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ABSTRACT

Augmented reality (AR), with its strong ability to enhance how a user interacts with the
digital model and the real environment, has great potential to optimize the conventional
construction process. Not only the design and planning phase decisions, but also the on-site job
accuracy and efficiency can be improved through AR. Furthermore, the development and
application of head mounted devices (HMD) provide the workers a new hands-free method to
interact with digital model on the site. However, human factor aspects of HMD AR use in
construction, such as human computer interaction (HCI) optimization, hardware clumsiness, and
safety monitoring are still not well studied. Hence, evaluating the user’s mental and physical
workload can be an effective way to understand how a worker might react to this new
construction mode. Since it is a new attempt to monitor the mental workload during the HMD
AR use with construction activities, in this paper, we reviewed the previous studies in mental
workload evaluation, and introduced a possible approach to study this problem. Different types
of mental workload evaluating methods such as electroencephalogram (EEG), and NASA-TLX
were discussed based on their pros and cons in this field.

INSTRUCTION

Augmented Reality (AR) technology has infiltrated into every aspect of daily life. Especially,
the combination of AR and mobile devices provides a more convenient access to, and interaction
with digital models and the real world. In AEC (Architecture, Engineering and Construction)
industry, AR shows great potential to change the conventional working patterns. For instance,
some construction companies use AR devices for evaluating design alternatives in the field,
which gives their clients a more direct experience (Yoders 2018). Moreover, the development of
see-through AR headsets, which enable construction workers to see the digital model in the field,
brings the possibility of a brand-new approach to working at a construction site (Chi et al. 2013).
However, the usability of such approach still needs validation and a critical evaluation given that
construction is one of the most dangerous industries for workers. There is very limited research
that looks at whether using a head wearable AR device can reduce construction workers’
workload and enhance the efficiency and accuracy of the task. When workers are interacting
with the system, it could be a distraction to recognize hazards from their surroundings. As a
resolution to these concerns, monitoring workers’ mental workload can reflect workers” mental
engagement and fatigue, which can tell the usability of HMD on site. This paper reviews the
current mental workload measuring approaches both in HCI and construction domains.
Subjective and physiological measures are discussed based on their pros and cons, so as to find a
more suitable method for this study. In this context, a possible EEG based approach is proposed
to measure construction workers’ mental workload with HMD AR use.

© ASCE

Construction Research Congress 2020



Downloaded from ascelibrary.org by VPI & SU on 02/10/22. Copyright ASCE. For personal use only; all rights reserved.

Construction Research Congress 2020 660

MENTAL WORKLOAD MEASUREMENT

Developing a better understanding of the workers’ mental status during the construction
process, which exposes their concentration on work, situational awareness, and cognitive
fatigue, requires studying the worker’s mental workload. In a setting with HMD AR, the changes
in mental workload can potentially also reveal workers’ reaction to this technology in the human-
computer interaction mode. Generally, approaches to workload assessment can be divided into
three categories: subjective, performance-based, and physiological measures (Vidulich and
Tsang 2012). Among the recent subjective evaluation frameworks, NASA-TLX is the most
widely used approach to measure the mental workload (Hart and Stayeland 1988). It measures
the overall workload level for the whole task with six subscales: mental demand, physical
demand, temporal demand, performance, effort and frustration (Hart and Stayeland 1988).
Although NASA-TLX is able to differentiate the task difficulty by the aggregate or trial-average
workload levels, it is not responsive to moment-to-moment changes in workload (Funke et al.
2013). In comparison, some new physiological monitoring techniques, such as EEG, functional
near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and eye
tracking systems have a stronger capability to track the real-time changes of the mental workload
levels.

During the construction process with HMD AR, workers are not only required to focus on
their work in hand, but also need to be aware of their surroundings, and look at the AR display.
Hence, monitoring mental workload for the whole process can provide information under a high
occupational stress. From this perspective, a quantitative and direct mental load measuring
approach, such as EEG, would be more suitable in a construction case, and can also be easily
used outside of a specific laboratory setting.

Electroencephalography (EEG)

EEG is one of the most frequently used neuroimaging techniques to monitor the activity of
brain. Compared with other similar techniques, such as fNIRS and fMRI, EEG gives the
advantage of higher temporal resolution and portability. In recent years, the development of
wireless EEG devices equipped with through-hair sensors even requires zero preparation of the
scalp (Matthews et al. 2007), which greatly simplifies the conventional process for EEG
measurements.

Based on the International 10-20 System for electrodes placement for EEG test, Homan et
al.’s experiment validated that EEG data acquired varies with the locations of electrodes (1987).
That is, different cerebral cortex areas reflect various brain functions. Basically, the cerebral
cortex consists of 4 lobes: frontal, parietal, occipital, and temporal lobes. Under frontal lobe, the
prefrontal cortex is responsible for cognitive control (Miller and Cohen 2001), and the motor
cortex controls the execution of movement (Kakei et al. 1999). In addition, occipital lobe
receives visual stimuli and processes visual information (Grill-Spector et al. 1998). In this study,
a construction activity under a HCI situation, involves both physical labor and visual information
processing. Hence, the frontal lobe and occipital lobe are the most focused areas. The data
collected from an EEG test are sets of time series signal, which needs to be processed through
power spectral densities (PSD). The main idea is to figure out the distribution on a frequency
domain, so that we can observe the power density on each certain bandwidth. This is because
brain rhythms for different functions fall into different frequency bands. Generally, these are
grouped as delta (1-4 Hz), theta (4-7 Hz), alpha (7-12 Hz), beta (12-30 Hz), and gamma (>30
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Hz) frequency bands. All these waves, except for the delta wave used for assessing the depth of
sleep (Harmony 2013), are related to motor activities and cognitive processes, and can be utilized
in this study (Table 1).

Table 1. Brain Waves and Characteristics

Parameters Frequenc()il];)a ndwidth Reflect Functions of Brain
o 0.5-4 Depth of sleep
0 4-17 Working memory and cognitive fatigue
a 7-12 Relaxation and wakefulness
f 12 -30 Attention and motor execution
7 > 30 Sensory integration

Mental workload during HCI

EEG has been widely used in various HCI cases as a method to assess the mental workload.
Trejo et al. (2007) employed EEG test under a HCI task mode to validate the three-state model
for mental fatigue. The experiment showed the capability of EEG to detect the mental workload
levels while subjects were finishing tasks using an interaction system with computer. In many
other cases, researchers adopted EEG to monitor subjects’ mental workload in a virtual reality
simulation environment, so as to study the subjects’ reaction under different cognitive
conditions. Oh et.al (2015) conducted the experiment to assess pilots’ mental status under
different levels of challenges in a flight simulator based on the EEG test. Besides, Xie et.al
(2009) also employed EEG in their drivers’ fatigue detection study in a driving simulator.
Similarly, Ryu and Myung (2005) combined EEG and eye tracking to measure mental workload
in a dual task test under a HCI system for operator simulation. The studies above all supported
the usability of EEG for measuring mental workload under a HCI situation.

APPROACH
Mental workload measurement in construction

While the mental workload measurement for human factors in other areas has long been
studied, it is still a new topic in the construction research. A systematic literature review on
mental workload assessment approaches conducted on three mainstream construction research
journals, Automation in Construction, Journal of Computing in Civil Engineering, and Journal of
Construction Engineering and Management, with separate keywords of “mental workload” and
“EEG”. In total, 11 articles were found that are directly relevant to this topic. In the early studies
before 2016, mental workload measurement for construction workers included NASA-TLX as a
self-reporting measurement method. For example, Dadi et al. (2014) examined cognitive
workload for different engineering information formats with NASA-TLX. The same method was
also used for a real-world masonry case (Mitropoulos and Memarian 2013), and the usability of
AR devices for construction assembly tasks (Wang and Dunston 2006; Shin and Dunston 2009;
Hou et al. 2015). However, in most recent researches, physiological methods, like EEG, was
chosen by researchers for a more direct and quantitative observation from subjects. Chen et al.
(2016) defined high mental workload as an “invisible gorilla” leading to high risk behavior. He
also introduced the EEG method to assess workers’ engagement and evaluate their alertness
towards hazards (Wang et al. 2017, Chen et al. 2017). However, construction activities always
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involve intensive labor work, which can result in an inevitable artifact to the data acquired. Thus,
in the study for workers’ stress recognition, Jebelli et al. (2018) applied supervised machine
learning approaches to remove the artifacts in EEG data and classified the stress levels (Hwang
et al. 2018, Jebelli et al. 2018). The results of literature review are listed in Table 2 & 3.

Table 2. “Mental Workload” Keyword Search
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Report Purpose Experimental Design Approach
Wang & | Examined usability | Compared AR CAD system
Dunston of AR HMD used in | against a monitor for an | NASA-TLX
(2006) AEC project orientation task.
Shi & | Evaluated usage of .
Dunston ARCam for steel Useq AR.CMH against Total NASA-TLX
. . Station to inspect steel column.
(2009) column inspection
Mitropoulos Studied mental . .
& Memarian | taskload in masonry irrll;/:s;lrgatercci)'gftssubjects from 2 NASA-TLX
(2013) work Y Projects.
Examined cognitive ‘SubJects‘ used 3 types of
Dadi et al | load £ different information: 2D drawings, 3D
act ¢ aljoac o et CAD, and 3D printed physical | NASA-TLX
(2014) engineering . .
. . model to finish a Lego size
information formats
assembly.
Hou et al Evaluated the use of :;ls?gglseusf desA l"{l“ls)er dir a:élr:z%ei(e)
"|AR  for  pipe pIpes. 1h¢ PIp NASA-TLX
(2015) rated and  subjects  were
assembly . )
permitted to rework on it.

The literature review above showed that mental workload assessment in construction is
studied within a limited scope. Even though NASA-TLX is a well-tested method for evaluating
mental workload, the emergence of more quantitative tools, such as the EPOC+ brain sensor,
allows researchers to have more granularity in the assessment data. There is enough evidence in
the recent literature that EEG is a promising method for construction research and has a great
potential to measure construction workers’ mental workload under a HCI situation.

Pilot study

This study points at testing the feasibility of the EEG based mental workload evaluation
method for construction worker’s HMD AR use. Hence, the study had subjects carry out wood
frame assembly tasks with two information delivery types, and compared the performance
metrics, such as the engagement and focus with NASA-TLX evaluation results. If the results are
corresponding, then this method is supposed to be feasible for further study.

Experimental design

4 subjects with engineering knowledge background were asked to conduct two wood frame
assembly tasks: one with paper blueprint and tape measure, and the other one with only a 3D
model in a Microsoft HoloLens headset. Figure 1 shows the user’s view through HoloLens. The
left picture (a) shows the initial status, where an AR frame model is displayed on the ground,
with a pile of lumbers aside. The right one (b) shows that the frame is correctly assembled
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according to the model. In both task situations, the subjects were monitored by the EPOC+ brain

sensor (Figure 2), which recorded their brain activity information in EEG data set. After each
task, the subject was asked to finish a NASA-TLX questionnaire.

© ASCE

Table 3. “EEG” Keyword Search

Report Purpose Experimental Design Data Analysis
Time-frequency
Monitored Subjects took 4 tasks: idling, 3\2?113/(?\15 & P((;[;IZE;
Chen et al. | construction ladder climbing, nut selection, bolt Spectral
(2016) workers’ mental | fastening and under 3 conditions: DF; nsity(PSD)  map):
workload relax, climb, conduct installation. 1S p);
Indicator:
Engagement Index.
Monitored Subjects took 4-5 minute tasks: Three-way ANOVA
Chen et al. | construction climb up a ladder select bolts, for EEG PSD data,
(2017) workers’ mental | install bolts, climb down the and compared with
workload ladder. NASA-TLX results.
Momtore'd Subjects finished 6 tasks in a ICA (Independent
construction . . Components
Wang et \ process: pick up material, pass .
workers Analysis) and pass
al. (2017) . obstacles (4 types), put down
vigilance and material filters to remove
attention level ' artifacts.
On-site subjects performed tasks Pass ﬁlt‘ers‘ and ICA
Measured . o for extrinsic and
. . under 3 different conditions N s
Jebelliet | construction . . intrinsic artifacts
, (hazard levels). Off-site subjects
al. (2018) | workers’ stress . removal. Mean PSD
performed repetitive tasks at
level . . on beta frequency for
different time after rest. . .
states classification.
Introduced various
Proposed a machine learnin
framework on A framework with pass filter for &
. o . methods for
. artifact removal | extrinsic artifacts and ICA for . .
Jebelli et . . ; classification: k-
al. (2018) for EEG signal | intrinsic artifacts removal. Nearest Neighbors
' collected from Significant difference captured for ) ’
i Gaussian
an on-site mean PSD of beta range. .
experiment Discriminant
Analysis, SVM.
Pass filter and ICA
On-site subjects performed tasks used for data
Measured under different conditions (at cleaning, and mean
Hwang et | construction ground, on ladder and in a PSD for further
al. (2018) | workers’ confined and dimmed space). Off- | analysis. Adopted

emotional state

site subjects performed repetitive
tasks at different time after rest.

indicator calculation
for Valence and
Arousal.
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Figure 1. Screen shots from HoloLens (a) AR frame model (b) frame assembled

Figure 2. EPOC+ Brain Sensor (https://www.emotiv.com/epoc/)
Results

The software for EPOC+ provides performance metrics based on the raw EEG data. Table 4
shows the result of comparing the subjects’ engagement score during two tasks, and Figure 3, as
an instance, plots the real-time records of the engagement score for subject 2. There is an
obvious difference between the results from two tasks. According to the EEG analysis results, in
most cases, reading paper blueprint and doing tape measuring produced a higher mental
engagement than using HoloLens. Besides, the time consumption for each task can also tell the
difference in efficiency. Table 5 shows the summary for the time each subject used for the tasks.
There are three out of four subjects using less time with HoloLens, and the mean value shows the
same result. Based on these results, AR HMD is capable to reduce the subjects’ engagement and
improve their productivity.
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Figure 3. Plot of Engagement Score for Subject 2

Table 4. Mean Engagement Score During Tasks (scale of 0 ~100)

S01 S02 S03 S04 Mean
AR model 78.06 56.46 68.36 56.49 64.84
Paper 68.05 68.02 94.63 60.87 72.89
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As a reference towards the EEG based method, NASA-TLX also shows a corresponding
result. NASA-TLX has six metrics for subjective evaluation: Mental Demand, Physical Demand,
Temporal Demand, Performance, Effort, and Frustration. From Figure 4 and Table 6, we can see
that the AR model has a significant lower score mental demand than the paper drawing, which
indicates that subjects felt more relax and comfortable in finishing task using HoloLens. Besides,
the overall ratings also show that using AR model has a lower task demand for the subjects.

Table 5. Time Consumption for Tasks (seconds)

So01 S02 S03 S04 Mean
AR model 216 277 450 197 285
Paper 263 505 304 571 410.75
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Figure 4. Box Plots (a) Adjusted Mental Demand Score (b) Total Adjusted Score

Table 6. Summary of NASA-TLX Scores (Adjusted Average Score)

MD PD TD P E F Total

AR model | 3.417 10.417 4917 7.584 5.667 1.834  33.834
Paper 12.417  5.167 4.667 7.833 8.834 2.667  41.584

CONCLUSION AND FUTURE WORK

This paper reviewed different approaches utilized in mental workload measurement for HCI
and construction domains. In comparison to subjective approaches, physiological measures
provide a more direct and quantitative observation, with precise and analyzable results for further
study. However, the literature review shows that there is still limit study in mental workload
evaluation in the intersection of HCI and construction domains. In this context, a conceptual
approach to measure workers’ mental workload with EEG is shown to be viable. The pilot study
showed the feasibility of the EEG based method to detect mental workload (engagement)
difference under two situations, which helps us to study the pros and cons of HMD AR. Besides,
the result of NASA-TLX also provide a corresponding conclusion, which also a validates the
feasibility of the EEG based method. Nevertheless, there are still issues required to be concerned
in the future. In the pilot study, we used the exist function for engagement rating, which didn’t
include a complete data cleaning process. Since the framing assembly task involved with an
intense body movement, as the previous study proved, this can cause the artifacts and impact the
accuracy of final results. Therefore, in the future study, a more complete and systematic data
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cleaning process needs to be added.
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