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Learned traits are thought to be subject to different evolutionary dynamics
than other phenotypes, but their evolutionary tempo and mode has received
little attention. Learned bird song has been thought to be subject to rapid
and constant evolution. However, we know little about the evolutionary
modes of learned song divergence over long timescales. Here, we provide
evidence that aspects of the territorial songs of Eastern Afromontane sky
island sunbirds Cinnyris evolve in a punctuated fashion, with periods of
stasis of the order of hundreds of thousands of years or more, broken up
by evolutionary pulses. Stasis in learned songs is inconsistent with learned
traits being subject to constant or frequent change, as would be expected
if selection does not constrain song phenotypes over evolutionary time-
scales. Learned song may instead follow a process resembling peak shifts
on adaptive landscapes. While much research has focused on the potential
for rapid evolution in bird song, our results suggest that selection can tightly
constrain the evolution of learned songs over long timescales. More broadly,
these results demonstrate that some aspects of highly variable, plastic traits
can exhibit punctuated evolution, with stasis over long time periods.
1. Background
Signal evolution has long been thought to be important to the process of animal
speciation [1], in part because many closely related species have distinct signals
whilediffering little inother traits [2,3]. Inparticular, theevolutionof signals involved
inmate choicehasbeen thought tobecritical to the evolutionofpre-mating reproduc-
tive isolation [1], such that correlated evolution of signals and mating preferences
could lead in and of itself to speciation [4,5]. However, there remainmany questions
abouthowsignaldivergenceproceedsover time,whichmechanismsare responsible,
and how it contributes to speciation and diversification processes.

Some signals that may be important to speciation are highly plastic, includ-
ing those that are impacted by learning processes [6–8]. While divergence in
less plastic traits generally requires genetic divergence, the same is not true
for learned signals (even if they have components with genetic predispositions
[9,10]). Indeed, novel learned signals can arise without genetic mutation, and
spread quickly throughout populations [11]. Such change could serve as an
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initial step in divergence that includes subsequent genetic
changes. Thus, learned signals are subject to different evol-
utionary pressures, including the introduction of culturally
transmitted novelties and cultural drift [2,7], and may exhibit
different evolutionary rates [12] or trajectories (e.g. extents of
gradualism versus punctuated evolution) over time [13],
when compared with signals that are not learned. Learned
signals may be especially subject to regular and rapid evol-
utionary change because cultural novelties appear
frequently relative to genetic mutations [2,14].

The songs of oscine songbirds present intriguing cases for
the study of learned signal evolution. Most oscine songbirds
learn to perform aspects of songs by imitating conspecifics
[15]. The oscine learning process is directed by innate predis-
positions that result in selective learning—that is, oscine
individuals only learn or reproduce vocalizations with cer-
tain characteristics typical of their species [16–18]. Thus,
diversification of oscine song may involve cultural evolution,
the evolution of the innate predispositions, and potentially
the interactions between these levels.

In this study, we are interested in assessing the tempo and
mode of learned bird song evolution. Previous reviews [2,13]
have suggested that learned signals should exhibit little con-
servatism, with isolated populations typically evolving
different phenotypes via cultural evolution even before any
genetic differences have accrued. If rapid cultural evolution
serves as a first step in further divergence that includes under-
lying genetic change, learned songs may diverge gradually
over time, and potentially at high rates. Gradual divergence
in song may also occur if the innate predispositions that
guide song development are themselves not strongly con-
strained, and are free to diverge by genetic drift or novel
selective pressures. Indeed, gradual evolution has been pos-
ited to be important in song divergence connected to
speciation [19]. The strongest empirical evidence for the evol-
utionary trajectory of learned song relevant to speciation likely
comes from studies of the greenish warbler Phylloscopus
trochiloides, which exhibits nearly continuous variation across
geographical space, suggestive of gradual evolution [20].

However, it remains possible that learned song can
exhibit punctuated evolution, where pulses of divergence
occur against a backdrop of stasis, or highly bounded, non-
accumulating evolution. Such a pattern may arise if innate
song-learning predispositions remain fixed for long periods
of time, with infrequent pulses of evolutionary change.
Modelling suggests that a build-up of genetic variation in
song-learning predispositions can occur despite constancy
in song phenotypes, potentially providing the means for
rapid, pulse-like changes following periods of stasis [12]. Inter-
estingly, prior empirical studies have documented that aspects
of song can be highly similar across broad geographical ranges
[21] and over hundreds of years [22–24], suggesting that
longer-term stasis in spectrotemporal characters is feasible.
However, for species that are similar across broad geo-
graphical ranges, gene flow or recent range expansion could
account for similarity, so it is unclear whether these examples
exemplify the potential for conservatism over longer time-
scales. Recent empirical evidence from white-throated
sparrowsZonotrichia albicollis showing apparent rapid replace-
ment of one song form by another may correspond well to a
punctuated evolution model. However, it is unclear for how
long the prior variant dominated. If such pulses occur regu-
larly, this process would appear as gradual evolution over
longer timescales, whereas if such pulses occur rarely against
a backdrop of stasis, this process would appear as punctuated
evolution. What is needed to understand whether bird songs
evolve gradually or via more punctuated evolution are studies
that allow assessment of song divergence across a spectrum of
molecular divergence levels, capturing earlier and later stages
of divergence.

To accomplish this, we investigated the learned territorial/
mate-attracting songs (hereafter, territorial songs) of the
eastern double-collared sunbird (EDCS) species complex [25],
which inhabits mountains of the Eastern Afromontane. Sun-
birds are oscine songbirds (the largest clade of song-learning
birds, comprising approx. 5000 species [26]), and their territor-
ial songs exhibit signatures of songs developed through
learning, including striking complexity and variation [15].
The geographical ranges of these species are archipelago-like
(figure 1), with populations occupying discrete, island-like
patches of suitable montane forest and forest edge habitats.
Similar to many other co-distributed taxa in the Eastern
Afromontane and especially the Eastern Arc Mountains, the
EDCS complex exhibits deep genetic structure across sky
islands, both among and within named taxa, indicating that
many populations have experienced long periods of isolation.
We recorded territorial songs across this distribution, then
quantified song variation across hierarchical levels of organiz-
ation. We then used discriminant analyses to assess whether
clustering of songs in multivariate space corresponded with
molecular lineages that have been characterized as different
species. Then we examined the evolutionary mode (i.e. gradu-
alism versus punctuated evolution) of learned songs across
the species complex. We fit models representing different tem-
poral evolutionary trajectories to song via phylogenetic
methods, and test which model better fits the evolution of
song traits. This question has rarely been posed for signalling
phenotypes [27].
2. Results
We used linear mixed-effect models to assess variation in 14
song traits across the measured songs in our dataset. Across
356 songs from 123 individuals, the random-effects variance
terms in these models indicated that there was substantial
variation within and among individuals, but little geographi-
cal variationwithin species. The variance terms corresponding
to variance among individuals (within populations) and the
residual variance (including within-individual variation)
accounted for greater than 89% of the random-effects variance
across all traits. The among-population, within-species
component contributed less than 11% of the random-effects
variance for all 14 measured song traits (electronic supple-
mentary material, table SA1), indicating that geographical
variation within species is minor relative to within-population
variation. The proportion of the variance explained by the
fixed effect varied from 0.07 to 0.82 across traits, with a
mean of 0.49, indicating that among-species differences were
substantial across most of the 14 traits. We note that for this
analysis, we divided Cinnyris mediocris into northern and
southern groups (figure 1), creating an additional level of
the fixed effect because these groups differed strongly in
some song traits. For the models presented in the main text,
we excluded the two populations found at the centre of the
Cinnyris fuelleborni–Cinnyris moreaui hybrid zone, as assigning
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Figure 1. An overview of the EDCS species complex. (a) A phylogenetic tree trimmed to include named species and one within-species division that corresponds
with a major song divergence. Estimated age of the MRCA is shown at the node. (b) Depictions of typical adult male plumage for the six lineages represented.
(c) Sonograms showing representative songs for the six lineages shown. (d ) Ranges of the six lineages in eastern Africa across Kenya, Tanzania, Malawi and
Mozambique. (Online version in colour.)
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individuals to species in these populations is more challen-
ging, and some song convergence occurs [28]. The results of
linear mixed modelling were similar; however, when includ-
ing the two populations at the centre of the hybrid zone
minus a single C. moreaui with especially aberrant song from
this area (n = 141, electronic supplementary material, table
SA2).

We additionally performed model-based discriminant
analyses of song phenotypes at the individual level (means
across songs for individuals, n = 123 individuals) to confirm
that song phenotypes formed clusters in multivariate space
that corresponded to species. Song phenotypes clustered by
species, with additional separation between southern and
northern populations ofC.mediocris (electronic supplementary
material, figure SA1). Classification error to the six groups
shown in figure 1was 0%.When performing the same analysis
including populations at the centre of the moreaui/fuelleborni
hybrid zone (n = 141 individuals, electronic supplementary
material, figure SA2), classification error was 0.7%.

Multi-locus phylogenetic analyses based on the mtDNA
gene ND2 and five nuclear intron sequences revealed molecu-
lar lineages that correspond with song phenotype clusters
(figure 1; electronic supplementary material, figures SA2
and SA3). We recovered five major molecular lineages across
the species complex that were similar to those found in pre-
vious phylogenetic analyses using only mtDNA sequences
[25], and correspond with the taxonomy proposed in that
study. Additionally, we recovered distinct clades represent-
ing isolated populations within three species: C. mediocris,
C. fuelleborni and C. moreaui. In C. mediocris, our samples
from the Mbulu highlands in northern Tanzania formed a
clade, while those from Kenyan populations formed a clade
sister to it. Cinnyris fuelleborni also comprised two clades,
with individuals from the Njesi Plateau in northernMozambi-
que sister to all other C. fuelleborni. In C. moreaui, samples from
the Nguru Mountains formed a clade nested within a phylo-
genetic grade representing samples from all other localities
for this taxon (electronic supplementary material, figure
SA3). Phylogenetic analysis at the species level using BEAST
recovered the same topology for species relationships for the
five named species as our ML analysis, and estimated a diver-
gence time of 3.4My (HPD interval: 2.67–4.18My) for themost
recent common ancestor (MRCA) of the EDCS species com-
plex (electronic supplementary material, figure SA4). Our
population trees, which we used to fit evolutionary models
for song phenotypes (e.g. figure 2), recovered the same
topology among named taxa as theML and Bayesian analyses.

(a) Inference of tempo and mode of learned song
evolution

Using novel model-fitting approaches and a novel model
implementation for punctuated evolution on phylogenetic
trees (see electronic supplementary material), we compared
support for Brownian motion versus punctuated evolution
across different song traits. We found strong support for punc-
tuated evolution in four of the 14 song traits (log duration,
range of peak frequency, CV peak frequency, median peak fre-
quency) and moderate support for punctuated evolution in
three more traits (median pause duration, median element
duration, log number of elements). For the remainder (CV fre-
quency bandwidth, CV frequency change, maximum peak
frequency, minimum peak frequency, log median frequency
change, CV pause duration, log median bandwidth), neither
model was strongly favoured over the other. Sensitivity ana-
lyses examining the fit of trait evolution models on bootstrap
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Figure 2. Pulse localization. (a) Pulse localization for all song traits with
moderate or strong support for pulsed evolution. The pulses shown are
only those that occurred in the preferred pulse configuration as determined
by AICc. Those pulses corresponding to traits with strong support following
our simulation-based correction are denoted with an asterisk. The others
come from traits with moderate support (see text). Colours represent traits
as follows: green, log song duration; orange, range peak frequency; light
blue, CV peak frequency; yellow, median peak frequency; dark blue,
median pause duration; red, median element duration; pink, log number
of elements. The tips of the phylogenetic tree correspond to populations.
Species epithets are indicated at far right. (b) Support for localization
based on AICc weighting among pulse configurations for the evolution of
(log) song duration. Blue diamonds are found on branches where pulse local-
izations had support values greater than 0.2, with diamond size reflecting
support, and support value shown above. The asterisk signifies a pulse
that occurred in the pulse configuration with the minimum AICc value.
Sizes of grey circles correspond to mean phenotype values at tips, which
each represent a geographically discrete sky island population. Species
epithets are indicated at far right. This phylogenetic tree was constructed
based on genetic distances among populations for mtDNA genes, and corre-
sponds in topology among species to trees built using maximum likelihood
and Bayesian approaches from multi-locus datasets. (Online version in colour.)
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trees showed that our results were broadly robust to phylo-
genetic uncertainty (electronic supplementary material,
figure S4).

Our approach allowed us to compare support for the
number and positions of evolutionary pulses on our phylo-
genetic tree. Pulses were allowed to occur on any branch. In
our modelling approach, each pulse was considered a par-
ameter, such that more parsimonious models had fewer
pulses. We present the results for our pulse localization
approach for all song traits where pulsed evolution had
strong or moderate support (an example is shown in figure 2b;
see also electronic supplementary material, figures SA4–SA9
and table S2). Pulses for four of these seven traits were co-loca-
lized to the branch representing the common ancestor of C.
fuelleborni populations, with support values greater than 0.8.
The pulse configurations with minimum AICc for the seven
traits where punctuated evolution had moderate or strong
support had a mean of 1.14 ± 0.35 s.d. pulse positions (elec-
tronic supplementary material, figure S8). Support for the
punctuated evolution model across these traits, coupled with
the small number of pulses supported for them, is consistent
with the hypothesis that evolutionary change is minimal for
these traits for long stretches of time, corresponding to hun-
dreds of thousands of years or more on the phylogenetic tree.
3. Discussion
(a) Learned song evolution as peak shifts on adaptive

landscapes
Here, we have presented evidence that punctuated evolution
explains the evolution of aspects of territorial song better
than gradual evolution (Brownian motion), across the EDCS
species complex. In other song traits, we find equivocal sup-
port for punctuated and gradual evolution. Both temporal
and spectral aspects of song were among those with strong
support for punctuated evolution. Our results support the
notion that aspects of learned songs can evolve by large
jumps amid extended periods of highly bounded evolution
(in which short-term evolution is non-accumulating over
time), or stasis. While rapid evolution of animal signals has
often been discussed in the literature on signal evolution,
and has frequently been invoked as a route to pre-zygotic
reproductive isolation, extended periods of stasis in signals
has received comparatively little attention [27]. Characteriz-
ing the evolutionary mode of territorial song as we have
done here sheds light on the form of signal evolution, how
it may be involved in speciation processes, and what may
or may not cause evolutionary changes.

We focus largely on the support for punctuated evolution
here; however, there was variation in relative support for
punctuated versus gradual evolution across traits. Support
for punctuated evolution may be associated with the extent
of differences among species for a given trait. The variance
explained by species identity (marginal R2 from LMMs; elec-
tronic supplementary material, table SA1) was higher for
traits with strong or moderate support for punctuated evol-
ution (0.58 ± 0.07 = 8, n = 7), than for traits with equivocal
support for punctuated and gradual evolution (0.40 ± 0.07,
n = 7). This evidence suggests that song traits that evolve
more gradually may not achieve levels of difference that
distinguish taxa as often as those traits that evolve by pulses.
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The learning process in the development of song in oscine
songbirds, like the focal sunbirds here, is a form of phenotypic
plasticity [7]. As in previous studies using phylogenetic com-
parative methods [29,30], we interpret punctuated evolution
by visualizing peak shifting on an adaptive landscape. The
two-dimensional version of the adaptive landscape we visual-
ize is defined by having a trait on the x-axis, and the y-axis
representing the contribution of receiver responses to fitness
[31]. Authors have suggested that phenotypic plasticity itself
could assist peak shifting in adaptive landscapes by allowing
phenotypes to initially approach alternate peaks without
having to wait for novel genetic variation, especially in the
case of behaviour [32]. However, high levels of plasticity
may enable so much phenotypic variation that no underlying
genetic change is required, such that adaptation to a novel
peak does not occur (i.e. plasticity itself is the adaptation). In
the case of song, it would seem unlikely that there is a fixed
adaptive landscape [33], in which peaks maintain stable
shapes and occupy the same positions through time. Instead,
because the efficacy of signals can change depending on
environmental variation (e.g. habitat structure [34]; popu-
lation density [35]) and especially with the evolution of
receiver responses [27], adaptive peaks for learned song
would appear likely to change shape, move, appear and/or
disappear, over time and across geographical space. Kirkpa-
trick [36] and Whitlock [33] showed that even small changes
in the slopes and heights of adaptive peaks alone could trigger
peak shifts, suggesting they may occur regularly, especially
for plastic traits [32]. Thus, there are two main theoretical
obstacles for highly variable learned song to exhibit peak shift-
ing dynamics over longer timescales. First, song may be so
plastic that it can travel about an adaptive landscape without
any underlying genetic change [32,37], in which case it would
likely be prone to extremely high lability. Secondly, the adap-
tive landscape for songmay change rapidly through time, and
vary across environments, such that adaptive peaks are
unlikely to remain in the same shape and position over evol-
utionary timescales [27,33]. Thus, there was little reason to
expect learned songs to be restricted to peaks over the time-
scales inferred in this study, because of their high variability
and little reason to expect adaptive peaks to be stable in pos-
ition and shape over time such that they could be observed.

Our finding that punctuated evolution better characterizes
the evolution of some song traits than gradual evolution indi-
cates that trait evolution can be tightly bounded, approaching
stasis, over long periods of time (greater than 105 years). These
results suggest that adaptive peaks for song are stable over
time. The stability of adaptive peaks for learned songs
suggests that the songs’ receivers mediate stabilizing selection
on song traits. There are two sets of receivers, males and
females, that are likely to exert stabilizing selection forces in
sunbirds. If narrow female preferences alone were responsible
for stasis, we would expect strong behavioural reproductive
isolation where two species with highly divergent song
come into contact. However, C. moreaui and C. fuelleborni,
which have extremely different songs across many song
aspects, hybridize where they come into contact [28], indicat-
ing that female preferences are unlikely to be narrow. Thus,
male receivers may play an important role in this instance.
They may do this by exerting stabilizing selection on their
own, or by exerting directional selection opposite another
force, like selection from females or viability selection.
An alternate hypothesis for stasis in some traits is that
evolutionary constraints result from limited genetic variance
[38–41]. However, limited genetic variance should not
strongly constrain evolution over longer timescales, as exam-
ined here, because novel genetic variation will arise over
these timescales.

An alternate explanation of the within-species stasis
pattern observed in this study is that similarity among iso-
lated populations has been maintained by gene flow during
past periods of greater population connectivity. By this hypo-
thesis, highly divergent molecular lineages within species
in our study (Njesi within C. fuelleborni and Nguru within
C. moreaui) may have experienced cryptic gene flow.
Though we have not performed genome-wide sequencing
for this study and, therefore, cannot completely rule out
this explanation, we do not find it nearly as plausible. First,
these highly divergent lineages share no mtDNA haplotypes
with other populations. As mtDNA is inherited via females
in birds, and as females tend to be more dispersive in
passerine birds [42], this alternate explanation would likely
require a mechanism for nuclear-biased gene flow without
mtDNA gene flow. Secondly, there is substantial evidence
for long-term isolation among sky island populations for
co-distributed taxa in the Eastern Afromontane [43–45],
suggesting that recent climatic changes have not generally
facilitated connectivity among these sky islands.

If near-stasis occurs over long periods of time in some bird
song traits, what explains evolutionary divergence when it
occurs? One prominent hypothesis explaining the evolution
of bird song is that song evolves as a by-product of morpho-
logical evolution. Body size evolution may be important
because of allometric changes in pieces of the vocal apparatus,
which could alter song frequency [46]. When song evolves by
punctuated evolution, the morphological by-product hypoth-
esis would predict that evolutionary pulses are consequences
of morphological evolution (which in itself might be punctu-
ated). In the EDCS complex, there is limited morphological
evolution, with subtle changes in morphology across the com-
plex, and substantial overlap in morphological characteristics
that differ on average between species [25]. However, Lover-
idge’s sunbird C. loveridgei is unambiguously the largest
member of the species complex. From the morphological
by-product hypothesis, we would predict that C. loveridgei
should have the lowest frequency songs. We find the opposite.
C. loveridgei sing songs with the highest peak frequencies of all
the members of the species complex, and our analyses evince a
pulse of peak frequency evolution unique to the Loveridge’s
sunbird lineage. This evidence suggests that morphological
evolution does not hold the key to understanding inferred
evolutionary pulses of song evolution in the EDCS complex.

Range expansion provides another possibility as a cause
for pulses in learned songs. Studies on North American
juncos [47,48] have suggested that pulses of phenotypic
divergence (in that case, plumage) might take place in associ-
ation with instances of rapid range expansion. During rapid
range expansion, serial founder effects can induce the fixation
of rare genetic variants, and selective forces on signals may be
distinct at the leading front of range expansions. For example,
population densities at the leading edges of range expansions
may be low, which could advantage signals that broadcast
across further distances. In the future, genome-wide molecu-
lar studies could be used to reconstruct range expansions to
examine correspondence in phenotypic change with range
expansion in the EDCS.
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(b) Relevance of punctuated evolution of learned song
for speciation

The EDCS species complex bears hallmarks of speciation by
sexual [3], or social [2] selection: species are strongly diver-
gent for a signal used in social competition, and do not
differ strongly in ecological respects [28]. Panhuis et al. [3]
suggested that an additional signature of speciation by
sexual selection is the evolution of variation in sexually
selected traits among populations within species, with this
variation generating partial pre-mating isolation. Our
sampling of isolated sky island populations, especially
within C. moreaui and C. fuelleborni, allows us to characterize
within-species variation in territorial song. Across most song
traits, variation across populations within species is minimal,
including for many traits with strong differences across
species, e.g. CV peak frequency (electronic supplementary
material, figure SA5) and median pause duration (electronic
supplementary material, figure A7). As such, between-
species divergence cannot be predicted from within-species
variation [49], suggesting that alternate evolutionary
mechanisms contribute to divergence at different levels.
62
4. Conclusion
The effects of learning on evolutionary diversification processes
are poorly explored for many organisms. Previous work has
suggested that stabilizing selection on learned traits should be
inadequate to prevent the divergence of genetic predispositions
by drift, ultimately facilitating more rapid divergence in those
genes underlying traits [12]. Our study shows that multiple
song traits can exhibit stasis for prolonged periods, lasting hun-
dreds of thousands of years or more. These results suggest that
learned song in the focal taxa is subject to a combination of suf-
ficiently strong stabilizing selection and sufficient exposure of
the underlying genetic variation to prevent incremental
change for long periods of time. An alternative, that there is
insufficient genetic variation underlying these traits, is poten-
tially plausible, but appears less likely given the evidence that
genetic variation for learned song traits is present in other song-
birds, and the long span of evolutionary time during which
such variation could be generated.
5. Material and methods
(a) Song analysis
We made sound recordings of EDCS from 2007 to 2011 in Kenya,
Tanzania and Mozambique, using solid-state digital recorders
(Marantz PMD models 660, 661 and 670) and shotgun micro-
phones (Sennheiser ME-67). A small number of recordings were
made using a parabolic dish with an omnidirectional microphone
(Sennheiser ME-62). We complemented our field recordings with
additional recordings from the Macaulay Library (http://macau-
laylibrary.org) and the British Library of Natural Sounds (https://
www.bl.uk/collection-guides/wildlife-and-environmental-sounds).
The vocal repertoires of the focal taxa are complex, including a
wide array of different signal types. Here, wemeasure the acoustic
properties of male territorial songs delivered in bout form, in
which consecutive songs are typically separated by a short dur-
ation (less than 15 s) of silence, or a series of short calls and
pauses [50]. Sunbirds sing these songs from a perch in the veg-
etation, ranging in height from 2 to 30 m. These songs function
in male–male territorial interactions [51]. Further, as in other pas-
serine birds [15], these songs likely serve to attract mates. Singing
can coincidewith, or immediately precede, femalewing-fluttering
displays directed at singing males, which has been observed in
C. loveridgei and C. fuelleborni (J.P.M. 2008 and 2009, personal
observation).

Before analyses, recordings were standardized for frequency
sampling at 44.1 kHz, and bandpass filtered at 2–10 kHz. More
strict filtering, at 2.5–9 kHz, was then employed for recordings
of C. mediocris and C. usambaricus to allow fine-scale structural
analysis of sonograms, as our recordings of their songs generally
had lower signal : noise ratios, and the lowest frequencies in their
songs are greater than 2.5 kHz. Similarly, strict filtering could not
be applied to C. fuelleborni or C. moreaui songs because their songs
sometimes include peak frequencies below 2.5 kHz. Spot filtering
was used to remove acoustic signals not emitted by the focal bird.
We selected high-quality field recordings for analyses after
sonogram visualization in Raven Pro 1.3 [52]. J.P.M. performed
all sonogram analysis procedures in the program Luscinia [53].
Sonogramswere produced in Lusciniawith the following settings:
maximum frequency: 10 kHz; frame length 5 ms; time step: 1 ms;
spectrograph points: 221; spectrograph overlap: 80%; echo
removal: 100%; echo range: 100; windowing function: Hann;
and high-pass threshold: 2 kHz. Signals within sonograms were
detected using Luscinia’s automated signal detection. Results of
automatic signal detection procedures were checked by eye and
ear, with recordings slowed for playback to one-eighth speed.
Automated signal detection errors were corrected using the
brush tool. Measurements were made for each sonogram trace
(hereafter ‘elements’), separated by pauses from other elements.

From the set of measurements of each element, we calculated
summary statistics at the song level. For each individual sunbird,
we then calculated the mean values of a set of summary statistics
across songs. We calculated the following summary statistics for
each song, based on values for each element: median pause dur-
ation between elements (ms), coefficient of variation (CV) of
pause duration, median peak frequency (Hz), CV peak frequency,
maximum peak frequency (Hz), minimum peak frequency (Hz),
range peak frequency (difference between maximum and mini-
mum peak frequencies), number of elements, median frequency
bandwidth (Hz), CV frequency bandwidth (Hz), median fre-
quency change (Hz), CV per-element frequency change, song
duration (ms) and median element duration (ms). The peak fre-
quency is defined as the frequency window with the highest
amplitude for a given portion of the sonogram. Becausewe extract
peak frequencies from amplitude spectra for all our frequency
measurements, our approach should not be subject to potential
errors from manually selecting frequency windows [54]. To
improve analyses with respect to assumptions of normality for
non-phylogenetic analyses (linear mixed models and discrimi-
nant analyses), we took the natural log of those variables that
were right-skewed. To generate estimates of song phenotypes at
the level of the individual bird, we took the arithmetic mean of
the values for each variable across songs. These procedures
resulted in a dataset comprising song phenotype estimates for
142 individuals from measurements of 419 songs. A mean of
2.95 ± .08 s.e. songs were measured per individual.

To characterize sources of variation for song traits, we fit linear
mixed models to the 14 song variables. These models each had an
individual-level random effect nested within a population-level
random effect. Populations represented distinct sky island forest
patches. In performing these analyses, our first goal was to esti-
mate fractions of within-species variance attributable to within-
individual, among-individual and among-population variation.
Thewithin-individual variance is a component of the residual var-
iance in our models. Our second goal was to identify which traits
were most different among species. To accomplish this latter goal,
we fit species as a fixed effect.

http://macaulaylibrary.org
http://macaulaylibrary.org
http://macaulaylibrary.org
https://www.bl.uk/collection-guides/wildlife-and-environmental-sounds
https://www.bl.uk/collection-guides/wildlife-and-environmental-sounds
https://www.bl.uk/collection-guides/wildlife-and-environmental-sounds
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We performed discriminant analyses based on Gaussian
finite mixture modelling on the 14 song traits measured for
each individual, using the package Mclust [55] in R 4.1.0 [56].
We sought an optimal mixture model, by BIC, for discriminant
analyses among the model types referred to in Mclust as
(i) spherical, equal volume, (ii) spherical, unequal volume,
(iii) diagonal, equal volume and shape, (iv) diagonal, equal
volume, varying shape, (v) diagonal, equal volume, varying
shape, and (vi) diagonal, varying volume and shape. We limited
the number of mixture components to three per class. To visual-
ize the results, we performed a dimension reduction using the
function MclustDR, with default settings.

(b) Molecular phylogenetics
We performed phylogenetic analyses using DNA sequence
data for samples collected from the field (see the electronic
supplementary material, appendix for details on sampling for
molecular analyses and for further detail on phylogenetic
methods, see electronic supplementary material, appendix 2 for
specimen details). First, to investigate whether song phenotypes
generally correspond to phylogenetic lineages across the species
complex, we built a multi-locus phylogenetic tree from a conca-
tenated alignment of DNA sequences for three mtDNA genes
(ND2, ND3 and ATP6) and six nuclear autosomal introns (MB,
CHDZ, 11836, 18142, TGFb2 and MUSK) for 256 in-group indi-
viduals and 12 outgroup species. The alignment had 5313 bp.
We estimated our phylogenetic tree using a maximum-likelihood
approach [57], and assessed support for nodes by bootstrapping.
Secondly, we built population-level trees to investigate the his-
tory of song divergence over the focal species complex. We
constructed these trees by calculating the mean population
distances for 15 populations. For these trees, we used sequences
of the mtDNA genes ND2 (440 bp) and ND3 (362 bp) for
134 individuals. Topological relationships between named
species were the same in the mtDNA population trees as in the
multi-locus phylogenetic tree with species as tips.

Third, we sought to estimate the age of the MRCA of the
species complex. We performed a species-level phylogenetic
analysis using a Bayesian coalescent-based method (BEAST,
[58,59]) with DNA sequence data from two mtDNA genes
(ND2 and ATP6, coded as a single locus) and four nuclear
DNA sequences (ATP6, TGFb2, MB and CHDZ). This analysis
included 16 species as tips, including the five named species in
the focal species complex (C. mediocris, C. usambaricus, C. loverid-
gei, C. moreaui and C. fuelleborni), eight other sunbird species and
three species of flowerpecker (Dicaeidae). We dated the MRCA of
the focal species complex by implementing a normal prior distri-
bution (mean = 18 My, s.d. = 2) on the node age of the MRCA of
sunbirds and flowerpeckers, based on a recent dating analysis of
a family-level phylogenetic tree of the Passeriformes [60]. We
used a GTR-gamma substitution model and a relaxed lognormal
molecular clock, with substitution rate prior distributions based
on divergence rate estimates for the Hawaiian honeycreeper
radiation (an oscine passerine radiation, like sunbirds) [61].

(c) Phylogenetic comparative method approach
To investigate the tempo and mode of song divergence, we com-
pared phylogenetic trait evolution models fit to population-level
data. We fit models to each song trait individually. We built and
fit phylogenetic trait evolution models representing (i) strongly
bounded evolution (stasis or near-stasis) punctuated by pulses
and (ii) gradual evolution (Brownian motion), by maximum
likelihood. These models are described in the electronic sup-
plementary material. Models including pulses were fit under
the condition that there was a maximum of four pulses across
the population tree. We compared support for fitted models
using AICc values [62]. However, simulations indicated that
standard approaches to comparing AICc values were biased, so
we developed AICc calibrations for each trait to compare
model support (electronic supplementary material). Our
approach may be understood as an approximate correction that
takes into account phylogenetic correlations present in the data,
as is necessary for BIC [63]. To characterize the uncertainty in
model selection due to phylogenetic uncertainty, we built 10
bootstrap population trees, and fit both trait evolution models
on each of the bootstrap phylogenies for each song trait.

For the traitswhere punctuated evolutionmodelswere a better
fit than Brownian motion, we estimated the location of pulses on
the population tree. Our method for fitting pulsed evolutionary
models involves fitting the maximum-likelihood parameters for
all potential pulse configurations on the tree, given a maximum
of four pulses (corresponding to approx. 4.6 × 104 pulse confi-
gurations). To quantify the strength of the evidence for an
evolutionary pulse on a given branch of the phylogenetic tree,
we calculated the sumof theAICcweights of those pulse configur-
ations that include a pulse on the given branch, anddivided this by
the sum of the AICc weights of all computed pulse configurations
[64]. Our approach treats each n-pulse configuration as an inde-
pendent model. We present maximum-likelihood parameters for
themaximum-likelihood configuration (electronic supplementary
material, tables S1 and S2).
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