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ABSTRACT 

Augmented reality (AR), with its strong ability to enhance how a user interacts with the 
digital model and the real environment, has great potential to optimize the conventional 
construction process. Not only the design and planning phase decisions, but also the on-site job 
accuracy and efficiency can be improved through AR. Furthermore, the development and 
application of head mounted devices (HMD) provide the workers a new hands-free method to 
interact with digital model on the site. However, human factor aspects of HMD AR use in 
construction, such as human computer interaction (HCI) optimization, hardware clumsiness, and 
safety monitoring are still not well studied. Hence, evaluating the user’s mental and physical 
workload can be an effective way to understand how a worker might react to this new 
construction mode. Since it is a new attempt to monitor the mental workload during the HMD 
AR use with construction activities, in this paper, we reviewed the previous studies in mental 
workload evaluation, and introduced a possible approach to study this problem. Different types 
of mental workload evaluating methods such as electroencephalogram (EEG), and NASA-TLX 
were discussed based on their pros and cons in this field. 

INSTRUCTION 

Augmented Reality (AR) technology has infiltrated into every aspect of daily life. Especially, 
the combination of AR and mobile devices provides a more convenient access to, and interaction 
with digital models and the real world. In AEC (Architecture, Engineering and Construction) 
industry, AR shows great potential to change the conventional working patterns. For instance, 
some construction companies use AR devices for evaluating design alternatives in the field, 
which gives their clients a more direct experience (Yoders 2018). Moreover, the development of 
see-through AR headsets, which enable construction workers to see the digital model in the field, 
brings the possibility of a brand-new approach to working at a construction site (Chi et al. 2013). 
However, the usability of such approach still needs validation and a critical evaluation given that 
construction is one of the most dangerous industries for workers. There is very limited research 
that looks at whether using a head wearable AR device can reduce construction workers’ 
workload and enhance the efficiency and accuracy of the task. When workers are interacting 
with the system, it could be a distraction to recognize hazards from their surroundings. As a 
resolution to these concerns, monitoring workers’ mental workload can reflect workers’ mental 
engagement and fatigue, which can tell the usability of HMD on site. This paper reviews the 
current mental workload measuring approaches both in HCI and construction domains. 
Subjective and physiological measures are discussed based on their pros and cons, so as to find a 
more suitable method for this study. In this context, a possible EEG based approach is proposed 
to measure construction workers’ mental workload with HMD AR use. 
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MENTAL WORKLOAD MEASUREMENT 

Developing a better understanding of the workers’ mental status during the construction 
process, which exposes their concentration on work, situational awareness, and cognitive 
fatigue, requires studying the worker’s mental workload. In a setting with HMD AR, the changes 
in mental workload can potentially also reveal workers’ reaction to this technology in the human-
computer interaction mode. Generally, approaches to workload assessment can be divided into 
three categories: subjective, performance-based, and physiological measures (Vidulich and 
Tsang 2012). Among the recent subjective evaluation frameworks, NASA-TLX is the most 
widely used approach to measure the mental workload (Hart and Stayeland 1988). It measures 
the overall workload level for the whole task with six subscales: mental demand, physical 
demand, temporal demand, performance, effort and frustration (Hart and Stayeland 1988). 
Although NASA-TLX is able to differentiate the task difficulty by the aggregate or trial-average 
workload levels, it is not responsive to moment-to-moment changes in workload (Funke et al. 
2013). In comparison, some new physiological monitoring techniques, such as EEG, functional 
near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and eye 
tracking systems have a stronger capability to track the real-time changes of the mental workload 
levels. 

During the construction process with HMD AR, workers are not only required to focus on 
their work in hand, but also need to be aware of their surroundings, and look at the AR display. 
Hence, monitoring mental workload for the whole process can provide information under a high 
occupational stress. From this perspective, a quantitative and direct mental load measuring 
approach, such as EEG, would be more suitable in a construction case, and can also be easily 
used outside of a specific laboratory setting. 

Electroencephalography (EEG) 

EEG is one of the most frequently used neuroimaging techniques to monitor the activity of 
brain. Compared with other similar techniques, such as fNIRS and fMRI, EEG gives the 
advantage of higher temporal resolution and portability. In recent years, the development of 
wireless EEG devices equipped with through-hair sensors even requires zero preparation of the 
scalp (Matthews et al. 2007), which greatly simplifies the conventional process for EEG 
measurements. 

Based on the International 10-20 System for electrodes placement for EEG test, Homan et 
al.’s experiment validated that EEG data acquired varies with the locations of electrodes (1987). 
That is, different cerebral cortex areas reflect various brain functions. Basically, the cerebral 
cortex consists of 4 lobes: frontal, parietal, occipital, and temporal lobes. Under frontal lobe, the 
prefrontal cortex is responsible for cognitive control (Miller and Cohen 2001), and the motor 
cortex controls the execution of movement (Kakei et al. 1999). In addition, occipital lobe 
receives visual stimuli and processes visual information (Grill-Spector et al. 1998). In this study, 
a construction activity under a HCI situation, involves both physical labor and visual information 
processing. Hence, the frontal lobe and occipital lobe are the most focused areas. The data 
collected from an EEG test are sets of time series signal, which needs to be processed through 
power spectral densities (PSD). The main idea is to figure out the distribution on a frequency 
domain, so that we can observe the power density on each certain bandwidth. This is because 
brain rhythms for different functions fall into different frequency bands. Generally, these are 
grouped as delta (1-4 Hz), theta (4-7 Hz), alpha (7-12 Hz), beta (12-30 Hz), and gamma (>30 
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Hz) frequency bands. All these waves, except for the delta wave used for assessing the depth of 
sleep (Harmony 2013), are related to motor activities and cognitive processes, and can be utilized 
in this study (Table 1). 

Table 1. Brain Waves and Characteristics 

Parameters Frequency Bandwidth 
(Hz) Reflect Functions of Brain 

δ  0.5 – 4 Depth of sleep 
θ   4 – 7 Working memory and cognitive fatigue 
α   7 – 12 Relaxation and wakefulness 
β   12 – 30 Attention and motor execution 
γ  > 30 Sensory integration 

Mental workload during HCI 

EEG has been widely used in various HCI cases as a method to assess the mental workload. 
Trejo et al. (2007) employed EEG test under a HCI task mode to validate the three-state model 
for mental fatigue. The experiment showed the capability of EEG to detect the mental workload 
levels while subjects were finishing tasks using an interaction system with computer. In many 
other cases, researchers adopted EEG to monitor subjects’ mental workload in a virtual reality 
simulation environment, so as to study the subjects’ reaction under different cognitive 
conditions. Oh et.al (2015) conducted the experiment to assess pilots’ mental status under 
different levels of challenges in a flight simulator based on the EEG test. Besides, Xie et.al 
(2009) also employed EEG in their drivers’ fatigue detection study in a driving simulator. 
Similarly, Ryu and Myung (2005) combined EEG and eye tracking to measure mental workload 
in a dual task test under a HCI system for operator simulation. The studies above all supported 
the usability of EEG for measuring mental workload under a HCI situation. 

APPROACH 

Mental workload measurement in construction 

While the mental workload measurement for human factors in other areas has long been 
studied, it is still a new topic in the construction research. A systematic literature review on 
mental workload assessment approaches conducted on three mainstream construction research 
journals, Automation in Construction, Journal of Computing in Civil Engineering, and Journal of 
Construction Engineering and Management, with separate keywords of “mental workload” and 
“EEG”. In total, 11 articles were found that are directly relevant to this topic. In the early studies 
before 2016, mental workload measurement for construction workers included NASA-TLX as a 
self-reporting measurement method. For example, Dadi et al. (2014) examined cognitive 
workload for different engineering information formats with NASA-TLX. The same method was 
also used for a real-world masonry case (Mitropoulos and Memarian 2013), and the usability of 
AR devices for construction assembly tasks (Wang and Dunston 2006; Shin and Dunston 2009; 
Hou et al. 2015). However, in most recent researches, physiological methods, like EEG, was 
chosen by researchers for a more direct and quantitative observation from subjects. Chen et al. 
(2016) defined high mental workload as an “invisible gorilla” leading to high risk behavior. He 
also introduced the EEG method to assess workers’ engagement and evaluate their alertness 
towards hazards (Wang et al. 2017, Chen et al. 2017). However, construction activities always 
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involve intensive labor work, which can result in an inevitable artifact to the data acquired. Thus, 
in the study for workers’ stress recognition, Jebelli et al. (2018) applied supervised machine 
learning approaches to remove the artifacts in EEG data and classified the stress levels (Hwang 
et al. 2018, Jebelli et al. 2018). The results of literature review are listed in Table 2 & 3. 

Table 2. “Mental Workload” Keyword Search 
Report Purpose Experimental Design Approach 

Wang & 
Dunston 
(2006) 

Examined usability 
of AR HMD used in 
AEC project 

Compared AR CAD system 
against a monitor for an 
orientation task. 

NASA-TLX 

Shi & 
Dunston 
(2009) 

Evaluated usage of 
ARCam for steel 
column inspection 

Used ARCam against Total 
Station to inspect steel column. NASA-TLX 

Mitropoulos 
& Memarian 
(2013) 

Studied mental 
taskload in masonry 
work 

Investigated 22 subjects from 2 
masonry projects. NASA-TLX 

Dadi et al. 
(2014) 

Examined cognitive 
load of different 
engineering 
information formats 

Subjects used 3 types of 
information: 2D drawings, 3D 
CAD, and 3D printed physical 
model to finish a Lego size 
assembly. 

NASA-TLX 

Hou et al. 
(2015) 

Evaluated the use of 
AR for pipe 
assembly 

Subjects used AR or drawing to 
assemble pipes. The pipes were 
rated and subjects were 
permitted to rework on it. 

NASA-TLX 

The literature review above showed that mental workload assessment in construction is 
studied within a limited scope. Even though NASA-TLX is a well-tested method for evaluating 
mental workload, the emergence of more quantitative tools, such as the EPOC+ brain sensor, 
allows researchers to have more granularity in the assessment data. There is enough evidence in 
the recent literature that EEG is a promising method for construction research and has a great 
potential to measure construction workers’ mental workload under a HCI situation. 

Pilot study 

This study points at testing the feasibility of the EEG based mental workload evaluation 
method for construction worker’s HMD AR use. Hence, the study had subjects carry out wood 
frame assembly tasks with two information delivery types, and compared the performance 
metrics, such as the engagement and focus with NASA-TLX evaluation results. If the results are 
corresponding, then this method is supposed to be feasible for further study. 

Experimental design 

4 subjects with engineering knowledge background were asked to conduct two wood frame 
assembly tasks: one with paper blueprint and tape measure, and the other one with only a 3D 
model in a Microsoft HoloLens headset. Figure 1 shows the user’s view through HoloLens. The 
left picture (a) shows the initial status, where an AR frame model is displayed on the ground, 
with a pile of lumbers aside. The right one (b) shows that the frame is correctly assembled 
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according to the model. In both task situations, the subjects were monitored by the EPOC+ brain 
sensor (Figure 2), which recorded their brain activity information in EEG data set. After each 
task, the subject was asked to finish a NASA-TLX questionnaire. 

Table 3. “EEG” Keyword Search 
Report Purpose Experimental Design Data Analysis 

Chen et al. 
(2016) 

Monitored 
construction 
workers’ mental 
workload 

Subjects took 4 tasks: idling, 
ladder climbing, nut selection, bolt 
fastening and under 3 conditions: 
relax, climb, conduct installation. 

Time-frequency 
analysis (time 
window & Power 
Spectral 
Density(PSD) map); 
Indicator: 
Engagement Index. 

Chen et al. 
(2017) 

Monitored 
construction 
workers’ mental 
workload 

Subjects took 4-5 minute tasks: 
climb up a ladder select bolts, 
install bolts, climb down the 
ladder. 

Three-way ANOVA 
for EEG PSD data, 
and compared with 
NASA-TLX results. 

Wang et 
al. (2017) 

Monitored 
construction 
workers’ 
vigilance and 
attention level 

Subjects finished 6 tasks in a 
process: pick up material, pass 
obstacles (4 types), put down 
material. 

ICA (Independent 
Components 
Analysis) and pass 
filters to remove 
artifacts.  

Jebelli et 
al. (2018) 

Measured 
construction 
workers’ stress 
level 

On-site subjects performed tasks 
under 3 different conditions 
(hazard levels). Off-site subjects 
performed repetitive tasks at 
different time after rest. 

Pass filters and ICA 
for extrinsic and 
intrinsic artifacts 
removal. Mean PSD 
on beta frequency for 
states classification. 

Jebelli et 
al. (2018) 

Proposed a 
framework on 
artifact removal 
for EEG signal 
collected from 
an on-site 
experiment 

A framework with pass filter for 
extrinsic artifacts and ICA for 
intrinsic artifacts removal. 
Significant difference captured for 
mean PSD of beta range. 

Introduced various 
machine learning 
methods for 
classification: k-
Nearest Neighbors, 
Gaussian 
Discriminant 
Analysis, SVM. 

Hwang et 
al. (2018) 

Measured 
construction 
workers’ 
emotional state 

On-site subjects performed tasks 
under different conditions (at 
ground, on ladder and in a 
confined and dimmed space). Off-
site subjects performed repetitive 
tasks at different time after rest. 

Pass filter and ICA 
used for data 
cleaning, and mean 
PSD for further 
analysis. Adopted 
indicator calculation 
for Valence and 
Arousal. 
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Figure 1. Screen shots from HoloLens (a) AR frame model (b) frame assembled 

 
Figure 2. EPOC+ Brain Sensor (https://www.emotiv.com/epoc/) 

Results 

The software for EPOC+ provides performance metrics based on the raw EEG data. Table 4 
shows the result of comparing the subjects’ engagement score during two tasks, and Figure 3, as 
an instance, plots the real-time records of the engagement score for subject 2. There is an 
obvious difference between the results from two tasks. According to the EEG analysis results, in 
most cases, reading paper blueprint and doing tape measuring produced a higher mental 
engagement than using HoloLens. Besides, the time consumption for each task can also tell the 
difference in efficiency. Table 5 shows the summary for the time each subject used for the tasks. 
There are three out of four subjects using less time with HoloLens, and the mean value shows the 
same result. Based on these results, AR HMD is capable to reduce the subjects’ engagement and 
improve their productivity. 

 
Figure 3. Plot of Engagement Score for Subject 2 

Table 4. Mean Engagement Score During Tasks (scale of 0 ~ 100) 
 S01 S02 S03 S04 Mean 

AR model 78.06 56.46 68.36 56.49 64.84 
Paper 68.05 68.02 94.63 60.87 72.89 
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As a reference towards the EEG based method, NASA-TLX also shows a corresponding 
result. NASA-TLX has six metrics for subjective evaluation: Mental Demand, Physical Demand, 
Temporal Demand, Performance, Effort, and Frustration. From Figure 4 and Table 6, we can see 
that the AR model has a significant lower score mental demand than the paper drawing, which 
indicates that subjects felt more relax and comfortable in finishing task using HoloLens. Besides, 
the overall ratings also show that using AR model has a lower task demand for the subjects. 

Table 5. Time Consumption for Tasks (seconds) 
 S01 S02 S03 S04 Mean 

AR model 216 277 450 197 285 
Paper 263 505 304 571 410.75 

 
Figure 4. Box Plots (a) Adjusted Mental Demand Score (b) Total Adjusted Score 

Table 6. Summary of NASA-TLX Scores (Adjusted Average Score) 
 MD PD TD P E F Total 

AR model 3.417 10.417 4.917 7.584 5.667 1.834 33.834 
Paper 12.417 5.167 4.667 7.833 8.834 2.667 41.584 

CONCLUSION AND FUTURE WORK 

This paper reviewed different approaches utilized in mental workload measurement for HCI 
and construction domains. In comparison to subjective approaches, physiological measures 
provide a more direct and quantitative observation, with precise and analyzable results for further 
study. However, the literature review shows that there is still limit study in mental workload 
evaluation in the intersection of HCI and construction domains. In this context, a conceptual 
approach to measure workers’ mental workload with EEG is shown to be viable. The pilot study 
showed the feasibility of the EEG based method to detect mental workload (engagement) 
difference under two situations, which helps us to study the pros and cons of HMD AR. Besides, 
the result of NASA-TLX also provide a corresponding conclusion, which also a validates the 
feasibility of the EEG based method. Nevertheless, there are still issues required to be concerned 
in the future. In the pilot study, we used the exist function for engagement rating, which didn’t 
include a complete data cleaning process. Since the framing assembly task involved with an 
intense body movement, as the previous study proved, this can cause the artifacts and impact the 
accuracy of final results. Therefore, in the future study, a more complete and systematic data 
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cleaning process needs to be added. 
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