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ABSTRACT
Programming tasks provide an opportunity for students to improve
their problem-solving skills (PSS). However, when programming
tasks are challenging, students could become demotivated and lose
the opportunity to improve PSS in the process. To scaffold the diffi-
culty of programming tasks and better motivate students to enhance
PSS via coding, this paper introduces 𝑃𝐷𝐿 (Problem Description
Language). Given the natural-language description of a combinato-
rial optimization problem (COP), 𝑃𝐷𝐿 requires students to describe
(i) inputs, (ii) constraints, (iii) the optimization objective, and (iv)
outputs, based on their problem comprehension. 𝑃𝐷𝐿 then vali-
dates each problem description by (1) compiling a solution program
from the description and (2) executing the generated program with
predefined test cases. Based on the compiling and testing results,
𝑃𝐷𝐿 provides feedback to students, and assists students to adjust
their problem comprehension and improve problem descriptions.

To evaluate 𝑃𝐷𝐿’s effectiveness in motivating students to fulfill
challenging programming tasks, we conducted a user study with
185 undergraduates and asked the students to solve COPs with
or without 𝑃𝐷𝐿. We found that the students with 𝑃𝐷𝐿 were less
likely to give up than students without 𝑃𝐷𝐿. By using 𝑃𝐷𝐿, students
solvedmore COPs and spent less time on each problem; they became
more confident and motivated in handling COPs after using 𝑃𝐷𝐿.
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1 INTRODUCTION
Problem solving in Computer Science mainly involves two parts:
problem comprehension and solution development. Problem-solving
skills (PSS) are important for students to succeed in programming
courses. Prior studies show that the lack of such skills in novice
developers help explain the tremendously high failure rate in com-
puter science [3, 5, 14]. Tu and Johnson observed that students could
improve PSS by coding for various programming tasks [25]. How-
ever, when the tasks are very difficult and daunting, students are
demotivated to fulfill those tasks, lose the opportunity to hone PSS,
or even gain negative attitudes towards the computing field [13].

According to our experience of teaching programming courses,
students found combinatorial optimization problems (COP) [6] to
be especially hard. A typical COP requires a search for the optimal
solution in a finite solution space. A programming problem is COP,
if given (1) input parameters A = {𝛼1, · · · , 𝛼𝑀 } and their value
ranges, (2) variables V = {𝜈1, · · · , 𝜈𝑁 }, value ranges, and their
value relations with A: R = {𝑟1 (A,V), · · · , 𝑟𝐿 (A,V)}, and (3)
an objective function 𝑓 (A,V). The program will find the optimal
value assignments for {𝜈1, · · · , 𝜈𝑁 } such that (i) R is satisfied, and
(ii) the value of 𝑓 (A,V) is optimal. Exemplar COPs include 0/1
knapsack and shortest path problems. Based on interactions with
students, we learnt that a COP is difficult for two reasons:

• Problem Comprehension. Some students could not inter-
pret problems correctly and thus built incorrect programs.
• Solution Development. Some students interpreted prob-
lems correctly, but developed incorrect programs.

To help improve students’ PSS while they program for challeng-
ing COPs, we developed a novel tool—𝑃𝐷𝐿—that scaffolds problem
solving by decoupling problem comprehension and solution devel-
opment. As a scaffolding technique, 𝑃𝐷𝐿 suppresses overly complex
coding issues that students are not initially ready to encounter. It
helps students analyse problems, formulate problem descriptions,
learn about the resulting code for formulated problems, and gain
the confidence as well as abilities before they independently pro-
gram for COPs. Our user study shows that with 𝑃𝐷𝐿’s detailed
feedback on students’ problem descriptions, students were better
motivated to solve COPs.

2 BACKGROUND
The relatedwork of our research includes studies on the relationship
between PSS and CS education, and existing scaffolding techniques.

2.1 Problem-Solving Skills and CS Education
Researchers found that PSS are important for students to succeed
in CS Education [3, 5, 14]. For instance, Beaubouef and Mason [3]
reported that in many institutions, 30–40% of CS undergraduates
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Figure 1: The 𝑃𝐷𝐿 compiler takes in any 𝑃𝐷𝐿 description, goes through five phases, and generates a solution program in C

dropped out for reasons like (1) poor math skills and problem solv-
ing abilities, (2) poorly designed CS1 lab courses, and (3) lack of
practice/feedback. Prior studies show that students can improve
PSS and computational thinking via programming [10, 24, 25]. For
example, Salehi et al. [24] observed that when solving problems ir-
relevant to their majors, CS students performed significantly better
than students in other majors; Salehi et al. also found CS program-
ming assignments to be highly effective in helping students develop
PSS. However, based on our teaching experience, when program-
ming tasks (e.g., COPs) are very difficult, students can become less
motivated to solve problems, lose opportunities to further improve
PSS, and even drop out due to the negative experience.

When introducing principles for teaching problem solving, Fos-
hay and Kirkley recommended instructors to emphasize both the
declarative and procedural knowledge components of any “real-
world” job or task [11]. To address the procedural component, some
researchers proposed explicit instructions on programming strate-
gies [7, 15, 16, 18]. For instance, Ko et al. [15] and LaToza et al. [16]
invented the teaching methods of using a domain-specific language
Roboto to explicitly describe the programming strategy (i.e., a se-
quence of actions) for accomplishing any task (e.g., debugging).
Our research complements existing work by focusing on the declar-
ative component; with 𝑃𝐷𝐿, students could learn to declare the
constraints that a solution program should satisfy.

2.2 Scaffolding Techniques
“Scaffolding” is a metaphor to capture the nature of support and
guidance in learning [9]. Scaffolding techniques are temporary
assistance that teachers provide for students. The techniques assist
students to complete a task or develop new understandings, so
that students can later complete similar tasks alone. One form of
scaffolding (e.g., C0 [22] and Ironclad C++ [8]) defines “safe” subsets
of general-purpose programming languages (e.g., C/C++). With
these domain-specific languages, instructors can teach students
basic programming concepts while hiding complicated issues (e.g.,
memory management). Another form of scaffolding includes visual
programming languages to reduce coding complexity [2, 12, 17, 19,
20, 23]. For instance, Scratch is a block-based and object-oriented
programming language [19]. It represents program constructs (i.e.,
if-statement) with distinctly shaped blocks, and users can create
programs by dragging and dropping blocks. However, none of these
techniques automate algorithm design or thoroughly factor out
coding concerns to scaffold problem solving.

3 OUR APPROACH: PDL
As shown in Figure 1, given a COP, students are supposed to de-
scribe the problem with 𝑃𝐷𝐿, a domain-specific language (DSL).
Based on such a 𝑃𝐷𝐿 description, the 𝑃𝐷𝐿 compiler analyses the
description, automatically designs a solution algorithm, optimizes
the design when possible, and generates a C program accordingly.
In this section, we will introduce 𝑃𝐷𝐿 (Section 3.1), explain the
implementation of 𝑃𝐷𝐿 compiler (Section 3.2), and describe 𝑃𝐷𝐿’s

feedback on any erroneous problem description (Section 3.3). Our
program and some 𝑃𝐷𝐿 description examples are available at
http://doi.org/10.5281/zenodo.3961672.

3.1 Language Design
To facilitate problem description, 𝑃𝐷𝐿 has four sections to mathe-
matically describe a COP:
• Input Section declares input arguments (i.e., A).
• Required Section declares variables (i.e.,V), value ranges,
and the mathematical formulas that define relations or con-
straints (i.e., R) between variables and arguments.
• Objective Section defines the objective function (i.e.,
𝑓 (A,V)).
• Output Section defines variables or expressions whose val-
ues should be printed to the console.

Arguments and variables can be declared with primitive or com-
posite types. 𝑃𝐷𝐿 supports four primitive types (i.e., integer, real
number, character, and boolean) as well as three composite types
(i.e., array, set, and tuple). Users can define formulas using: (1) arith-
metic, logical, relational, or exponent operators (e.g., “+”, “𝑛𝑜𝑡”,
“>=”, and “ˆ”), (2) two logical quantifiers: universal quantifier forall
(i.e., ∀) and existential quantifier exists (i.e., ∃), (3) aggregate op-
erators: summation, product, min, max, and count, and (4) a predicate
alldifferent to declare that all elements in an array are all different.

Natural Language PDL

Given the capacity𝐶 .
Given a set of 𝑁 items,
eachwith aweight𝑤𝑖 and
a value 𝑣𝑖 .
Find a subset of items
such that the weight sum
is no more than𝐶 ,

while the value sum is
maximized.

Print the selected items.

#input
C of int in [1,1000];
N of int in [1,100];
w of (int in [1,C])[1..N];
v of (int in [1,100])[1..N];

#required
S <= (int in [1..N]) {};

summation [w[x] : forall x (x in S)] <= C;
#objective

maximize
summation [v[x] : forall x (x in S)];

#output
S;

Figure 2: 0/1 knapsack problem described in two ways

Please refer to 𝑃𝐷𝐿’s online manual [21] for more information
of the syntax. Essentially, 𝑃𝐷𝐿 is a declarative instead of imper-
ative language; so with 𝑃𝐷𝐿, users specify the problem to solve
rather than how to solve it. For example, Figure 2 presents both
natural-language description and 𝑃𝐷𝐿 description of the 0/1 knap-
sack problem. The input section declares two integer arguments: 𝐶
and 𝑁 , two array arguments𝑤 and 𝑣 , and their value ranges. The
required section declares a set variable 𝑆 to record items chosen to
fill the knapsack; it also defines a constraint on the weight sum of
selected items. The objective section defines the optimization goal,
while the output section declares the variable 𝑆 to print.

3.2 Language Implementation
We developed a compiler that takes in 𝑃𝐷𝐿 descriptions, and goes
through five phases before generating C programs (see Figure 1).
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Algorithm 1: An algorithm skeleton for iterative search
Input: A /* input parameters */
Output: 𝑏𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 and the value of variables in V

1.1 𝑏𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 ← null;
/* suppose the controlling variables are I = {𝑖1, · · · , 𝑖𝑘 } */

1.2 foreach 𝑖1 ∈ 𝑖1’s range do

1.3
. . . foreach 𝑖𝑘 ∈ 𝑖𝑘 ’s range do

1.4 calculate the values of variables in V\I;
1.5 if R is satisfied ∧ 𝑓 (A,V) is better than 𝑏𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 then
1.6 update 𝑏𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 and record the variables’ value;

1.7 return 𝑏𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 and the variables’ value;

Algorithm 2: An algorithm skeleton for recursive search
Input: A /* input parameters */
Output: 𝑏𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 and the value of variables in V

2.1 𝑏𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 ← null;
2.2 recursive_enum_𝜈(1);
2.3 function recursive_enum_𝜈(𝑠𝑡𝑒𝑝)
2.4 if 𝑠𝑡𝑒𝑝 > |I |) then
2.5 calculate the values of variables in V\I
2.6 if R is satisfied ∧ 𝑓 (A,V) is better than 𝑏𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 then
2.7 update 𝑏𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 and record the variables’ value;

2.8 else
2.9 foreach 𝜈𝑠𝑡𝑒𝑝 ∈ 𝜈𝑠𝑡𝑒𝑝 ’s range do
2.10 recursive_enum_𝜈(𝑠𝑡𝑒𝑝+1);

3.2.1 Creation of Identifier Table. Given a 𝑃𝐷𝐿 description, this
phase tokenizes the description and conducts both syntactic and
semantic analysis to build an identifier table—a table recording
arguments, variables, their types, and value ranges. This table
is important for 𝑃𝐷𝐿 to later decide (1) what variables to use
in the algorithm-to-design (AOD) to control loop iterations or
recursive function calls and (2) how many iterations or recur-
sions are involved in the search procedure for optimality. To mini-
mize the number of iterations or recursions, this step tentatively
tightens the value range of each variable using the feasibility-
based bounds tightening (FBBT) algorithm [4]. Intuitively, given
𝑎 ∈ [0, 0], 𝑏 ∈ [0, 1], 𝑐 ∈ [0, 1], 𝑎 = 𝑏 + 𝑐 , FBBT first converts
the formula to 𝑏 = 𝑎 − 𝑐 , and then shrinks the range for 𝑏 as
𝐷 ′
𝑏

= 𝐷𝑏 ∩ ([0, 0] − [0, 1]) = [0, 1] ∩ [−1, 0] = [0, 0]. 𝑃𝐷𝐿 ap-
plies FBBT to variables iteratively until all value ranges become
stabilized, and records the resulting ranges in the identifier table.
3.2.2 Identification of Controlling Variables. Generally speaking,
any COP-solution algorithm enumerates value combinations be-
tween variables to search for the optima. As shown by Algorithms 1
and 2, the algorithm-to-design (AOD) is based on either iterations
or recursions. Thus, this phase decides the controlling variables
for either loop iterations or function recursions in the AOD, by
identifying a variable subsetVS ⊆ V such that:
• The values of all other variables (i.e., 𝑣 ∈ (V −VS)) can be
uniquely determined by the value assignments of 𝑉𝑆 .
• The size ofVS (i.e., the Cartesian product of all included
variables’ ranges) is minimal. Here, whenVS = {𝑣𝑎, 𝑣𝑏 , . . .},
its size is 𝑟𝑎𝑛𝑔𝑒 (𝑣𝑎) × 𝑟𝑎𝑛𝑔𝑒 (𝑣𝑏 ) × 𝑟𝑎𝑛𝑔𝑒 (. . .).

Intuitively, 𝑃𝐷𝐿 conducts brute-force search to investigate all vari-
able subsets and to determine the controlling variables. We found

such brute-force search often done efficiently because when vari-
able subsets overlap (e.g., two subsets 𝑆1 and 𝑆2 where 𝑆1 ⊂ 𝑆2), our
approach quickly skips the exploration of unpromising ones (e.g.,
skip 𝑆2 when 𝑆1 is selected as a candidate for controlling variables).

3.2.3 Design of Enumeration-Based Algorithms. After identifying
controlling variables, 𝑃𝐷𝐿 generates a basic algorithm design for
the naïvely exhaustive search. This algorithm enumerates the values
of each controlling variable, calculates the values of non-controlling
variables, checks whether all constraints are satisfied, and evaluates
the objective function if constraints are satisfied. In particular, if
all controlling variables have primitive types, 𝑃𝐷𝐿 generates an
iteration-based search algorithm similar to Algorithm 1. Otherwise,
if any controlling variable has a composite type, 𝑃𝐷𝐿 creates a
recursion-based search algorithm similar to Algorithm 2. For the
0/1 knapsack problem shown in Figure 2, 𝑃𝐷𝐿 designs a recursion-
based search algorithm because the only variable 𝑆 is a set.

3.2.4 Opportunistic Optimization. When a recursion-based algo-
rithm is generated, 𝑃𝐷𝐿 opportunistically applies two optimization
strategies to reduce unnecessary computation: branch pruning and
dynamic programming.

Branch Pruning. This optimization adds or moves if-statements,
to remove unnecessary enumeration of value combinations. Take
the 0/1 knapsack problem as an example. With branch pruning,
before any step of recursion 𝑠𝑡𝑒𝑝𝑖 (𝑖 ∈ [1, 𝑁 ]), 𝑃𝐷𝐿 adds an if-
check to decide whether the weight sum so far 𝑠𝑢𝑚𝑊𝑖 exceeds 𝐶 ,
i.e., 𝑠𝑢𝑚𝑊𝑖 > 𝐶 . This is because all items have positive weights (i.e.,
𝑤 [ 𝑗] ≥ 1( 𝑗 ∈ [1, 𝑁 ])). If 𝑠𝑢𝑚𝑊𝑖 exceeds 𝐶 , even though none of
the last (𝑁 − 𝑠𝑡𝑒𝑝𝑖 + 1) items is put into the knapsack, the overall
weight sum can never meet the constraint. Consequently, there is
no need to involve more steps of recursions, and 𝑃𝐷𝐿 prunes the
search subtree when Equation (1) is satisfied.

Dynamic Programming (DP). For certain COPs, DP algorithms
can break down each given problem into simpler subproblems,
and compute the optimal solution to the overall problem based on
optimal solutions to the subproblems. Compared with a naïve enu-
meration of value combinations, DP algorithms effectively eliminate
unnecessary enumerations. Given a COP, to tentatively refactor a
basic algorithm into a DP algorithm, this step automatically char-
acterizes the problem and decides whether a DP algorithm can be
generated. In the scenarios when DP is feasible, 𝑃𝐷𝐿 generates an
algorithm that first initializes a table to store optimal solutions for
subproblems, and then searches for optimal solutions in a top-down
manner. Intuitively, the generated algorithm tries to solve the over-
all problem by breaking it into smaller ones recursively, solving
the smallest subproblems first, recording the optimal solutions in
the table, and gradually solving larger problems by reusing optimal
solutions to smaller ones.

3.2.5 Code Generation. To automate the C implementation of each
algorithm design, 𝑃𝐷𝐿 has six major types of predefined code tem-
plates to generate different parts of the implementation.

3.3 Feedback Generation
For any incorrect 𝑃𝐷𝐿 description, our approach provides four
major types of feedback, which are similar to errors or warnings
generated by a traditional compiler:
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• Parsing Errors describe the grammatical or spelling errors
located in problem descriptions.
• Type Errors reveal any type conflicts between expressions.
𝑃𝐷𝐿 reports such errors by showing the minimum erroneous
subexpressions together with the inferred types of operands.
• Unbounded Variable Errors are about variables whose
upper or lower value boundaries are unspecified.
• Unused Variable Warnings report the variables that are
defined but never used in any constraint.

Additionally, 𝑃𝐷𝐿 also presents the resulting C code generated
for any problem description as its feedback. When problem descrip-
tions are incorrect, the generated code together with any test case
it fails can help students adjust their problem comprehension and
improve descriptions accordingly; when problem descriptions are
correct, students can still read the generated code to learn about
program implementation and code optimization strategies. We de-
signed such feedback mechanism in 𝑃𝐷𝐿 for two purposes. First,
by decoupling problem comprehension and solution development,
we suppress coding issues and help students focus their practices
on problem comprehension and description—essential components
of PSS. Second, by demonstrating solution development for the
problems they described, 𝑃𝐷𝐿 helps students map problem charac-
teristics to the solution space. Such mappings can prepare students
to independently solve COPs later.

4 EVALUATION
To evaluate 𝑃𝐷𝐿, we conducted two experiments. The first one
explores 𝑃𝐷𝐿’s usability by applying 𝑃𝐷𝐿 to 45 COPs (Section 4.1),
while the second one investigates 𝑃𝐷𝐿’s helpfulness in motivating
students to solve COPs via a user study (Section 4.2).

4.1 Evaluation of 𝑃𝐷𝐿’s Usability
Usability indicates in how many scenarios, we can leverage 𝑃𝐷𝐿 to
solve COPs. Intuitively, the more COPs are solvable with 𝑃𝐷𝐿, the
more usable our tool is to train problem-solving skills in students.
Thus, we collected 45 COPs from the exercises and homework
assignments of 4 programming courses for CS freshmen and sopho-
mores. The first author then tried to write a 𝑃𝐷𝐿 description for
each COP and use 𝑃𝐷𝐿 to create the solution program. To auto-
matically assess the quality of 𝑃𝐷𝐿 descriptions, we built an online
judge (OJ) system as shown in Figure 3. After taking in a 𝑃𝐷𝐿

description, OJ first uses 𝑃𝐷𝐿 to identify any lexical or syntactic
error in the description; if none, OJ then compiles the C code and
conducts automatic testing to execute the compiled code with pre-
scribed test cases. Additionally, OJ has a database to record all data
of 𝑃𝐷𝐿 description submissions and related feedback. Based on the

Table 1: 𝑃𝐷𝐿’s usability evaluation based on 45 COPs
Algorithm Total Inexpressible Partly Solvable Solvable

Enumeration 17 2 (11.8%) 0 (0.0%) 15 (88.2%)
With Pruning 16 3 (18.8%) 3 (18.8%) 10 (62.5%)
DP & Pruning 12 2 (16.7%) 3 (25.0%) 7 (58.3%)

Total 45 7 (15.6%) 6 (13.3%) 32 (71.1%)

feedback or output of OJ, the first author could debug 𝑃𝐷𝐿 descrip-
tions if they were incorrect, count the number of COPs solvable by
𝑃𝐷𝐿, and identify the COPs unsolvable by 𝑃𝐷𝐿.

As shown in Table 1, 17 of the 45 COPs are solvable with basic
enumeration algorithms; 16 problems can be solved by enumera-
tion with pruning; and 12 problems are solvable by DP as well as
pruning. According to the first author’s experience, 𝑃𝐷𝐿 success-
fully solved 32 problems (71.1%) after taking in correct problem
descriptions. It means that 𝑃𝐷𝐿 has great usability, because it could
solve the majority of COPs. Additionally, 𝑃𝐷𝐿 partially solved 6
problems (13.3%), because it generated inefficient code with cor-
rect program logic. By examining these problems and the answer
keys, we found the problems to be very challenging. To efficiently
solve the problems, students need to be creative and apply more
advanced optimization techniques (e.g., domain-specific search or
pruning). There are 7 problems (15.6%) that 𝑃𝐷𝐿 could not solve,
because they involve complex program logic to manipulate graphs
or strings. Currently, 𝑃𝐷𝐿 does not support the problem description
or solution generation for such COPs.

Finding 1: 𝑃𝐷𝐿 is quite usable as it generated correct programs
for 71.1% of the explored COPs. 𝑃𝐷𝐿 is also reliable because given
a correct problem description, it generated no erroneous program.

4.2 Evaluation of 𝑃𝐷𝐿’s Helpfulness
We integrated 𝑃𝐷𝐿 into the CS course Introduction to Artificial In-
telligence—a course covering C programming and algorithm design.
After students became familiar with C and algorithm design strate-
gies (e.g., enumeration, pruning, and DP), we introduced 𝑃𝐷𝐿 as a
tool that may facilitate COP programming and asked all students
to participate in a 𝑃𝐷𝐿 study as part of the course requirement.
4.2.1 Study Design. Before the study, we gave a nine-page 𝑃𝐷𝐿
manual [21] to all students. Themanual introduces 𝑃𝐷𝐿, and presents
two exemplar COPs (i.e., cuboid and 0/1 knapsack problems) as
well as related 𝑃𝐷𝐿 descriptions. Students were supposed to read
the tutorial and learn to use 𝑃𝐷𝐿 before the study. To conduct
a controlled experiment during the study, we instructed all stu-
dents to independently work on six COPs. As shown in Table 2,
the six COPs include two problems solvable with enumeration al-
gorithms, two problems solvable with enumeration and pruning,
and two problems solvable with DP and pruning. Generally speak-
ing, the complexity comparison between different algorithms is
𝐸𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑖𝑜𝑛 <𝑊𝑖𝑡ℎ 𝑃𝑟𝑢𝑛𝑖𝑛𝑔 < 𝐷𝑃 & 𝑃𝑟𝑢𝑛𝑖𝑛𝑔. The problems are
similar to exemplar COPs in the lecture notes but different.

All 185 involved students are undergraduates who took a CS1
programming and algorithm course as the prerequisite. We ranked
students based on their grades in CS1; we then divided students
into four groups using the serpentine system in order to reduce
bias between groups. Table 3 shows the task assignments to dif-
ferent groups. Every student went through two phases. In Phase I,
they solved three COPs either with or without 𝑃𝐷𝐿; then in Phase
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Table 2: The six problems used in the second experiment
ID Name Algorithm Description

P1 Duplicate Number Enumeration Given 𝑁 (1 ≤ 𝑁 ≤ 1000) integers, find the only one duplicate number.
P2 Eight Queens With Pruning Place eight chess queens on the chessboard such that none of them is able to capture the others.
P3 Shortest Path DP & Pruning There are 𝑁 (1 ≤ 𝑁 ≤ 100) cities. Given the distance between each pair of cities, find the shortest path from City 1 to City N.
P4 Sum Is K Enumeration Find two integers among 𝑁 (1 ≤ 𝑁 ≤ 1000) given integers, such that the sum of them is equal to 𝐾 .
P5 Messager Problem With Pruning There are 𝑁 (1 ≤ 𝑁 ≤ 10) cities. Given the distance between each pair of cities, find the shortest route that visits each city exactly

once without the need of returning to the start city.
P6 Teamwork DP & Pruning There are 𝑁 (1 ≤ 𝑁 ≤ 100) candidates. Each candidate has a cooperation value 𝑣 (−50 ≤ 𝑣 ≤ 50) and a working value 𝑤

(−50 ≤ 𝑤 ≤ 50). Select any number of candidates to form a team, such that the summation of all the team members’ cooperation
values is positive and the summation of their working value is maximum.

Table 3: The tasks assigned to each group
Group ID Designated Tasks to Fulfill

Group I First P1–P3 with 𝑃𝐷𝐿, then P4–P6 with C
Group II First P4–P6 with C, then P1–P3 with 𝑃𝐷𝐿
Group III First P4–P6 with 𝑃𝐷𝐿, then P1–P3 with C
Group IV First P1–P3 with C, then P4–P6 with 𝑃𝐷𝐿

Table 4: Students’ status for solving the six COPs
With 𝑃𝐷𝐿 Without 𝑃𝐷𝐿

P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6
Quit Rate (%) 0.0 1.1 2.3 0.0 2.1 1.0 1.0 5.2 18.6 0.0 4.5 23.9
Avg. Solving Time (min) 5.5 8.3 9.2 5.0 8.1 6.4 5.9 14.6 22.6 7.1 15.4 26.7
Error Rate (%) 0.0 3.4 2.3 0.0 2.1 0.0 2.1 9.8 17.7 0.0 11.9 17.9

II, they switched the programming approaches to solve another
three problems. As we obtained roughly equal numbers of students
working on each problem with or without 𝑃𝐷𝐿, such balanced data
distribution ensures the fairness of our empirical comparison.

At the beginning of the study, we asked every student to fill a
pre-study form to describe their confidence levels in solving COPs.
For the study, we extended the OJ system shown in Figure 3 to
also take in C program submissions. The system can assess the
quality of both 𝑃𝐷𝐿 descriptions and C programs via compilation
and testing. When developing software artifacts (i.e., C code or
𝑃𝐷𝐿 descriptions), students could access OJ via the Internet, submit
artifacts as many times as they like, and receive feedback by OJ.
Students were given 30minutes to solve each problem. After solving
three COPs with one method 𝑀 (with or without 𝑃𝐷𝐿), students
filled a survey form of four questions:

Q1. How many minutes did you spend in solving each COP?
Q2. How difficult or easy was it for you to create software arti-

facts with method𝑀?
Q3. How difficult or easy was it for you to debug the artifacts

created with method𝑀?
Q4. How confident are you to solve COPs?

While solving COPs, students recorded the actual time they
spent on each problem and answered Q1 based on those records.
They answered Q2–Q4 in a five-level Likert scale [1]. Based on
students’ response and the collected information in OJ’s database,
we explored the following research questions:

RQ1. Howwell did students solveCOPswith orwithout 𝑃𝐷𝐿?
To answer this question, we compared the time spent by stu-
dents on each problem (based on Q1) and the quality of
resulting artifacts (based on OJ’s database).

RQ2. What is the complexity comparison between defining
𝑃𝐷𝐿 descriptions and building C programs? For each
COP, we clustered and compared students’ responses to Q2.

RQ3. What is the complexity comparison between debug-
ging 𝑃𝐷𝐿 descriptions and debugging C code? For each
COP, we clustered and compared students’ responses to Q3.

RQ4. How does 𝑃𝐷𝐿 help improve students’ confidence in
solving COPs?We compared the responses by students for
Q4 against their responses in the pre-study form.

4.2.2 Experiment Results. Figure 4 presents students’ responses
in the pre-study form. According to Figure 4, 53.5% of students
were unconfident to solve COPs, while only 11.4% of students had
the confidence. The lack of confidence in many students reflects
the difficulty of solving COPs. Table 4 presents students’ problem-
solving status in our study. Quit Rate shows the percentages of
students who gave up a COP without submitting any artifact. Avg.
Solving Time describes the average problem-solving time for each
COP. Error Rate shows among the latest submissions by students
who did not quit, what percentage of artifacts are incorrect.

According to Table 4, students were less likely to quit when using
𝑃𝐷𝐿. In particular, for the most complex two problems P3 and P6,
only 2.3% and 1.0% of students quit while using 𝑃𝐷𝐿; however, 18.6%
and 23.9% of students gave up either task while coding in C. This
implies that with 𝑃𝐷𝐿, students were more encouraged to solve
COPs. Additionally, students with 𝑃𝐷𝐿 usually spent less time than
students without it. We further conducted Mann-Whitney U test to
check whether the solving time is significantly different between
the two approaches. For the solving time of P1 and P4, we observed
no significant difference between the students who used 𝑃𝐷𝐿 and
those who did not use it. However, when solving other problems,
students with 𝑃𝐷𝐿 did spend significantly less time than those
without (p<1e-5). The major reason is that P1 and P4 are much
easier than other problems. As the problem complexity increases,
the solving-time gap between the two approaches increases as well.

Finally, there are fewer errors in submitted 𝑃𝐷𝐿 descriptions
than in C code. This is because when using 𝑃𝐷𝐿, students did
not need to design or implement any algorithm. The tool usage
eliminates the opportunity for students to commit coding errors.

Finding 2: 𝑃𝐷𝐿 effectively encouraged students to solve COPs
instead of giving up; it also helped students successfully solve more
problems with less time spent.

Figure 5 presents students’ perception of the difficulty in writing
𝑃𝐷𝐿 descriptions or C code. Interestingly, writing 𝑃𝐷𝐿 descriptions
seems to be easy for 46.5% of students, and seems hard for only
20.0% of students. On the other hard, writing C code seems easy for
only 33.0% of students, but hard for 36.2% of students. According to
Mann-Whitney U test, students perceived writing 𝑃𝐷𝐿 descriptions
to be significantly easier than writing C code (U=12574, p<1e-5).
We observed similar contrasts in Figure 6. When debugging 𝑃𝐷𝐿
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Figure 7: Responses to Q4

descriptions, 46.5% of students found it easy and 20.0% of students
found it hard. However, only 11.4% of students considered it easy
to debug C code but 69.2% of students considered it hard. Our
Mann-Whitney U test shows that the students who debugged 𝑃𝐷𝐿
descriptions sensed significantly less difficulty than those who
debugged C code (U=8111.5, p<1e-5).

These observations help explain the above-mentioned phenome-
non that students with 𝑃𝐷𝐿 could solve more COPs with less time
spent. 𝑃𝐷𝐿 effectively reduced the complexity of solving COPs by
generating solution code to COPs. When stuents focused their ef-
forts on problem comprehension and description, the feedback 𝑃𝐷𝐿
provides can reveal flaws in students’ descriptions, imply the rela-
tionship between problem characteristics and solution algorithms,
and equip students with experience of solving COPs.

Finding 3: Compared with C coding or debugging, more students
found it easier to write or debug 𝑃𝐷𝐿 descriptions. The observations
help explain why 𝑃𝐷𝐿 encouraged students to solve COPs.

Figure 7 illustrates students’ confidence levels after they solved
three COPs in Phase I with or without 𝑃𝐷𝐿. By comparing this fig-
ure against Figure 4, we observed two interesting phenomena. First,
after solving COPswithout 𝑃𝐷𝐿, fewer students were neutral (29.0%
vs. 35.1%). Some originally neutral students became either more or
less confident in solving COPs, probably due to their positive or
negative coding experience with the problems. In comparison, after
solving COPs with 𝑃𝐷𝐿, a lot more students reported confidence in
handling such problems (41.2% vs. 11.4%), and a lot fewer students
claimed lacking confidence (21.1% vs. 53.5%). The Mann-Whitney
U test shows that the confidence growth in students with 𝑃𝐷𝐿 is
significant (U=2193, p<1e-5), while the growth for students without
𝑃𝐷𝐿 is not significant (U=4940.5, p=0.44433>0.05). With the posi-
tive problem-solving experience and 𝑃𝐷𝐿’s constructive feedback,
students became more optimistic in taking challenges.

Finding 4: The experience of using 𝑃𝐷𝐿 considerably increased
students’ confidence in solving COPs, probably because (1) the
experience is more positive and (2) the feedback is more detailed.

5 THREATS TO VALIDITY
In our user study, students’ self reports may be subjective to human
bias. To mitigate the problem, we conducted the user study with a
large number of students (e.g. 185); during the study, we answered
all students’ questions to clarify expectations and reduce bias. To
measure 𝑃𝐷𝐿’s effectiveness in helping students improve PSS, we
compared the quit rates, problem-solving time, error rates, and
confidence levels between students with 𝑃𝐷𝐿 and students coding
in C. However, we did not measure the improvement in students’
problem-solving capabilities, which we plan to explore in the future.

Although it seems unsurprising that describing problem is al-
ways easier than coding the solution, we could not assume 𝑃𝐷𝐿
to be easier to use than C. Thus, we compared the data collected
from students with 𝑃𝐷𝐿 and students with C. The comparison in-
dicates two things. First, 𝑃𝐷𝐿 is usually easier to use, so students
can turn to 𝑃𝐷𝐿 when they are unable to code C solutions directly.
Second, students had their confidence levels significantly increase
after using 𝑃𝐷𝐿, so 𝑃𝐷𝐿 actually reduced the technical barrier for
students to code in C and can help retain students in the CS major.

6 CONCLUSION
When students try to improve PSS through programming, para-
doxically, they can only benefit from the coding experience if they
are able to understand problems well, quickly develop promising
solutions, and successfully digest and resolve the coding issues
encountered. To lower the technical barriers for students to better
PSS through coding, we introduced 𝑃𝐷𝐿—a scaffolding approach
that enable students to work on challenging COPs. Our evaluation
shows that 𝑃𝐷𝐿 effectively reduced the complexity of solving COPs
and better motivated students to improve PSS via solving COPs.
In the future, we will conduct larger-scale studies to explore how
𝑃𝐷𝐿 helps different kinds of novice developers (e.g., K-12 students),
and improve 𝑃𝐷𝐿 by generating more optimization strategies.
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