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Abstract
In this article, we study scale-free delayed regulated state/output synchroniza-
tion for homogeneous and heterogeneous networks of multi-agent systems
(MAS) subject to unknown, nonuniform, and arbitrarily large communication
delays. A delay transformation is utilized to transform the original MAS to a
new system without delayed states. The proposed scale-free dynamic protocols
are developed for non-introspective homogeneous and introspective heteroge-
neous MAS. The protocol design utilizes localized information exchange with
neighbors and is solely based on the knowledge of agent models. In other
words, the scale-free protocol design is independent of information about the
communication network or the size of the network.
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1 INTRODUCTION

Cooperative control ofmulti-agent systems (MAS) such as synchronization, consensus, swarming, flocking, has become a
hot topic among researchers because of its broad application in various areas such as biological systems, sensor networks,
automotive vehicle control, robotic cooperation teams, and so on. See, for example, the books.1-4

State synchronization inherently requires homogeneous networks. Most works have focused on state synchronization
where each agent has access to a linear combination of its own state relative to that of the neighboring agents, which is
called full-state coupling; see References 5-10. A more realistic scenario which is partial-state coupling (i.e., agents share
part of their information over the network) is studied in References 11-14. On the other hand, for heterogeneous network
it is more reasonable to consider output synchronization since the dimensions of states and their physical interpretation
may be different. For heterogeneous MAS with non-introspective agents,* it is well known that one needs to regulate out-
puts of the agents to a priori given trajectory generated by a so-called exosystem (see References 16 and 17). Other works
on synchronization ofMASwith non-introspective agents can be found in the literature.15,18 Most of the literature for het-
erogeneousMASwith introspective agents are based onmodifying the agent dynamics via local feedback to achieve some
form of homogeneity. There have been many results for synchronization of heterogeneous networks with introspective
agents, see, for instance, References 19-24.

*Agents are said to be introspective when they have access to either exact or estimates of their states, otherwise they are called non-introspective.15
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In real applications, networks may be subject to delays. Time delays may affect system performance and can even
lead to instability. As discussed in Reference 25, two kinds of delays have been considered in the literature: input delays
and communication delays. Input delays encapsulate the processing time to execute an input for each agent, whereas
communication delays can be considered as the time it takes to transmit information from an agent to its destination.
Manyworks have been focused on dealing with input delays, specifically with the objective of deriving an upper bound on
the input delays such that agents can still achieve synchronization. See, for example, References 7,26-29. Some research
has been done for networks subject to communication delays. Fundamentally, there are two approaches in the literature
for dealing with MAS subject to communication delays.

1. Standard state/output synchronization where the objective is to regulate the output to a constant trajectory.
2. Delayed state/output synchronization.

Both of these approaches preserve diffusiveness of the couplings (i.e., ensuring the invariance of the consensus man-
ifold). Also, the notion of delayed output synchronization coincides with standard regulated output synchronization
if the regulated output is required to be a constant trajectory. As such delayed synchronization can be viewed as the
generalization of standard synchronization in the context of MAS subject to communication delay.

Themajority of research onMAS subject to communication delay has been focused on achieving standard output syn-
chronization by regulating the output to constant trajectory (see References 25, 28, 30, and 31 and references therein). It
is worth noting that in all of the aforementioned papers, design of protocols requires at least some knowledge about the
graph or the size of the network. We should also point out that References 32 and 33 give consensus conditions for net-
works with higher-order but require SISO dynamics. The paper34 considers second-order dynamics, but the communica-
tion delays are assumed to be known.More recently, the notion of delayed synchronizationwas introduced inReference 35
for MAS with passive agents and strongly connected and balanced graphs where it is assumed that there exists a unique
path between any two distinct nodes. Then, the authors extended their results in References 36 and 37 when they allowed
multiple paths between two agents in strongly connected communication graphs. Although the synchronized trajectory
in these papers is constant and standard definition of synchronization can be utilized, the authors motivation for utilizing
delayed synchronization is exploring the possible existence of delayed-induced periodicity in synchronized trajectory of
coupled systems. These solutions, provided they exist, can be valuable in several applications, as clarified in, for example,
References 38 and 39. It is worth to note that the protocol design in these papers does not need knowledge of the graph,
since they are restricted to passive agents. An interesting line of research utilizing delayed synchronization formulation
was introduced recently in References 40 and 41. These papers considered a dynamic synchronized trajectory (i.e., non-
constant synchronized trajectory) and designed protocols to achieve regulated delayed state/output synchronization in
the presence of communication delays under the condition that the communication graph was a spanning tree. However,
the protocol design required knowledge of the graph and size of the network.

In this article, we extend our earlier results of delayed synchronization by developing a scale-free framework utilizing
localized information exchange for homogeneous and heterogeneous MAS subject to unknown, nonuniform, and arbi-
trarily large communication delays to achieve delayed regulated synchronization when the synchronized trajectory is a
dynamic signal generated by a so-called exosystem. The associated graphs to the communication networks are assumed
to be a directed spanning tree (i.e., they have one root node and the other non-root nodes have in-degree one). We
achieve scale-free delayed regulated state synchronization for homogeneous MAS with non-introspective agents, and
scale-free delayed regulated output synchronization for heterogeneous MAS with introspective agents. Our proposed
design methodologies are scale-free, namely,

• The design is independent of information about the communication network such as the spectrum of the associated
Laplacian matrix or the size of the network.

• The collaborative protocols will work for any network with associated directed spanning tree, and can tolerate any
unknown, nonuniform, and arbitrarily large communication delays.

1.1 Notations and definitions

Given a matrix A ∈ Rm×n, AT denotes the transpose of A. Let j denote
√
−1. A square matrix A is Hurwitz stable if all its

eigenvalues are in the open left half complex plane. A linear system characterized by (A,B,C) is at most weakly unstable
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if all eigenvalues of A are in the closed left half plane. It should be noted that the set of at most weakly unstable agents
contains stable agents, neutrally stable agents as well as weakly unstable agents.

A⊗B indicates the Kronecker product betweenA and B. In denotes the n-dimensional identity matrix and 0n denotes
n×n zero matrix; when the dimension is clear from the context, we drop the subscript. For linear time-invariant systems,
we recall the following definitions.

Definition 1. A linear time-invariant system (A,B,C) is right-invertible if, given a smooth reference output yr, there
exists an initial condition x(0) and an input u that ensures y(t)= yr(t) for all t≥ 0. For single-input-single-output system,
a system is right-invertible if and only if its transfer function is nonzero.

Definition 2. The invariant zeros of a linear system (A,B,C) are those points 𝜆 ∈ C for which

rank

(
𝜆I − A −B
C 0

)
< normrank

(
sI − A −B
C 0

)
,

where by normrank we mean the rank of a matrix with entries in the field of rational functions.

We describe the topology of the network by an associated graph. The weighted graph  of order N is defined by a
triple ( ,  ,) where  = {1, … ,N} is a node set,  is a set of pairs of nodes indicating connections among nodes, and
 = [aij] ∈ RN×N is the weighted adjacencymatrix with non-negative elements aij. Each pair in  is called an edge, where
aij > 0 denotes an edge (j, i) ∈  from node j to node i with weight aij. Moreover, aij = 0 if there is no edge from node j to
node i. We assume there are no self-loops, that is, we have aii = 0. A directed path is a sequence of nodes {i1, … , ik} in a
directed graph such that (ij, ij+1) ∈  for j= 1, … , k− 1. A directed tree is a subgraph (subset of nodes and edges) in which
every node has exactly one parent node except for one node, called the root, which has no parent node. A directed graph
has a directed spanning tree if there exists at least one node that has a directed path to all the other nodes. The Laplacian
matrix with respect to the weighted graph  is L= [𝓁ij] with 𝓁ii =

∑N
k=1aik and 𝓁ij =−aij, i≠ j. If the graph contains a

directed spanning tree, the Laplacian matrix L has a single eigenvalue at the origin and all other eigenvalues are located
in the open right-half complex plane.1

2 HOMOGENEOUS MAS WITH NON-INTROSPECTIVE AGENTS

Consider a MAS consists of N identical linear agents{
ẋi = Axi + Bui,
yi = Cxi,

(1)

for i∈ {1, … ,N}, where xi ∈ Rn, yi ∈ Rp, and ui ∈ Rm are the state, output, and the input of agent i, respectively.
We make the following assumption on agent models.

Assumption 1. For agent models

1. Agents are at most weakly unstable.
2. (A,B) is stabilizable and (A,C) is detectable.

The network provides agent i with the following information

𝜁i(t) =
N∑
j=1
aij(yi(t) − yj(t − 𝜏ij)), (2)

where 𝜏ij ∈ R≥0 represents an unknown communication delay from agent j to agent iwhere we assume that 𝜏ii = 0. In the
above aij ≥ 0. This communication topology of the network, presented in (2), can be associated to a weighted graph with
each node indicating an agent in the network and the weight of an edge is given by the coefficient aij. The communication
delay implies that it took 𝜏ij seconds for agent j to transfer its state information to agent i.
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In terms of the coefficients of the associated Laplacian matrix L, 𝜁i(t) can be represented as

𝜁i(t) =
N∑
j=1

𝓁ijyj(t − 𝜏ij), (3)

where 𝜏ii = 0. We refer to (3) as partial-state coupling since only part of the states are communicated over the network.
When C= I, it means all states are shared over the network and we call it full-state coupling. Then, the original agents
are expressed as

ẋi = Axi + Bui (4)

and 𝜁i(t) is written as

𝜁i(t) =
N∑
j=1

𝓁ijxj(t − 𝜏ij). (5)

In this article, we need an assumption on communication graph which is formulated in the following definition.

Definition 3. LetGN denote the set of directed spanning tree graphswithN nodes forwhich the corresponding Laplacian
matrix L is lower triangular. The corresponding Laplacian matrix L has the property that the entries of the first row are
equal to zero and 𝓁ii > 0 for i= 2, … ,N. We consider agent 1 as the root agent.

Remark 1. Note that any graph, which is a directed spanning tree, has a possible lower triangular Laplacian matrix after
reordering of the agents.

For the graph defined by Definition 3, we have

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 … 0
𝓁21 𝓁22 0 … 0
𝓁31 𝓁32 𝓁33 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0
𝓁N1 … 𝓁N,N−2 𝓁N,N−1 𝓁N,N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Since the graph is equal to a directed spanning tree, in every row (except the first one) there are exactly two elements
unequal to 0.

Our goal is to achieve delayed state synchronization among all agents while the synchronized state dynamics of each
agent are equal to a time-shifted priori given trajectory generated by a so-called exosystem

ẋr = Axr, xr(0) = xr0,
yr = Cxr,

(6)

where xr ∈ Rn and yr ∈ Rp. Clearly, we need some level of communication between the desired state trajectory and the
agents. According to the structure of communication network, we assume that only agent 1 has access to yr with delay
𝜏1r. Since the graph is a spanning tree, there is a unique path between agent i and the exosystem which is connected to
agent 1. We define 𝜏ir as the sum of delays from agent i to the exosystem through this path. Then, we can define

𝜓i = 𝜄i(yi(t) − yr(t − 𝜏ir)), 𝜄i =

{
1, i = 1,
0, i = 2, … ,N.

(7)

Therefore, the information available for agent i∈ {1, … ,N} is given by

𝜁 i(t) =
N∑
j=1
aij(yi(t) − yj(t − 𝜏ij)) + 𝜄i(yi(t) − yr(t − 𝜏ir)). (8)
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We define the expanded Laplacian matrix for any graph GN , with the associated Laplacian matrix L, as

L = L + diag{𝜄i} = [lij]N×N . (9)

Note that L is not a regular Laplacianmatrix, since the sum of its rows need not be zero. Obviously, all the eigenvalues
of L, have positive real parts, that is, the matrix L is invertible. In terms of the coefficients of the matrix L, Equation (8)
can be rewritten as

𝜁 i(t) =
N∑
j=1

𝓁ij(yj(t − 𝜏ij) − yr(t − 𝜏ir)) (10)

and for full-state coupling case

𝜁 i(t) =
N∑
j=1

𝓁ij(xj(t − 𝜏ij) − xr(t − 𝜏ir)). (11)

We introduce the following definitions.

Definition 4. The agents of a MAS are said to achieve

• delayed state synchronization for all i∈ {1, … ,N}, if

lim
t→∞

[
(xi(t) − xj(t − 𝜏ij)

]
= 0, for all j such that (j, i) ∈  , (12)

• and delayed regulated state synchronization if

lim
t→∞

[(xi(t) − xr(t − 𝜏ir)] = 0, for all i ∈ {1, … ,N}. (13)

The goal of this article is to design scale-free protocols which can be achieved by utilizing localized information
exchange among neighbors, as such each agent i= 1, … ,N also has access to localized information exchange denoted by
𝜁 i, of the form

𝜁 i =
N∑
j=1
aij(𝜉i(t) − 𝜉j(t − 𝜏 ij)), (14)

where 𝜉j ∈ Rn is a variable produced internally by agent j and to be defined in next sections while 𝜏 ij ∈ R≥0 (i≠ j)
represents an unknown communication delay from agent j to agent i.

We formulate the following problem of scalable delayed regulated state synchronization for networks in presence of
unknown, nonuniform, and arbitrarily large communication delay for the homogeneous networks as follows.

Problem 1. Consider a MAS described by (1) and (10) and the exosystem (6). Let GN be the set of network graphs
as defined in Definition 3. Then, the scalable delayed regulated state synchronization problem based on localized
information exchange utilizing collaborative protocols for networks with unknown, nonuniform, and arbitrarily large
communication delay is to find, if possible, a linear dynamic protocol for each agent i∈ {1, … ,N}, using only knowledge
of agent model, that is, (A,B,C), of the form:{

ẋc,i = Acxc,i + Bc1𝜁 i + Bc2𝜁 i,
ui = Fcxc,i,

(15)

where 𝜁 i is defined in (14) with 𝜉i = Hcxc,i and xc,i ∈ Rnc such that for any N, any graph  ∈ GN and any com-
munication delays 𝜏ij ∈ R≥0 and 𝜏 ij ∈ R≥0, we achieve delayed regulated state synchronization as stated by (13) in
Definition 4.
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2.1 Protocol design

In this section, we provide our results for scalable delayed regulated state synchronization of MAS with full- and
partial-state coupling.

2.1.1 Full-state coupling

First, we consider MAS with full-state coupling, that is, with C= I.

Protocol 1. Homogeneous MAS with full-state coupling

We design collaborative protocols based on localized information exchanges for agents i= 1, … ,N as

{
𝜒̇ i = A𝜒i + Bui + 𝜁 i − 𝜁 i − 𝜄i𝜒i,

ui = −K𝜒i,
(16)

where 𝜁 i is defined by (11) and 𝜁 i is given by

𝜁 i(t) =
N∑
j=1
aij(𝜒i(t) − 𝜒j(t − 𝜏 ij)), (17)

which means the agents communicate 𝜉i = 𝜒i. Matrix K is designed such that A−BK is Hurwitz stable.

Then, we have the following theorem for scalable delayed regulated state synchronization of MAS with full-state
coupling.

Theorem 1. Consider a MAS consisting of N agents described by (4) and (11) and the associated exosystem (6) where the
agents satisfy Assumption 1. Let GN be the set of network graphs as defined by Definition 3. Then, the scalable delayed regu-
lated state synchronization problem as defined in Problem 1 is solvable. In particular, the linear dynamic protocol (16) solves
delayed regulated state synchronization problem for any N, any graph  ∈ GN and any communication delays 𝜏ij ∈ R≥0
and 𝜏 ij ∈ R≥0.

Remark 2. It is worth to note that in the case that agents are introspective, that is, they have access to some knowledge
about their own states (i.e., zi =Cmxi, where (Cm,A) is detectable), we do not have the restriction that the exosystem has
the same model as the agents. In other words, we can then regulate to any arbitrary signal. After all, given that agents
are introspective, one can reshape agent models via standard observer-based feedback, locally designed for each agent, to
embed the desired modes of the exosystem in the agent models.

In the proof of Theorem 1, we need the following lemma from [ 42, Lemma 3].

Lemma 1. Consider a linear time-delay system

ẋ(t) = Ax(t) +
m∑
i=1
Aix(t − 𝜏i), (18)

where x(t) ∈ Rn and 𝜏i ∈ R≥0. Assume that A +
∑m

i=1Ai isHurwitz stable. Then, (18) is asymptotically stable for 𝜏1, … , 𝜏N ∈
[0, 𝜏] if

det

[
j𝜔I − A −

m∑
i=1
e−j𝜔𝜏iAi

]
≠ 0, (19)

for all 𝜔 ∈ R, and for all 𝜏1, … , 𝜏N ∈ [0, 𝜏].
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Proof of Theorem 1. First, we define

xi = xi(t + 𝜏ir) and 𝜒 i = 𝜒i(t + 𝜏ir),

where 𝜏ir denotes the sum of delays from agent i to the exosystem. Note that 𝜏ir is unique since the communication graph
is spanning tree. Note that 𝜏ij = 𝜏ir − 𝜏jr if there is an edge from agent j to agent i (i.e., if 𝓁ij ≠ 0), we have

̄
𝜁 i = 𝜁 i(t + 𝜏ir) =

N∑
j=1

𝓁ij(xj(t + 𝜏ir − 𝜏ij) − xr(t))

=
N∑
j=1

𝓁ij(xj(t) − xr(t))
(20)

and

̂
𝜁 i = 𝜁 i(t + 𝜏ir) =

N∑
j=1

𝓁ij(𝜒j(t + 𝜏ir − 𝜏 ij))

=
N∑
j=1

𝓁ij𝜒 j(t + 𝜏ij − 𝜏 ij).
(21)

Then, by defining x̃i(t) = xi(t) − xr(t) and

x̃ =
⎛⎜⎜⎜⎝
x̃1
⋮

x̃N

⎞⎟⎟⎟⎠ , 𝜒 =
⎛⎜⎜⎜⎝
𝜒1

⋮

𝜒N

⎞⎟⎟⎟⎠
we have the following closed-loop system in frequency domain as{

j𝜔x̃ = (I ⊗ A)x̃ − (I ⊗ BK)𝜒,
j𝜔𝜒 = (I ⊗ (A − BK))𝜒 + (L⊗ I)x̃ − (Lj𝜔(𝜏)⊗ I)𝜒,

where Lj𝜔(𝜏) = Lj𝜔(𝜏) + diag{𝜄i} and

Lj𝜔(𝜏) =

⎛⎜⎜⎜⎜⎜⎝

0 0 0 … 0
𝓁21e−j𝜔(𝜏21−𝜏21) 𝓁22 0 … 0
⋮ … ⋱ ⋱ ⋮

𝓁N1e−j𝜔(𝜏N1−𝜏N1) 𝓁N2e−j𝜔(𝜏N2−𝜏N2) … … 𝓁NN

⎞⎟⎟⎟⎟⎟⎠
.

Let 𝛿 = x̃ − 𝜒 . Then, we obtain, ⎧⎪⎨⎪⎩
j𝜔x̃ = (I ⊗ (A − BK))x̃ + (I ⊗ BK)𝛿,

j𝜔𝛿 = (I ⊗ A − Lj𝜔(𝜏)⊗ I)𝛿 +
(
(Lj𝜔(𝜏) − L)⊗ I

)
x̃.

(22)

Following Lemma 1, we prove the stability of (22) in two steps. In the first step, we prove the stability in the absence of
communication delays 𝜏ij ∈ R≥0 and 𝜏 ij ∈ R≥0 and in the second step, we prove the stability of (22) by checking condition
(19).

• In the absence of communication delays in the network, the stability of system (22) is equivalent to the stability of
matrix (

I ⊗ (A − BK) I ⊗ BK
0 I ⊗ A − L⊗ I

)
. (23)
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Since we have that 𝓁ii is positive for all i, we have that

I ⊗ A − L̂⊗ I

is an upper triangular matrix with A − 𝓁iiI for i= 1, … ,N, on the diagonal. Since all eigenvalues of A are in the closed
left half plane, A − 𝓁iiI is stable. Therefore, all eigenvalues of I ⊗ A − L⊗ I have negative real part. Then, since we
have that A−BK and I ⊗ A − L⊗ I are Hurwitz stable, we obtain that

lim
t→∞

x̃(t) → 0

which implies that xi → xr .
• In the presence of communication delay, the closed-loop system (22) is asymptotically stable if

det

[
j𝜔I −

(
I ⊗ (A − BK) I ⊗ BK

(Lj𝜔(𝜏) − L)⊗ I I ⊗ A − Lj𝜔 ⊗ I

)]
≠ 0 (24)

for all 𝜔 ∈ R and any communication delays 𝜏ij ∈ R+ and 𝜏 ij ∈ R+. Condition (24) is satisfied if matrix(
I ⊗ (A − BK) I ⊗ BK

(Lj𝜔(𝜏) − L)⊗ I I ⊗ A − Lj𝜔 ⊗ I

)
(25)

has no eigenvalues on the imaginary axis for all 𝜔 ∈ R. That is to say it is sufficient to prove the stability of{
j𝜔x̃ = (I ⊗ (A − BK))x̃ + (I ⊗ BK)𝛿,
j𝜔𝛿 = ((Lj𝜔(𝜏) − L)⊗ I)x̃ + (I ⊗ A − Lj𝜔 ⊗ I)𝛿.

(26)

According to the structure of the expanded Laplacian matrix L, (26) can be rewritten as{
j𝜔x̃1 = (A − BK)x̃1 + BK𝛿1
j𝜔𝛿1 = (A − 𝓁11I)𝛿1

(27)

and {
j𝜔x̃i = (A − BK)x̃i + BK𝛿i
j𝜔𝛿i = (A − 𝓁ii)𝛿i −

∑i−1
j=1𝓁ije

j𝜔(𝜏ij−𝜏 ij)𝛿j +
∑i−1

j=1(1 − ej𝜔(𝜏ij−𝜏 ij))𝓁ijx̃j
(28)

for i= 2, … ,N.
Then for i= 1, since 𝓁11 > 0, one can obtain that all eigenvalues of A − 𝓁11I have negative real part, that is

𝛿1 → 0 as t → ∞

then, given that A−BK is Hurwitz stable, we have

x̃1 → 0 as t → ∞.

Therefore, the dynamics of x̃1, and e1 are asymptotically stable.
Then, for i= 2, we have{

j𝜔x̃2 = (A − BK)x̃2 + BK𝛿2,
j𝜔𝛿2 = (A − 𝓁22I)𝛿2 − 𝓁21ej𝜔(𝜏21−𝜏21)𝛿1 + (1 − ej𝜔(𝜏21−𝜏21))𝓁21x̃1.

(29)
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Since the dynamics for x̃1 and 𝛿1 are asymptotically stable, we just need to prove the stability of{
j𝜔x̃2 = (A − BK)x̃2 + BK𝛿2,
j𝜔𝛿2 = (A − 𝓁22I)𝛿2.

(30)

Similar to the analysis of the stability of system (27), since 𝓁22 > 0, we have

𝛿2 → 0, and x̃2 → 0,

as t→∞. Using a recursive argument, we can thus obtain that

𝛿i → 0, and x̃i → 0, as t → ∞

for i= 2, … ,N, which is equivalent to the stability of system (26). In other words, condition (24) is satisfied. Therefore,
based on Lemma 1, for all 𝜏ij and 𝜏 ij,

xi → xr

as t→∞, which means that delayed synchronization (12) is achieved. ▪

2.1.2 Partial-state coupling

In this subsection, we consider MAS with partial-state coupling, that is, C≠ I.

Protocol 2. Homogeneous MAS with partial-state coupling

We design collaborative protocols based on localized information exchanges for agents i= 1, … ,N as

⎧⎪⎨⎪⎩
̇̂xi = Ax̂i − BK𝜁 i +H(𝜁 i − Cx̂i) + 𝜄iBui
𝜒̇ i = A𝜒i + Bui + x̂i − 𝜁 i − 𝜄i𝜒i,

ui = −K𝜒i,

(31)

where 𝜁 i is defined by (10) and 𝜁 i is given by

𝜁 i(t) =
N∑
j=1
aij(𝜒i(t) − 𝜒j(t − 𝜏 ij)), (32)

which means the agents communicate 𝜉i = 𝜒i. Matrices K and H are designed such that A−BK and A−HC are Hurwitz stable.

Then, we have the following theorem for scalable delayed regulated state synchronization of MAS with partial-state
coupling.

Theorem 2. Consider a MAS consisting of N agents described by (1) and (10) and the associated exosystem (6) where
the agents satisfy Assumption 1. Let GN be the set of network graphs as defined by Definition 3. Then, the scalable delayed
state synchronization problem as defined in Problem 1 is solvable. In particular, the linear dynamic protocol (31) solves
delayed regulated state synchronization problem for any N, any graph  ∈ GN and any communication delays 𝜏ij ∈ R≥0 and
𝜏 ij ∈ R≥0.

Proof of Theorem 2. Similar to the proof of Theorem 1 and by defining x̂i(t) = x̂i(t + 𝜏i,r) and x̂ =
(
x̂
T
1 , … , x̂

T
N

)T
, we have

the following closed-loop system in frequency domain as

⎧⎪⎨⎪⎩
j𝜔x̃ = (I ⊗ A)x̃ − (I ⊗ BK)𝜒,
j𝜔𝜒 = (I ⊗ (A − BK))𝜒 + x̂ − (Lj𝜔(𝜏)⊗ I)𝜒,
j𝜔x̂ = (I ⊗ (A −HC)) x̂ − (Lj𝜔(𝜏)⊗ BK)𝜒 + (L⊗HC)x̃.
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Then, by defining 𝛿 = x̃ − 𝜒 and 𝛿 = (Lj𝜔(𝜏)⊗ I)x̃ − x̂, we obtain

⎧⎪⎨⎪⎩
j𝜔x̃ = (I ⊗ (A − BK))x̃ + (I ⊗ BK)𝛿,
j𝜔𝛿 =

(
I ⊗ A − Lj𝜔(𝜏)⊗ I

)
𝛿 + 𝛿,

j𝜔𝛿 = (I ⊗ (A −HC)) 𝛿 + ((Lj𝜔(𝜏) − L)⊗HC)x̃.

(33)

We prove (33) is asymptotically stable for all communication delays 𝜏ij ∈ R≥0 and 𝜏 ij ∈ R≥0. Similar to the proof of
Theorem 1, following the critical Lemma 1, we first prove stability without communication delays 𝜏ij and 𝜏 ij and then we
prove the stability of (33) by checking condition (19).

• In the absence of communication delays in the network, the stability of system (33) is equivalent to the stability of
matrix

⎛⎜⎜⎜⎝
I ⊗ (A − BK) I ⊗ BK 0

0 I ⊗ A − L⊗ I I
0 0 I ⊗ (A −HC)

⎞⎟⎟⎟⎠ (34)

similar to the proof of Theorem 1, we have all eigenvalues of I ⊗ A − L⊗ I have negative real part. Then, since we have
that A−BK and I ⊗ A − L⊗ I are Hurwitz stable, we obtain that

lim
t→∞

x̃ → 0.

It implies that xi → xr .
• In the presence of communication delay, the closed-loop system (33) is asymptotically stable if

det
⎡⎢⎢⎢⎣j𝜔I −

⎛⎜⎜⎜⎝
I ⊗ (A − BK) I ⊗ BK 0

0 I ⊗ A − Lj𝜔 ⊗ I I
(Lj𝜔(𝜏) − L)⊗HC 0 I ⊗ (A −HC)

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ ≠ 0 (35)

for all 𝜔 ∈ R and any communication delays 𝜏ij ∈ R+ and 𝜏 ij ∈ R+. Condition (35) is satisfied if matrix

⎛⎜⎜⎜⎝
I ⊗ (A − BK) I ⊗ BK 0

0 I ⊗ A − Lj𝜔 ⊗ I I
(Lj𝜔(𝜏) − L)⊗HC 0 I ⊗ (A −HC)

⎞⎟⎟⎟⎠ (36)

has no eigenvalues on the imaginary axis for all 𝜔 ∈ R.
Then, according to the structure of the expanded Laplacian matrix L, (33) can be rewritten as

⎧⎪⎨⎪⎩
j𝜔x̃1 = (A − BK)x̃1 + BK𝛿1
j𝜔𝛿1 = (A − 𝓁11I)𝛿1 + 𝛿1

j𝜔𝛿1 = (A −HC) 𝛿1

(37)

and ⎧⎪⎨⎪⎩
j𝜔x̃i = (A − BK)x̃i + BK𝛿i
j𝜔𝛿i = (A − 𝓁iiI)𝛿i −

∑i−1
j=1𝓁ije

j𝜔(𝜏ij−𝜏 ij)𝛿j + 𝛿i

j𝜔𝛿i = (A −HC) 𝛿i +
∑i−1

j=1(1 − ej𝜔(𝜏ij−𝜏 ij))𝓁ijx̃j

(38)

for i= 2, … ,N.
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Then for i= 1, we have
𝛿1 → 0 as t → ∞

since A−HC is Hurwitz stable. In the following, since 𝓁11 > 0, one can obtain that all eigenvalues of A − 𝓁11I have
negative real part, that is

𝛿1 → 0 as t → ∞

then, given that A−BK is Hurwitz stable, we have

x̃1 → 0 as t → ∞.

Therefore, the dynamics of x̃1, 𝛿1, and 𝛿1 are asymptotically stable.
Next, for i= 2, we have ⎧⎪⎨⎪⎩

j𝜔x̃2 = (A − BK)x̃2 + BK𝛿2,
j𝜔𝛿2 = (A − 𝓁22I)𝛿2 − 𝓁21ej𝜔(𝜏21−𝜏21)𝛿1 + 𝛿2,

j𝜔𝛿2 = (A −HC)𝛿2 + (1 − ej𝜔(𝜏21−𝜏21))𝓁21x̃1.

(39)

Since we have that dynamics of x̃1 and 𝛿1 are asymptotically stable, we just need to prove the stability of

⎧⎪⎨⎪⎩
j𝜔x2 = (A − BK)x2 + BK𝛿2,
j𝜔𝛿2 = (A − 𝓁22I)𝛿2 + 𝛿2,

j𝜔𝛿2 = (A −HC)𝛿2.

(40)

Similar to the analysis of stability of system (37), since 𝓁22 > 0, we have

𝛿2 → 0, 𝛿2 → 0, and x̃2 → 0

as t→∞. We can then use a recursive argument to prove that

𝛿i → 0, 𝛿i → 0, and x̃i → 0, as t → ∞

for i= 1, … ,N, which is equivalent to the stability of system (33). In other words, condition (35) is satisfied. Therefore,
based on Lemma 1, for all 𝜏ij and 𝜏 ij,

xi → xr

as t→∞, which means that delayed synchronization (12) is achieved.
▪

3 HETEROGENEOUS MAS WITH INTROSPECTIVE AGENTS

In this section, we study a heterogeneous MAS consisting of N nonidentical linear agents:

ẋi = Aixi + Biui,
yi = Cixi,

(41)

where xi ∈ Rni , ui ∈ Rmi , and yi ∈ Rp are the state, input, output of agent i for i= 1, … ,N.
The agents are introspective, meaning that each agent has access to its own local information. Specifically, each agent

has access to part of its state

zi = Cmi xi, (42)

where zi ∈ Rqi .
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Our goal is to achieve delayed output synchronization among all agents while the synchronized output dynamics of
each agent are equal to a time-shifted priori given trajectory generated by the following exosystem†

ẋr = Arxr, xr(0) = xr0,
yr = Crxr,

(43)

where xr ∈ Rn and yr ∈ Rp. We make the following assumptions on agents and the exosystem.

Assumption 2. For agents i∈ {1, … ,N},

1. (Ci,Ai,Bi) is stabilizable and detectable.
2. (Ci,Ai,Bi) is right-invertible.
3. (Cmi ,Ai) is detectable.

Assumption 3. For exosystem,

1. (Cr,Ar) is observable.
2. All the eigenvalues of Ar are on the imaginary axis.

Clearly, we need some level of communication between the desired output trajectory yr and the agents. We assume
that only agent 1 has access to yr with delay 𝜏1r. Since the graph is spanning tree, there is a unique path between agent i
and the exosystem which is connected to agent 1 as such similar to the previous section we define 𝜏ir as sum of the delays
from agent i to the exosystem. Then, in light of (7) and (9), the available data for agent i, provided by the communication
network can be written as

𝜁 i(t) =
N∑
j=1

𝓁ij(yj(t − 𝜏ij) − yr(t − 𝜏ir)). (44)

Next we introduce the following definitions.

Definition 5. The agents of a heterogeneous MAS are said to achieve

• delayed output synchronization for all i∈ {1, … ,N}, if

lim
t→∞

[
(yi(t) − yj(t − 𝜏ij)

]
= 0, for all j such that (j, i) ∈  , (45)

• and delayed regulated output synchronization if

lim
t→∞

[(yi(t) − yr(t − 𝜏ir)] = 0, for all i ∈ {1, … ,N}. (46)

We formulate the problem of scalable delayed regulated output synchronization in presence of unknown nonuniform
and arbitrarily large communication delay for the heterogeneous networks as follows.

Problem 2. Consider a MAS describes by (41), (42), and (44) and the exosystem (6). LetGN be the set of network graphs
as defined in Definition 3. Then, the scalable delayed regulated output synchronization problem based on localized infor-
mation exchange utilizing collaborative protocols for heterogeneous networks with unknown nonuniform and arbitrarily
large communication delay is to find, if possible, a linear dynamic protocol for each agent i∈ {1, … ,N}, using only
knowledge of agent models, that is, (Ci,Ai,Bi) of the form:{

ẋi,c = Ai,cxi,c + Bi,c𝜁 i + Ci,c𝜁 i + Di,czi,
ui = Ei,cxi,c + Fi,c𝜁 i + Gi,c𝜁 i +Hi,czi,

(47)

†Please note that the exosystem in this case is more general than the exosystem in homogeneous section (6).



NOJAVANZADEH et al. 6381

F I GURE 1 Architecture
of scale-free protocols for output
synchronization of
heterogeneous networks

where 𝜁 i is defined by (14) with 𝜉i = Hcxc,i and xc,i ∈ Rnc such that for any N, any graph  ∈ GN and any communication
delays 𝜏ij ∈ R≥0 and 𝜏 ij ∈ R≥0, we achieve delayed regulated output synchronization as stated by (46) in Definition 5.

We design scale-free protocols to solve scalable delayed regulated output synchronization problem as stated in
Problem 2. After introducing the architecture of our protocol, we design the protocols through four steps.

3.1 Architecture of the protocol

Our protocol has the structure shown below in Figure 1.
As seen in the figure, our design methodology consists of two major modules.

1. The first module is remodeling the exosystem to obtain the target model by designing pre-compensators following our
previous results in Reference 20.

2. The secondmodule is designing collaborate protocols for almost homogenized agents to achieve output and regulated
output synchronization.

3.2 Protocol design

To design our protocols, first we recall the following lemma.

Lemma 2 (20). There exists another exosystem given by

̇̌xr = Ǎrx̌r, x̌r(0) = x̌r0,
yr = Črx̌r,

(48)

such that for all xr0 ∈ Rr, there exists x̌r0 ∈ Rř for which (48) generate exactly the same output yr as the original exosystem (6).
Furthermore, we can find a matrix B̌r such that the triple (Čr, Ǎr, B̌r) is invertible, of uniform rank nq, and has no invariant
zero, where nq is an integer greater than or equal to maximal order of infinite zeros of (Ci,Ai,Bi), i∈ {1, … ,N} and all
the observability indices of (Cr,Ar). Note that the eigenvalues of Ǎr consists of all eigenvalues of Ar and additional zero
eigenvalues.

We design our protocols through the following four steps.
Then, we have the following theorem for scalable regulated output synchronization of heterogeneous MAS.

Theorem3. Consider a heterogeneous network of N agents described by (41) and (42) satisfying Assumption 2 and localized
information exchange (44) and the associated exosystem (6) satisfying Assumption 3. Let GN be the set of network graphs
as defined by Definition 3. Then, the scalable delayed regulated output synchronization problem as defined in Problem 2 is
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Protocol 3. Heterogeneous MAS

Step 1: Remodeling the exosystem. First, we remodel the exosystem to arrive at suitable choice for the target model (Čr , Ǎr , B̌r) following
the design procedure in Reference 20 summarized in Lemma 2.

Step 2: Designing pre-compensators. In this step, given the target model (Čr , Ǎr , B̌r), by utilizing the design methodology from [ 20,
Appendix B], we design a pre-compensators for each agent i∈ {1, … ,N} of the form{

𝜉̇i = Ai,h𝜉i + Bi,hzi + Ei,hvi,

ui = Ci,h𝜉i + Di,1hzi + Di,2hvi,
(49)

which yields the compensated agents as

ẋhi = Ǎrxhi + B̌r(vi + 𝜌i),

yi = Črxhi ,
(50)

where 𝜌i is given by

𝜔̇i = Ai,s𝜔i,

𝜌i = Ci,s𝜔i,
(51)

and Ai, s is Hurwitz stable. Note that the compensated agents are homogenized and have the target model (Čr , Ǎr , B̌r).

Step 3: Designing collaborative protocols for the compensated agents. Collaborative protocols based on localized information
exchanges are designed for the compensated agents i= 1, … ,N as

⎧⎪⎨⎪⎩
̇̂xi = Ǎr x̂i − B̌rK𝜁 i +H(𝜁 i − Čr x̂i) + 𝜄iB̌rvi,

𝜒̇ i = Ǎr𝜒i + B̌rvi + x̂i − 𝜁 i − 𝜄i𝜒i,

vi = −K𝜒i,

(52)

where H and K are matrices such that Ǎr −HČr and Ǎr − B̌rK are Hurwitz stable. The exchanging information 𝜁 i is defined as (14) and 𝜁 i is
defined as (44).

Step 4: Obtaining the protocols. The final protocol which is the combination of modules 1 and 2 is

⎧⎪⎪⎨⎪⎪⎩

𝜉̇i = Ai,h𝜉i + Bi,hzi − Ei,hK𝜒i,
̇̂xi = Ǎr x̂i − B̌rK𝜁 i +H(𝜁 i − Čr x̂i) − 𝜄iB̌rK𝜒i,

𝜒̇ i = Ǎr𝜒i − B̌rK𝜒i + x̂i − 𝜁 i − 𝜄i𝜒i,

ui = Ci,h𝜉i − Di,hK𝜒i.

(53)

solvable. In particular, the dynamic protocol (53) solves the scalable delayed regulated output synchronization problem for
any N, any graph  ∈ GN and any communication delays 𝜏ij ∈ R≥0 and 𝜏 ij ∈ R≥0.

Proof of Theorem 3. Similar to the proof of Theorem 2 and by defining xi(t) = xhi (t + 𝜏ir), 𝜌i(t) = 𝜌i(t + 𝜏ir), 𝜔i(t) = 𝜔i(t +
𝜏ir), x̃i = xi − x̌r, and

x̃ =
⎛⎜⎜⎜⎝
x̃1
⋮

x̃N

⎞⎟⎟⎟⎠ , x̂ =
⎛⎜⎜⎜⎝
x̂1
⋮

x̂N

⎞⎟⎟⎟⎠ , 𝜒 =
⎛⎜⎜⎜⎝
𝜒1

⋮

𝜒N

⎞⎟⎟⎟⎠ , 𝜌 =
⎛⎜⎜⎜⎝
𝜌1

⋮

𝜌N

⎞⎟⎟⎟⎠ , 𝜔 =
⎛⎜⎜⎜⎝
𝜔1

⋮

𝜔N

⎞⎟⎟⎟⎠
then, we have the following closed-loop system in frequency domain

⎧⎪⎨⎪⎩
j𝜔x̃ = (I ⊗ Ǎr)x̃ − (I ⊗ B̌rK)𝜒 + (I ⊗ B̌r)𝜌,
j𝜔x̂ = (I ⊗ (Ǎr −HČr))x̂ − (Lj𝜔(𝜏)⊗ B̌rK)𝜒 + (L⊗HČr)x̃,
j𝜔𝜒 = (I ⊗ (Ǎr − B̌rK))𝜒 − (Lj𝜔(𝜏)⊗ I)𝜒 + x̂.

(54)



NOJAVANZADEH et al. 6383

By defining 𝛿 = x̃ − 𝜒 and 𝛿 = (Lj𝜔(𝜏)⊗ I)x̃ − x̂, we can obtain

j𝜔x̃ = (I ⊗ (Ǎr − B̌rK))x̃ + (I ⊗ B̌rK)𝛿 + (I ⊗ B̌r)Cs𝜔,
j𝜔𝛿 = (I ⊗ Ǎr − Lj𝜔(𝜏)⊗ I)𝛿 + 𝛿 + (I ⊗ B̌r)Cs𝜔,
j𝜔𝛿 = (I ⊗ (Ǎr −HČr))𝛿 + ((Lj𝜔(𝜏) − L)⊗HČr)x̃ + (Lj𝜔(𝜏)⊗ B̌r)Cs𝜔.

(55)

Similar to the proofs of Theorem 1 and 2, we prove (55) is asymptotically stable for all communication delays 𝜏ij ∈ R≥0
and 𝜏 ij ∈ R≥0. Following the critical Lemma 1, we first prove stability without communication delays 𝜏ij and 𝜏 ij and then
we prove the stability of (55) by checking condition (19).

• In the absence of communication delays in the network, the stability of system (55) is equivalent to the stability of
matrix

⎛⎜⎜⎜⎜⎜⎝

I ⊗ (Ǎr − B̌rK) I ⊗ B̌rK 0 (I ⊗ B̌r)Cs
0 I ⊗ Ǎr − L⊗ I I (I ⊗ B̌r)Cs
0 0 I ⊗ (Ǎr −HČr) (L⊗ B̌r)Cs
0 0 0 As

⎞⎟⎟⎟⎟⎟⎠
, (56)

where As = diag{Ai, s} for i= 1, … ,N. Similar to the proof of Theorem 2, we have all eigenvalues of I ⊗ A − L⊗ I have
negative real part. Then, since we have that A−BK and I ⊗ A − L⊗ I are Hurwitz stable, we obtain that

lim
t→∞

x̃ → 0.

It implies that xi → xr .
• In the presence of communication delay, the closed-loop system (55) is asymptotically stable if

det

⎡⎢⎢⎢⎢⎢⎣
j𝜔I −

⎛⎜⎜⎜⎜⎜⎝

I ⊗ (Ǎr − B̌rK) I ⊗ B̌rK 0 (I ⊗ B̌r)Cs
0 I ⊗ Ǎr − Lj𝜔(𝜏)⊗ I I (I ⊗ B̌r)Cs

(Lj𝜔(𝜏) − L)⊗HČr 0 I ⊗ (Ǎr −HČr) (Lj𝜔(𝜏)⊗ B̌r)Cs
0 0 0 As

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦
≠ 0 (57)

for all 𝜔 ∈ R and any communication delays 𝜏ij ∈ R+ and 𝜏 ij ∈ R+. Condition (57) is satisfied if matrix

⎛⎜⎜⎜⎜⎜⎝

I ⊗ (Ǎr − B̌rK) I ⊗ B̌rK 0 (I ⊗ B̌r)Cs
0 I ⊗ Ǎr − Lj𝜔(𝜏)⊗ I I (I ⊗ B̌r)Cs

(Lj𝜔(𝜏) − L)⊗HČr 0 I ⊗ (Ǎr −HČr) (Lj𝜔(𝜏)⊗ B̌r)Cs
0 0 0 As

⎞⎟⎟⎟⎟⎟⎠
(58)

has no eigenvalues on the imaginary axis for all 𝜔 ∈ R. Then, according to the structure of the expanded Laplacian
matrix L, and similar to the proof of Theorem 2 one can obtain that x̃ is asymptotically stable, that is, limt→∞ x̃i = 0,
which implies that limt→∞ ỹi = 0, or yi → yr.

▪

4 NUMERICAL EXAMPLE

In this section, we will illustrate the feasibility of our scale-free linear protocols with numerical examples for delayed
regulated state synchronization of homogeneous MAS with partial-state coupling and delayed regulated output synchro-
nization for heterogeneous MAS when the communication networks are subject to communication delays.
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F IGURE 2 Communication graph of a network with 3 nodes

F IGURE 3 Communication graph of a network
with 5 nodes

Example 1 (Homogeneous MAS). Consider identical agents models as⎧⎪⎨⎪⎩
ẋi =

(
0 0.25
−0.25 0

)
xi +

(
0
1

)
ui,

yi =
(
1 0

)
xi.

(59)

The goal is to achieve delayed regulated state synchronization when the reference nonconstant synchronized
trajectory is generated by the following exosystem

⎧⎪⎨⎪⎩
ẋr =

(
0 0.25
−0.25 0

)
xr

yr =
(
1 0

)
xr

(60)

with initial condition xr(0) =
(
0.3 0.1

)T. We choose matrices K = HT =
(
3 7.75

)
such that A−BK and A−HC are

Hurwitz stable. Therefore, we obtain the following protocol.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

̇̂xi =

(
−3 0.25
−8 0

)
x̂i −

(
0 0
3 7.75

)
𝜁 i +

(
3

7.75

)
𝜁 i + 𝜄i

(
0
1

)
ui

𝜒̇ i =

(
0 0.25

−3.25 −7.75

)
𝜒i + x̂i − 𝜁 i − 𝜄i𝜒i,

ui = −
(
3 7.75

)
𝜒i.

(61)

Note that protocol (61) is designed utilizing only the knowledge of agent models (59). In order to show the scalability
of our protocols, we use our one-shot-designed protocol (61) for delayed regulated state synchronization of three different
MAS with different communication networks and different number of agents as following cases.



NOJAVANZADEH et al. 6385

F I GURE 4 Communication
graph of a network with 10 nodes

F IGURE 5 Scale-free delayed
regulated state synchronization for
homogeneous MAS with 3 nodes

Case 1: Consider a MAS consisting of three agents with agent models (59) and a tree communication topology shown
in Figure 2 with associated adjacency matrix1, where a21 = a31 = 1 and the rest of the entries are zero. The dashed links
in the figures are subject to delay and the solid ones are delay-free. As it is shown in the figure, the communication delays
are equal to 𝜏21 = 3, 𝜏31 = 2, and 𝜏31 = 2. The exosystem provides xr(t) for agent 1. The simulation results are illustrated
in Figure 5.

Case 2: Next, we consider another MAS consisting of five agents with agent models (59) and communication topology
shown in Figure 3with associated adjacencymatrix2, where a21 = a32 = a43 = a53 = 1 and rest of the entries are zero. The
communication delays are equal to 𝜏1r = 2, 𝜏21 = 3, 𝜏31 = 4, 𝜏43 = 1, 𝜏53 = 0.5, 𝜏31 = 2, and 𝜏53 = 1. By utilizing the same
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F IGURE 6 Scale-free delayed
regulated state synchronization for
homogeneous MAS with 5 nodes

F IGURE 7 Scale-free delayed
regulated state synchronization for
homogeneous MAS with 10 nodes

protocol (61), we achieve delayed regulated state synchronization for MAS with communication network shown in (3).
Figure 6 shows the simulation results for this MAS.

Case 3: Finally, consider a MAS consisting of 10 agents with agent models (59) and directed communication topology
shown in Figure 4 with associated adjacency matrix3, where a21 = a32 = a42 = a53 = a63 = a74 = a84 = a95 = a10, 5 = 1 and
rest of the entries are zero. The communication delays are equal to 𝜏21 = 1, 𝜏32 = 1.5, 𝜏42 = 2.3, 𝜏53 = 2.6, 𝜏63 = 3, 𝜏84 = 1,
𝜏95 = 4, 𝜏74 = 2.5, and 𝜏53 = 5. The exosystem provides xr for agent 1. The simulation results for this MAS are presented
in Figure 7.
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F I GURE 8 Scale-free
delayed regulated output
synchronization for heterogeneous
MAS with 3 nodes

The simulation results show that our one-shot-design protocol (59) achieves delayed regulated state synchronization
for any communication network with associated spanning tree graph and any size of the network. Moreover, the protocol
can tolerate any unknown, nonuniform, and arbitrarily large communication delays.

Example 2 (Heterogeneous MAS). In this example, we consider numerical examples for delayed regulated output
synchronization of heterogeneous MAS. We show that our protocol design Protocol 3 is scale-free and it works for any
graph  ∈ GN with any number of agents. Consider the agents model (41) with

Ai =

⎛⎜⎜⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,Bi =

⎛⎜⎜⎜⎜⎜⎝

0 1
0 0
1 0
0 1

⎞⎟⎟⎟⎟⎟⎠
,Ci =

(
1 0 0 0

)
,Cmi = I,

for i= 1, 6, and

Ai =
⎛⎜⎜⎜⎝
0 1 0
0 0 1
0 0 0

⎞⎟⎟⎟⎠ ,Bi =
⎛⎜⎜⎜⎝
0
0
1

⎞⎟⎟⎟⎠ ,Ci =
(
1 0 0

)
,Cmi = I,

for i= 2, 7, and

Ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1 1 0
1 0 0 0 0
1 0 2 0 1
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,Bi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 0
0 1
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,Ci =

(
0 0 1 0 0

)
,Cmi = I,
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F IGURE 9 Scale-free
delayed regulated output
synchronization for heterogeneous
MAS with 5 nodes

for i= 3, 4, 8, 9, and

Ai =
⎛⎜⎜⎜⎝
0 1 0
0 0 1
1 1 0

⎞⎟⎟⎟⎠ ,Bi =
⎛⎜⎜⎜⎝
0
0
1

⎞⎟⎟⎟⎠ ,Ci =
(
1 0 0

)
,Cmi = I,

for i= 5, 10. Note that nd = 3, which is the degree of infinite zeros of (C2,A2,B2). In this example, our goal is to achieve
delayed regulated output synchronization when the nonconstant reference trajectory is generated by

⎧⎪⎪⎨⎪⎪⎩
ẋr =

⎛⎜⎜⎜⎝
0 1 0
0 0 1
0 −1 0

⎞⎟⎟⎟⎠ xr,
yr =

(
1 0 0

)
xr

with xr(0) =
(
0.1 0.4 0.2

)T. According to Step 1 of Protocol 3 utilizing Lemma 2, we choose (Čr, Ǎr, B̌r) as

Ǎr =
⎛⎜⎜⎜⎝
0 1 0
0 0 1
0 −1 0

⎞⎟⎟⎟⎠ , B̌r =
⎛⎜⎜⎜⎝
0
0
1

⎞⎟⎟⎟⎠ , Čr =
(
1 0 0

)
.

Then as stated in Step 2, given the chosen target model, we homogenize the agents by designing pre-compensators for
agent i∈ {1, … , 10} as

ui =

(
0 −1 0 −1
0 0 0 0

)
zi +

(
1
0

)
vi
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F I GURE 10 Scale-free
delayed regulated output
synchronization for heterogeneous
MAS with 10 nodes

for i= 1, 6, and

ui =
(
0 −1 0 0

)
zi + vi

for i= 2, 7, and

ui =

(
0 0 −1 −1 0
−1 1 −2 0 −1

)
zi +

(
1
0

)
vi

for i= 3, 4, 8, 9, and finally

ui =
(
−1 −2 0

)
zi + vi

for i= 5, 10.
The next step is designing collaborative protocols for the compensated agents. We choose K =

(
6 10 6

)
and

H =
(
6 10 0

)T such that Ǎr − B̌rK and Ǎr −HČr are Hurwitz stable. We obtain the collaborative protocols as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

̇̂xi =
⎛⎜⎜⎜⎝
−6 1 0
−10 0 1
0 −1 0

⎞⎟⎟⎟⎠ x̂i −
⎛⎜⎜⎜⎝
0 0 0
0 0 0
6 10 6

⎞⎟⎟⎟⎠ 𝜁 i +
⎛⎜⎜⎜⎝
6
10
0

⎞⎟⎟⎟⎠ 𝜁 i + 𝜄i

⎛⎜⎜⎜⎝
0
0
1

⎞⎟⎟⎟⎠ui,
𝜒̇ i =

⎛⎜⎜⎜⎝
0 1 0
0 0 1
−6 −11 −6

⎞⎟⎟⎟⎠𝜒i + x̂i − 𝜁 i − 𝜄i𝜒i,

ui = −
(
6 10 6

)
𝜒i.

(62)

To show the scalability of our protocols, similar to Example 1, we consider three heterogeneous MAS with different
number of agents and different communication topologies.

Case 1: Consider aMASwith three agents with agentmodels (Ci,Ai,Bi) for i∈ {1, … , 3}, and directed communication
topology shown in Figure 2. Values of communication delays are same as Example 1, Case 1. The simulation results are
illustrated in Figure 8.
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Case 2: In this case,we consider aMASwith five agents and agentmodels (Ci,Ai,Bi) for i∈ {1, … , 5} and directed com-
munication topology shown in Figure 3. Values of communication delays are same as Example 1, Case 2. The simulation
results for this MAS are presented in Figure 9.

Case 3: Finally, we consider a MAS with 10 agents and agent models (Ci,Ai,Bi) for i∈ {1, … , 10} and directed com-
munication topology, shown in Figure 4. Values of communication delays are same as Example 1, Case 3. The simulation
results are shown in Figure 10.

Case 3: Finally, we consider a MAS with 10 agents and agent models (Ci,Ai,Bi) for i∈ {1, … , 10} and directed com-
munication topology, shown in Figure 4. Values of communication delays are same as Example 1, Case 3. The simulation
results are shown in Figure 10.

We observe that our one-shot-design protocols work for anyMASwith any communication networks  ∈ GN and any
number of agents N.
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