizontal detachments that may accommo-
date more shortening than observed at the Earth’s 
surface. It remains unclear why the Paleo-Asian 
Ocean suture zones to the north (Fig. 1) were not 
so readily reactivated in the Cenozoic (Fig. 11). 
One hypothesis is that the volume of mafic island 
arcs and underplated mafic rocks (e.g., Windley 
et al., 2007) strengthened this crust (Liu and Fur-
long, 1994) to resist such strain. Alternatively, 
the Paleo-Asian oceanic domain was far enough 
from plate-boundary forces that stresses were 
not great enough to overcome the competition 
with gravitational potential energy, thus driving 
predominately strike-slip faulting (Cunningham 
et al., 1996; Webb and Johnson, 2006).

Neoproterozoic Paleogeography of 
Northern Tibet

Results of geologic mapping and geochronol-
ogy indicate that Precambrian basement rocks 

of the Tarim Basin exposed in the Altyn Tagh 
Range are correlative with the North China base-
ment rocks and Proterozoic cover sequences in 
the Qilian Shan and its foreland region (e.g., 
Gehrels et  al., 2003a, 2003b; Cowgill et  al., 
2003; Guo et al., 2005; Wu et al., 2021). This 
correlation strengthens the interpretation that the 
Tarim and North China cratons were parts of a 
contiguous Precambrian craton (e.g., Heubeck, 
2001; Kusky et al., 2007; Zuza and Yin, 2013, 
2017). As discussed above, reconstruction of 
Cenozoic slip along the Altyn Tagh fault and 
removal of deformation related to early Paleo-
zoic orogenic events in the Qilian Shan (e.g., 
Xiao et al., 2009; Song et al., 2012; Zuza et al., 
2018; Wu et al., 2020) suggest that the combined 
Kunlun-Qaidam-Qilian continent was connected 
with the North China-Tarim craton in the Neo-
proterozoic. Full-scale plate reconstructions 
demonstrate that Tarim and North China have 
remained next to each other throughout the Pha-
nerozoic (e.g., Domeier and Torsvik 2014). In 
addition, restoration of Cenozoic deformation in 
the westernmost Tian Shan (Avouac et al., 1993), 
Pamir (Burtman and Molnar, 1993), and western 
Kunlun Range (Cowgill et al., 2003) suggests 
that the Tarim craton extends farther westward 
to the Karakum block (e.g., Biske and Seltmann, 
2010) (Fig. 14). A possible suture zone cross-
ing the Tarim Basin separated North and South 
Tarim and joined in the Neoproterozoic (e.g., 
Guo et al., 2005; Zuza and Yin, 2017; Yang et al., 
2018; Zhao et al., 2021) (Fig. 14), and therefore 
it is possible that Greater North China was fully 
assembled at this time. The shape of the northern 
margin of the North China-Tarim craton during 
the Neoproterozoic has been further modified by 
subsequent rifting during the Neoproterozoic–
Cambrian. Neoproterozoic rift-related strata and 
bimodal volcanism are widespread in northern 

Tarim, North China, and the microcontinents 
of the Central Asian Orogenic System (e.g., 
Meert et al., 2011; Shu et al., 2011, Levashova 
et al., 2011).

The stratigraphy of the Songpan-Ganzi con-
tinent is well defined (Weislogel, 2008), how-
ever, its tectonic evolution is poorly understood 
(Burchfiel and Chen, 2012). Existing end-
member models regarding the tectonic origin 
of the Songpan-Ganzi continent include: (1) an 
accretionary complex (Şengör et  al., 1988); 
(2)  remnant ocean basin (Yin and Nie, 1996); 
and (3) relic of backarc basin (Pullen et  al., 
2008). The Songpan-Ganzi continent is a narrow 
strip that extends from east to west through the 
Bayan Har, Hoh Xil, Tianshuihai, and Karakul-
Mazar regions (Fig. 14). Geologic observations 
and geochronologic results suggest that the 
Songpan-Ganzi continent has been the western 
extension of the Yangtze craton of South China 
since the early Neoproterozoic and experienced 
extensional deformation in the Triassic (Wu 
et al., 2016a). Triassic flysch strata and underly-
ing basement rocks are only exposed in its east-
ernmost portion, whereas crystalline basement 
of the westernmost South China craton beneath a 
passive-margin sequence contains 825–750 Ma 
felsic arc rocks. Triassic granite of the eastern 
Songpan-Ganzi continent have a 0.9–1.1 Ga 
Nd model age, which is similar to those of the 
western South China craton (Roger et al., 2004) 
and the basement rocks of the South China cra-
ton that occur in Triassic gneiss domes of the 
eastern Songpan-Ganzi continent (Roger et al., 
2010). Triassic granite in the central Songpan-
Ganzi continent was sourced from 1.1 to 1.6 Ga 
basement based on the Nd model age, indicat-
ing correlation with the South China craton and 
Kunlun-Qaidam basement (Zhang et al., 2014b). 
High-grade gneiss with Triassic protolith ages 

Figure 14. Simplified tectonic 
domain map showing the 
boundary between the Greater 
North China and South China 
continents of northern Tibet.
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occurs in the western Songpan-Ganzi continent 
(Robinson, 2015). A ca. 2.5 Ga meta-volcanic 
rock is reported in the basement (Ji et al., 2011), 
which is similar to the ca. 2.5 Ga Kangding 
orthogneiss in the western South China craton 
(Wang et  al., 2013c) and correlatives to the 
North China craton. Due to a lack of studies on 
the basement of Qiangtang terrane, the southern 
extent of the Greater South China continent is 
not well constrained (Fig. 14).

In summary, we emphasize that plate recon-
structions of central Asia should consider larger 
continents instead of smaller fragments. The 
relatively small continental fragments may be 
illusionary due to distributed deformation dur-
ing collisions and subsequent reactivation by 
later phases of accretionary or collisional orog-
eny. Two Greater North China and South China 
continents, located along the southern margin of 
Laurasia, were separated in the early Neoprotero-
zoic along the future Kunlun-Qinling-Dabie su-
ture (i.e., Proto-Kunlun suture; Wu et al., 2019a) 
(Fig.  14). Subsequent Neoproterozoic rifting 
opened the Paleo-Asian and Tethyan oceans 
along the northern margins of Greater North 
China craton and Greater South China craton, 
respectively. Greater North China likely contrib-
uted the micro-continental fragments that were 
the eventual building blocks for the Paleozoic 
Central Asian Orogenic System, and this rifting 
also explains the heredity of some of the Central 
Asian microcontinents. Paleozoic–early Meso-
zoic arc-continent collisions across central Asia 
and later Cenozoic intra-continental deformation 
induced by the India-Asia collision significantly 
modified the original shape of the Greater North 
China and South China continents.

The existence of these greater continents is 
especially important for global plate reconstruc-
tions of Neoproterozoic Earth. For example, 
recent paleomagnetic data have individually 
placed Tarim and North China against western 
Laurentia (Wen et al., 2017, 2018; Ding et al., 
2021). These distinct interpretations so far sup-
port the model of Zuza and Yin (2013, 2017) 
that the strip of Greater North China (Balk-
atach of Zuza and Yin, 2017) may have been 
affixed against western Laurentia in the Rodin-
ian supercontinent. The rifting of Greater North 
China from Laurentia would have thus opened 
the twin Paleo-Pacific and Paleo-Asian oceans. 
Future geologic and paleomagnetic research 
should test this hypothesis while considering 
continuity between the Tarim and North China 
continents.

CONCLUSIONS

In this study, we present new constraints on 
the Proterozoic–Phanerozoic tectonic evolution 

of the Qilian Shan, Qaidam, and Eastern Kun-
lun Range of northern Tibet based on a synthe-
sis of field observations and new U-Pb zircon 
geochronology. Our work shows that early Neo-
proterozoic subduction and subsequent collision 
occurred between the Tarim-North China, Qilian-
Qaidam-Kunlun, and South China continents. 
Arc plutons generated along two subduction sys-
tems are exposed throughout the Qilian Shan and 
Eastern Kunlun Range. We suggest that Neopro-
terozoic rifting resulted in opening of the North 
Qilian, South Qilian, and Paleo-Kunlun mar-
ginal oceans, and separation of South Qilian and 
Paleo-Kunlun oceans occurred along the trace 
of an early Neoproterozoic suture zone. Open-
ing of the Paleo-Kunlun Ocean at ca. 600 Ma 
occurred later compared to the openings of the 
North and South Qilian oceans at 740–730 Ma. 
The closure of the North Qilian and South Qil-
ian oceans occurred during the Early Silurian 
(ca. 440 Ma), whereas final consumption of the 
Paleo-Kunlun Ocean may have lasted until the 
Devonian (ca. 360 Ma). The ca. 244 Ma granitic 
dike intruding the Lower Triassic Hongshui-
chuan Formation suggests that the unit was 
deposited between 250 and 244 Ma. Similarly, 
the ca. 207 Ma granitic dike intruding the Up-
per Triassic Babaoshan Formation suggests that 
the unit was deposited between 220 and 207 Ma. 
Northward subduction of Neo-Kunlun oceanic 
lithosphere initiated at ca. 270 Ma, followed by 
slab rollback at ca. 225 Ma recorded in the South 
Qilian Shan, and ca. 194 Ma recorded slab roll-
back in the Eastern Kunlun Range. Magmatic 
and paleo-crustal thickness histories across the 
Qilian-Qaidam-Kunlun continent supports the 
interpreted tectonic evolution of the region. In 
addition, after removing the effects of Phanero-
zoic deformation, we interpret that two Greater 
North China and South China continents, located 
south of Laurasia, were separated in the early 
Neoproterozoic along the future Kunlun-Qin-
ling-Dabie suture.
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