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Abstract

Motivation: Clustering spatial-resolved gene expression is an essential analysis to reveal gene activities in the
underlying morphological context by their functional roles. However, conventional clustering analysis does not con-
sider gene expression co-localizations in tissue for detecting spatial expression patterns or functional relationships
among the genes for biological interpretation in the spatial context. In this article, we present a convolutional neural
network (CNN) regularized by the graph of protein—protein interaction (PPl) network to cluster spatially resolved
gene expression. This method improves the coherence of spatial patterns and provides biological interpretation of
the gene clusters in the spatial context by exploiting the spatial localization by convolution and gene functional rela-
tionships by graph-Laplacian regularization.

Results: In this study, we tested clustering the spatially variable genes or all expressed genes in the transcriptome in
22 Visium spatial transcriptomics datasets of different tissue sections publicly available from 10x Genomics and
spatialLIBD. The results demonstrate that the PPl-regularized CNN constantly detects gene clusters with coherent
spatial patterns and significantly enriched by gene functions with the state-of-the-art performance. Additional case
studies on mouse kidney tissue and human breast cancer tissue suggest that the PPl-regularized CNN also detects
spatially co-expressed genes to define the corresponding morphological context in the tissue with valuable insights.
Availability and implementation: Source code is available at https://github.com/kuanglab/CNN-PReg.

Contact: kuang@umn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Dissecting the heterogeneity and spatial organization of the tran-
scriptome is key to understand how distinct cell types contribute to
morphological and phenotypic diversity. For example, embryonic
stem cell differentiation is spatially regulated during development to
ensure proper organ formation (Combs and Eisen, 2013; Glen et al.,
2018). Sub-populations of cancer cells typically show distinct gene
expression patterns and structural features, and co-evolve in tumor
micro-environments to promote tumor development and progres-
sion (Meacham and Morrison, 2013; Schmidt and Efferth, 2016).
Earlier methods based on Fluorescent In Situ Hybridization use fluo-
rescently labeled probes hybridized to targeted RNA transcripts to
measure and visualize gene expression at subcellular resolution (Raj

et al., 2008). More recent high-throughput technologies have
emerged to unbiasedly profile spatially resolved gene expression at
transcriptome-wide scale by retaining spatial localization informa-
tion in intact tissue or cell culture. In situ capturing uses arrayed
probes with positional barcodes covering a tissue or cell culture of
interest followed by RNA sequencing. These technologies include
spatial transcriptomics (ST) (Stdhl ez al., 2016), Visium (10x
Genomics, 2019), Slide-seq (Rodriques et al., 2019) and high-
definition spatial transcriptomics (Vickovic et al., 2019).

These new platforms for spatial genomics have revolutionized
the studies of transcriptome landscape by providing spatially local-
ized gene expression within a tissue micro-environment. The
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analyses of these datasets have focused primarily on clustering spa-
tial locations to detect sub-regions in the tissue or detecting genes
exhibiting spatial patterns (Bergenstrahle et al., 2020; Dries et al.,
2019; Edsgird et al., 2018; Sun et al., 2020; Svensson ef al., 2018).
Since each individual spatially variable gene often plays multiple
functional roles, these methods still rely on detecting spatial gene co-
expression modules for reliable and specific functional analysis of
their spatial characteristics. However, less attention has been paid
on improving clustering of spatially co-expressed genes in the under-
lying tissue-specific micro-environment. For example, to group spa-
tially variable genes with co-expressed patterns, STUtility
(Bergenstrahle et al., 2020) uses Non-negative Matrix Factorization,
whereas SPARK (Sun et al., 2020) and Giotto (Dries et al., 2019)
apply hierarchical clustering to detect co-expressed patterns. These
conventional clustering methods have two limitations. First, these
methods do not consider gene expression co-localization within the
tissue when detecting spatial expression patterns. Ideally, the genes
should be clustered based on similar overall spatial patterns by the
tissue composition rather than their expression at each individual
spot independently. Second, these methods do not incorporate func-
tional relationships among the expressed genes for better biological
interpretation. Moreover, the in situ RNA capture technology has a
very low capture efficiency (5-10%) compared with up to 40% cap-
ture for single-cell RNAseq (Asp et al., 2020). Thus, the prior know-
ledge on gene functional relationships has more potential to improve
clustering the extremely sparse gene expression in the spatial
transcriptomes.

To address these two limitations, we present a graph-
regularized convolutional neural network (CNN) incorporating a
protein—protein interaction (PPI) network to cluster spatially
resolved gene expression (Fig. 1). The graph-regularized CNN
models the expression of a gene over spatial locations as an image
of a gene activity map, and naturally utilizes the spatial localiza-
tion information by performing convolution operation to capture
the nearby tissue textures. The model further exploits prior know-
ledge of gene relationships encoded in a PPI network as a regular-
ization by graph Laplacian of the network to enhance biological
interpretation of the detected gene clusters. PPI networks are cura-
ted knowledge bases containing experimental interactions, genetic
interactions and predicted interactions based on complementary
information to provide crucial information for deciphering gene
functional relationships. It has been shown that neighboring genes
in the PPI network are more likely to not only share similar bio-
logical functions but also common expression patterns (Li et al.,
2021; Zhang et al., 2017), and thus we reasoned that the inclusion
of PPI information would improve both the consistency of spatially
co-expressed patterns and the significance of enriched biological
functions over gene clusters. In this study, we comprehensively
compared our graph-regularized CNN model with widely used
clustering methods for clustering spatial gene expression across 22
ST datasets. Specifically, we tested clustering on spatially variable
genes or all expressed genes in 22 Visium ST datasets of different
tissue sections publicly available from 10x Genomics and
spatialLIBD (Maynard et al., 2021). We conducted functional ana-
lysis of spatial gene clusters on mouse kidney tissue and human
breast cancer tissue, and our model resulted in clusters with signifi-
cant enrichment for gene ontology processes that are consistent
with the spatial morphology of the tissues.

2 Materials and methods

In this section, we introduce the end-to-end graph-regularized CNN
model and two optimization algorithms for training the model. The
mathematical notations used to describe the model are summarized
in Supplementary Table S1.
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Fig. 1. The workflow of graph-regularized CNN for spatial gene expression cluster-
ing. (A) Feed gene expression into CNN with pretrained weights on MNIST, where
gene expression is modeled as 2D gene activity map in the spatial coordinates. (B)
Obtain gene embeddings from CNN encoder. (C) Construct the clustering loss with
gene similarity matrix and PPI graph regularization based in gene embeddings to
self-train the CNN encoder. (D) Infer gene cluster memberships based on gene
embeddings once training with the combined loss is completed

2.1 Graph-regularized CNN model for gene clustering
Given ST data X = {Xl-}f\i“l, where the matrix X; € RN*Nr denotes
the activity map for gene i, N, is the total number of genes in G, N,
and N, are the number of capturing spots along x-axis and y-axis.
Given an undirected graph Gpp; = (V,E) defined by PPI network,
where each node v; € V represents i-th gene in G, and each edge
(vi,v;) € E represents the interaction between the protein products
of gene i and gene j. Let Wpp € {0, 1} denote the adjacency
matrix of G with (Wppr) i specifying each edge (v;, v)).

A CNN encoder is defined to learn the embedded representation
of each gene based on convolution among the capturing spots in the
gene activity map as follows,

fi =f(Xi;w), (1)

where the non-linear mapping function f is parameterized by w for
CNN encoder on X, and f; represents the embedding of X; for gene
i. Let F € RNe*Ne denote the gene embedding matrix with each row
f; = f(X;;w) € RNe, where N, denotes the number of clusters, and
R € RNe*Ne denotes the cluster membership agreement matrix with
each entry 7; indicating cluster membership agreement (r; = 1
means genes i and j are in the same cluster and otherwise 7; = 0).
The total loss of graph-regularized CNN model combining cluster-
ing loss and graph regularization is defined as,
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Liotal = Lc(F,R) + aLppr (F, Wppr), (2)

where L, is the cross-entropy-based clustering loss, Lppy is the PPI-based
graph regularization and o € R" is a hyper-parameter modulating the
impact of Lppy. £, and Lppy are defined in the following sections.

2.2 Cross-entropy loss for gene clustering
The cross-entropy-based clustering loss £.(F,R) was introduced by
Chang (2017) as follows:

miny, 1, Lo = ming 1, 3 101y (ry € {0, 1}) L(s(fi, £), 1) + g(l, u)
st <u||fi]5=1,£>0,Vi

O,ifs(f,-,f,) <1
rij = { 17ifS(f,',f/') >u

None, otherwise,

(3)

where L(s(f;,f;),7;j) = —r;log(s(f;, f;)) — (1 — ;) log(1 — s(f;,£;)) is
the cross-entropy loss, which measures the divergence between
embedding similarity and cluster membership agreement 7;; for gene
pair (i, ), similar to binary classification. s(f;,f;) = f; - f; denotes the
cosine function for measuring embedding similarity. 1;94;(.) is an
indicator function which returns 1 for true and 0 for false for gene
pair selection in the clustering loss.

Since 7; is totally unknown, a curriculum learning strategy
(Bengio et al., 2009) is used to estimate 7;;s by using embedding simi-
larities between gene pair (i, j) iteratively during the clustering.
Specifically, #,] € R (u < [) are thresholds to select similar and dis-
similar gene pairs. Only, gene pair (i, j) with relatively high (r;j = 1)
or low similarity (r; = 0) are involved in computing the clustering
loss during each iteration. The in-between pairs with 7; = None are
ignored. At the early stage of clustering, we assume the gene embed-
dings extracted from the CNN encoder with randomly initialized w
are coarse-grained with less confidence, and thus, thresholds # and /
are more strict to select only very few gene pairs with reliable 7;s to
construct the clustering loss. As clustering proceeds, the gene embed-
dings are fine-grained and more informative, and thus # and [ are
relaxed to involve more gene pairs for training. g(/,#) > 0 measures
the gap between thresholds / and u, shrinking the gap g(l, u) is
equivalent to relaxing / and # simultaneously.

2.3 Graph-regularization with PPl network

To incorporate the prior knowledge of gene relationships in the PPI
network, PPI-based graph regularization Lpp; is introduced on gene
embeddings by the CNN encoder to encourage the consistency among
the embeddings of neighboring genes in the PPI graph as follows,

N, 2
i £, £
Lypp1 (F, Wppr) = (Wepr);i|| —=— —L (4a)
2l g Va .
= ||[F"LopF|, (4b)
where Dppy = diag(dy, ..., dn,) € R;%XNK denotes the node degree

matrix of Gpp[ with di:(DPPI)ii:Z/' (WPPI)ij’ and I:pp[:

I- (Dppl)f%prl (Dpp])i% denotes the normalized graph Laplacian of
Gpp, where the normalization corrects the bias introduced by node
degree differences in learning the embedding. In this loss, the squared
difference between the embeddings of a pair of connected genes (f;, f;)
are penalized such that the connected gene pairs have more similar
embeddings than the unconnected gene pairs. The graph Laplacian
loss is widely used to introduce PPI information for various learning
problems in genomics and systems biology (Zhang et al., 2017).

2.4 Mini-batch training algorithm and its fast
approximation

To minimize L, in eq. (2), we apply an alternating optimizing ap-
proach to minimizes L., with respect to w fixing thresholds / and
u and vice versa. When thresholds # and [ are fixed, the term g(/, u)

is also fixed. Optimizing L, can be done with regular forward and
back propagation of the errors to update w. In the alternating step,
once w is learned and the cluster membership matrix R is computed,
the optimization problem is simplified to finding / and » with gradi-
ent descent as follows,

minl,u Lioral = ming, g(l,u)s.t.] < u

VIZVIM<O,V14:;1@>O, (5)
where n > 0 is the step size. We choose the gap function g(/,u) =
u — [ such that VI = —m and Vu = n, i.e. to reduce the gap by increas-
ing / and decreasing u gradually size in each epoch until g(/, ) < 0.

For efficient and scalable training, the graph-regularized CNN is

trained with mini-batches of gene activity maps to compute the cluster-
ing loss £. and updates w of the CNN encoder based on the genes in
the mini-batch. But for the construction of graph regularization Lppy,
we use different strategies depending on the size of the PPI network.

2.4.1 Graph regularization with entire PPI network

When the size of the PPI network is small, it is straightforward to ex-
ploit the entire PPI network to compute graph regularization Lppy in
the mini-batch training setting. Eq. 4b can be rewritten as follows:

Tr+(BB) ~(BR)
om =[50 [ 70 ][]
F L L F F
(B)" 7 (BB) (gl))lz PPI(R)T~(RR) (R) |12
= |[F TLIiPI F& e + |[FY Lppy FV[IE
+2|[F®" (Lppr) PVFR| 2,

2

where B denotes genes in the mini-batch while R denotes the genes
in the complement set G\B. And F® e RN*Ne and F® ¢
RMNe=No)xNe are the embedding matrix for genes in B and G \ B, re-
spectively. Note that, F®) is fixed in optimizing Lpp; and F is
. . - (BB) ~(RR) = (BR)
updated at the end of each iteration. Ly and Lyp, Lpp;” and
I:;,I;f) are submatrices of graph Laplacian matrix Lppr, whose rows
and columns correspond to the genes either in B or G\ B. The algo-
rithm is described in Algorithm 1.

2.4.2 Approximating graph regularization with sampling

When the size of the PPI network is large for clustering a larger num-
ber of genes, computing gene embeddings F and graph regulariza-
tion Lpp; with the entire PPI network is a heavy computational
burden. Thus, we also adopted a sampling strategy to approximate
Lppr by aggregating neighbors from the PPI subnetwork consisting

Algorithm 1

Input: X, GPPI; f

Parameters: w, [, u, Ny, o.

Output: y (cluster memberships)

1: Randomly initialize w, and obtain F with forwarding
f; = f(Xi,w).

2: while ] < u do

3: for1,..., {%;J—th batch do

4 Sample X®) from X.

5z Select F®) and F®) from F.

6: Compute £, and Lpp according to eq. (3) and eq. (6).
7 Minimize Ly to update w.

8 Update F with forwarding f; = f(X;, w).

9 end for

10:  Update ! and # according to eq. (5).

11: end while

12: return y; = argmax.f;, where cth entry in f; is the
maximum.
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of genes within mini-batch rather than the entire PPI network, by
which eq. 4a can be rewritten as

Ny, f
Lpp = Z(Wpﬁf))q\\\/— \/—Hz 7

BB) . . .
where WI(,PI) is the submatrix of Wppr with rows and columns corre-

N,

i (Wppr);; is the same as
j=1

in eq. 4a. The algorithm is described in Algorithm 2.

sponding to genes in B, and d; = (Dppr);; =

Algorithm 2

Input: X, GPPI; f

Parameters: w, [, u, o, Nj, Nier.

Output: y (cluster memberships)

1: Randomly initialize w.

2: while /| < u do

3 for 1,..., Nje,-th batch do

4 Sample X® from X.

5: Obtain F®) by forwarding f; = f(X;, w) for i € x%)
6 Compute £, and Lpp; according to eq. (3) and eq. (7).
7 Minimize Ly to update w.

8 end for

9 Update [ and # according to eq. (5).

10: end while

11: Obtain F with forwarding f; = f(X;, w)

12: return y; = argmax.f;, where cth entry in f; is the
maximum.

3 Experiments

3.1 Data preparation

We downloaded 10 ST datasets from 10x Genomics containing 5
mouse brain tissues (MAB, MBSA1, MBSA2, MBSP1 and MBSP2),
1 mouse kidney tissue (MK), 2 human breast cancer tissues (HBC1
and HBC2), 1 human heart tissue (HH) and 1 human lymph node
tissue (HLN) and 12 additional datasets from spatialLIBD, which
are all human dorsolateral prefrontal cortex tissues (HDLPFC1-12).
All datasets were generated by 10x Genomics Visium spatial proto-
col (v1 chemistry), which profiles tissue in a high-density hexagonal
array with 4992 spots at a resolution of 55um (1 — 10 cells per
spot). Each gene activity map was reshaped into a N, = 78 and N,
= 64 matrix by shifting the spots at the odd-numbered rows by half
of a spot to align all spots into a grid. Note that, this slight shift does
not change the order and the spatial relationships among the spots
by definition. Genes with total Unique Molecular Identifier (UMI)
counts less than 100 in their activity maps were removed to elimin-
ate technical artifacts. The UMI counts were set to 0 for capturing
spots outside the tissue region.

Human and mouse PPI networks were obtained from the
STRINGdb. We retained all the physical interactions and additional
highly confident interactions with a confidence score larger than
0.8. We then removed genes with very few neighbors in the PPI net-
work and intersected the ST data with pruned PPI network.
Supplementary Table S2 summarizes the details of the ST data and
the PPI networks used in the experiments.

3.2 Performance measures

To evaluate the clustering performance for the ST datasets, we
applied several measures to evaluate gene co-expression, spatial co-
herence and functional enrichment of the spatial gene clusters.

Gene co-expressions: A Davies—Bouldin (DB) index (Davies and
Bouldin, 1979) based on Pearson distance was used to evaluate the
co-expression of gene clusters,

max——7 (8)

where d, = mzwegp. i P; denotes intra-cluster distance for

gene cluster p, N, represents the number of genes in cluster p, and G,
represents the gene set in cluster p. Here, p; = 1— Pearson-Correlation
(xi, x;j) is the Pearson distance between gene i and gene j. Similarly,
d(p.q) = Py denotes inter-cluster distance between clusters p and g,
where p,, is the Pearson distance between the centroids of clusters p
and g. Smaller DB indices indicate better clustering performance.

Spatial coherence: Beyond co-expression, we also defined spatial
Euclidean distance (Wang et al., 2005) between genes involving spa-
tial relationships among capturing spots to replace the Pearson dis-
tance for calculating the DB index as follows,

N:N,

=] 22 W) (00 = () ) (0, = (), o

1

= ((xi - X/)TWspot(Xi - X/))27

where Wqpor € RNNNeNo g the weight matrix of closeness graph
Gipor of the capturing spots, where (Ggpor),,, reflects the closeness
between capturing spots 72 and 7 based on their distance in the slide.

Functional enrichment: We also conducted functional enrich-
ment analysis of the genes in each cluster with 10,185 Gene
Ontology (GO) terms from the C5 collection in the Molecular
Signatures Database (MSigDB). P-values with false discovery con-
trol adjusted by Benjamini-Hochberg procedure were reported. We
computed the average of the minimum log P-value over gene clusters
to evaluate clustering performance.

3.3 Experimental design

We compared the CNN and CNN with PPI-graph regularization
(CNN-PReg) against six baseline methods, including K-Means
(KM), Spectral Clustering (SC), Non-negative Matrix Factorization
(NMF) (Bergenstrahle et al., 2020), Hierarchical Clustering (HC)
(Sun et al., 2020), Hierarchical Correlation Clustering (HCC) (Dries
et al., 2019) and Automatic Expression Histology (AEH) (Svensson
et al., 2018). Note that, all the baseline methods except AEH are
designed to explore gene co-expression patterns without considering
spatial relationships in expression, and none of them consider func-
tional relationships among genes or spatial relationships among
spots. AEH uses Gaussian models with a covariance matrix built on
the distance among the capturing spots for clustering. Each cluster-
ing was repeated five times for reporting the mean and the standard
error of performance measures. Moreover, two clustering settings
were assessed in the experiments.

Clustering spatially variable genes: Spatially variable genes can
be further clustered to show the collective spatial co-expressions for
functional analysis. To evaluate the spatial patterns in the spatially
variable genes, we first used trendSceek, SpatialDE, SPARK, spatial
auto-correlation in STUtility, binSpect and SilhouetteRank in Giotto
to detect a list of spatially variable genes in each dataset by overlap-
ping the top 2000 genes identified by each of the six methods
(shown in Supplementary Table S2). The identified spatially variable
genes were clustered into 10 clusters in the experiments. CNN and
CNN-PReg were benchmarked against all the baseline methods. We
also performed similar experiments with 10 clusters but on fewer
spatially variable genes by overlapping the top 1000 genes instead.

Clustering all expressed genes: Since there are different defini-
tions of spatially variable genes, the list of the spatially variable
genes for clustering often depends on the specific methods used for
the detection. This also leads to discrepancies in the interpretation
of the clustering results. Thus, it is also interesting to cluster all the
expressed genes to find general spatial expression patterns beyond
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those in the spatially variable genes (shown in Supplementary Table
S2). We clustered all the genes in each dataset into 100 or 200 clus-
ters. CNN and CNN-PReg were compared with all the baseline
methods except AEH, which does not scale to all the genes due to
low computational efficiency. We used a similar generalized mixture
model as a replacement of AEH for the comparison.

Generally, the gene activity maps in each dataset alone are not
sufficient to train a well-performing CNN. Moreover, data augmen-
tation of gene activity maps is not useful since the spots in the activ-
ity maps are already aligned. Thus, for CNN and CNN-PReg in all
the experiments, a 9-layer CNN with pretrained weights for all con-
volutional layers trained on MNIST handwritten digit dataset was
used. The CNN consists of six convolutional layers, followed by
three fully connected layers. This specific architecture shows the
best performance in clustering MNIST handwritten images. An add-
itional convolutional layer is added at the front to project gene activ-
ity maps to the size of MNIST handwritten images. We performed
grid search in the range {0.01,0.05,0.1,0.5} to find the optimal
hyperparameter « on PPI graph regularization in CNN-PReg across
the datasets for the same tissue type. CNN-PReg was implemented
with machine learning library Tensorflow (Abadi ez al., 2015). Note
that pretrained CNNs for MNIST handwritten images are well
trained with a large number of images and supervised information.
Pretrained CNNs with well-studied image databases such as MNIST
and ImageNet have been used in many applications for biological
and biomedical image analysis (Shen et al., 2017). In this study, we
found that the architecture and the pretrained weights are also help-
ful for learning a better CNN for the gene activity maps.

We normalized UMI counts per gene and did log transformation
after adding 1, and then standardized the ST data as z-scores for
projection with principal component analysis. We found these pre-
processing steps generally improve the clustering performance of all
the baseline methods. Euclidean distance and Ward criterion were
used in both HC and HCC. The gene similarity graph in SC was
constructed by 10-nearest neighbors, and the gene dissimilarity
graph was built using a Pearson distance in HCC. The hyper-param-
eter indicating the distance scale that a gene changes expression over
was set to its default value in AEH.

3.4 Improved gene co-expression and spatial coherence
The clustering performance was evaluated for gene co-expression
using the DB index with Pearson distance and spatial coherence
using the DB index with spatial Euclidean distance. The clustering
results were compared for CNN, CNN-PReg and the baseline meth-
ods across 10 tissues from 10x Genomics (Fig. 2) and 12 tissues
from spatialLIBD (Supplementary Fig. S1). In both figures, results
are shown for clustering spatially variable genes into 10 clusters in
panel (a) and all expressed genes into 100 clusters in panel (b).

In Figure 2, it is clear that CNN and CNN-PReg consistently
achieve a better DB index with either Pearson distance or spatial
Euclidean distance for clustering both spatially variable genes and
all expressed genes in all 10 datasets from 10x Genomics. CNN-
PReg also exhibits better DB indices than CNN in all the 10 datasets
by integration of the PPI network. Similar results are also observed
in the experiments on the 12 datasets from spatialLIBD shown in
Supplementary Figure S1. CNN-PReg consistently improved the DB
index with either Pearson distance or spatial Euclidean distance over
the CNN and the other baseline methods as shown in
Supplementary Figure S1a for clustering spatially variable genes and
Supplementary Figure S1b for clustering all expressed genes.
Additionally, we introduced four additional measures [Calinski
Harabasz index (Calinski and Harabasz, 1974), Dunn index (Dunn,
1974), PBM index (Pakhira et al., 2004) and Xie Beni index (Xie
and Beni, 1991)] to comprehensively evaluate spatial coherence.
These addition clustering indices evaluate the cluster compactness
and separation with measures of a wide range of properties, which
cannot be directly minimized by any clustering loss £.. The results
shown in Supplementary Figure S2 are very similar to those by DB
index-based measures. These highly consistent results support our
hypotheses that (a) convolution over the spatial gene expression
leads to better representation of the ST for clustering genes and (b)

integration of the PPI networks improves clustering in both gene co-
expression and spatial coherence.

3.5 Enhanced biological interpretation of spatial

patterns

The biological interpretability of the detected clusters was evaluated
by the log of the minimum (most significant) P-value of each cluster
in GO functional enrichment analysis. The average and standard de-
viation of log min P-values over the clusters of both spatially vari-
able genes and all expressed genes are reported in the bottom panels
of Figure 2 for the 10 tissues from 10x Genomics and
Supplementary Figure S1 for the 12 tissues from spatial LIBD.

In Figure 2, it is evident that CNN-PReg outperforms the base-
line methods regarding enrichment significance on both spatially
variable genes and all expressed genes across all 10x Genomics
datasets except for losing only to SC on the Human Heart (HH)
dataset in clustering spatially variable genes. Interestingly, while
CNN detects clusters with less significant functional enrichment
than SC and several other baselines, CNN-PReg is able to signifi-
cantly improve the convolution-based clustering with better func-
tional enrichment and better gene co-expression and spatial
coherence. This strongly suggests that the PPI graph regularization
substantially improves the biological interpretability of the spatially
co-expressed patterns in the clusters. The enrichment results on the
spatially variable genes from the 12 human dorsolateral prefrontal
cortex (HDLPFC) tissues from the spatialLIBD are depicted in
Supplementary Figure S1a. The significance of the co-expressed clus-
ters from the CNN-PReg is higher than the CNN and the baseline
methods on 9 of the 12 datasets but lower than SC on 2 datasets
(HDLPFC4 and HDLPFCS) and AEH on 1 dataset (HDLPECS).
Similarly, the enrichment results on all expressed genes for the same
tissues depicted in Supplementary Figure S1b shows the significance
of spatially co-expressed clusters from the CNN-PReg is higher than
the CNN and the baseline methods but similar to HCC on the 3
HDLPFC datasets (HDLPFC1-3). Moreover, we further compared
the number of significantly enriched clusters detected by CNN-PReg
or CNN and the baselines in clustering all expressed genes into 100
clusters on the 10 datasets from 10x Genomics in Supplementary
Figure S3. CNN-PReg detects about 60% of the clusters in mouse
tissues and 50% in human tissues that are significantly enriched by
at least one GO term (P-value < 0.01), while more than half of the
clusters detected by CNN and the baseline methods (except SC) in
most tissues are not significantly enriched by any GO terms. At all
significance levels, the CNN-PReg consistently detects more
enriched clusters. Note that, even though in most of the datasets
that SC enriches a similar number of significant clusters as CNN-
PReg, the P-values of the most significantly enriched clusters by
CNN-PReg are more significant than SC as reported by log min P-
values in Figure 2. Overall, the results suggest substantial improve-
ment in functional enrichment across all tissues when the PPI graph
regularization is introduced in the CNN-PReg. Although a few base-
line methods show similar or slightly better enrichment significance
in a few datasets, these methods consistently show reduced spatial
pattern coherence over co-expressed gene clusters.

3.6 Statistical analysis and parameter tuning

To further validate the importance of convolution and PPI graph
regularization for the spatial gene clustering, we also performed two
additional experiments with permutation tests, including CNN on
gene activity maps with permuted capturing spots (‘CNN (permuted
spots)’), where capturing spots were shuffled to distort spatial co-
localization information within the gene activity map; and CNN
with graph regularization on a permuted PPI network (‘CNN-PReg
(permuted PPI)’), where genes with the same node degrees were
shuffled to distort the functional relationships in the PPI network.
Note that, the permuted PPI network is isomorphic of the original
graph and still maintains the same graph structure with permuted
gene identities such that the test focuses on the roles of the genes ra-
ther than the variations in graph structure. The results of the two
permutation experiments are also shown in Figure 2. It is clear that
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Fig. 2. Comparison of clustering performance on 10 ST datasets from 10x Genomics. (a) Comparison of clustering overlapped spatially variable genes (top 2000) into 10 clus-
ters. (b) Comparison of clustering all expressed genes into 100 clusters. In the plots, the error bars are shown for mean and variances of each of the three measures, DB index

with Pearson distance for gene co-expression, DB index with spatial Euclidean distance for spatial coherence and average log minimum P-value for gene ontology enrichment
significance. Each column shows the results on one dataset with the number of genes in the clustering shown below the name of the dataset

CNN (permuted spots) and CNN-PReg (permuted PPI) show signifi-
cantly inferior performance compared to the CNN and the CNN-
PReg, respectively, with regard to co-expression, spatial coherence
and enrichment significance for clustering both spatially variable
genes and all expressed genes across allten 10x Genomics datasets.
The results confirm that both spatial co-localization information
captured by convolution and gene functional relationships encoded
by PPI graph regularization indeed play pivotal roles in detecting
better spatially co-expressed patterns and improving biological in-
terpretation over the gene clusters.

To investigate how the weight on the PPI graph regularization
affects the clustering performance, we also compared the perform-
ance of CNN-PReg with varying weights for clustering both spatial-
ly variable genes and all expressed genes across 10 datasets from

10x Genomics. The results are shown in Supplementary Figures S4
and S5. By varying the weight in the range {0,0.01,0.05,0.1,0.5},
there are clear trends that clustering performance regarding co-
expression, spatial coherence and enrichment significance gradually
improves to an optimum and then sharply degrades as too much
confidence are put on gene functional relationships in the clustering.
The weights achieving the optimal clustering performance across
different tissues are quite consistent. Based on the results, 0.05 and
0.1 were selected for spatially variable genes and all expressed genes
on the 10 tissue types. These observations suggest that the clustering
performance of CNN-PReg indeed improves by leveraging a certain
amount of information of gene functional relationships encoded in
the PPI graph regularization, and the weight on the PPI graph regu-
larization can be chosen by either the experimental evaluation of
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clustering to determine the optimal weights or as the same weight
achieving the best clustering performance on similar types of tissues.

Moreover, we performed additional experiments by intersecting
the top 1000 spatially variable genes detected using the 6 methods
and clustering all expressed genes into 200 clusters. The results are
similar to the previous experiments as shown in Supplementary
Figure S6 for the 10 datasets from 10x Genomics and
Supplementary Figure S7 for the 12 datasets from spatialLIBD.
These additional experiments further show that the clustering per-
formance regarding co-expression, spatial coherence and enrichment
significance is not sensitive to either the number of spatially variable
genes or the number of clusters.

Finally, to understand the role of different types of PPIs for spa-
tial gene clustering, we also show the results of the experiments to
explore clustering performance of CNN-PReg using the PPI net-
work constructed with different confidence thresholds and PPIs
from different sources including co-expression, database, experi-
ments, genomics and text-mining on both spatially variable genes
and all expressed genes across the 10 datasets from 10x genomics.
The results are shown in Supplementary Figures S8 and S9. In
Supplementary Figure S8, CNN-PReg with PPI constructed using
confidence threshold 0.8 outperforms other thresholds regarding
co-expression, spatial coherence and enrichment significance on
both spatially variable genes and all expressed genes across most
tissues from the 10x Genomics datasets. In Supplementary Figure
S9, CNN-PReg with PPI combining different types of PPIs achieves
the best clustering performance regarding co-expression, spatial
coherence and enrichment significance on both spatially variable
genes and all expressed genes across most tissues from 10x
Genomics datasets. Interestingly, we noticed that the CNN-PReg
with the PPI consisting of co-expression PPIs showed better co-
expression and spatial coherence but worse enrichment signifi-
cance compared to other types of PPIs on most tissues. This obser-
vation indicates co-expression PPIs could improve clustering
performance regarding co-expression and spatial coherence while
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other types of PPIs could complement functional interpretation
over clusters.

3.7 Spatial co-expression patterns reveal biological

functions underlying tissue anatomical structures

To study the functional relationship between spatial gene expression
patterns and tissue-specific anatomical structures, 2 case studies
were conducted to match the 10 clusters in spatially variable genes
with the anatomical structure in mouse kidney (MK) and human
breast cancer tissue (HBC1). We manually annotated the H&E
image of the HBC1 tissue section with regions of Ductal Carcinoma
In Situ (DCIS), Invasive Ductal Carcinoma (IDC) and surrounding
benign stroma.

The average expression of the genes in the 10 clusters are visual-
ized with the annotated H&E image of mouse kidney in Figure 3a.
The spatially co-expressed patterns primarily highlight three well-
studied anatomical structures, including cortex, inner stripe of the
outer medulla (ISOM) and outer stripe of the outer medulla
(OSOM). The enriched functions of the clusters for the three ana-
tomical structures are listed in Supplementary Table S3 along with
references that support the association of the biological processes
with these structures. We found relevant biological processes for the
anatomical structures. The spatial patterns in clusters 1, 2, 3 and 4
overlapping with ISOM enriched nucleotide metabolisms, regulation
of vasodilatation and renal system process (Lemley and Kriz, 1991;
Ren et al., 2014). The spatial patterns in clusters 5, 6, 7 and 8 over-
lapping with OSOM enriched catabolic processes of organic and in-
organic molecules, which are active in renal proximal tubule across
cortex and OSOM (Anzai et al., 2005; Zalups, 1995). The spatial
patterns in clusters 9 and 10 resembling cortex mainly enriched bio-
logical functions for the regulation of blood pressure, transport/
homeostasis of inorganic molecules and the transport of cellular
metabolites, which are related to the regulation of kidney function

Fig. 3. Spatial gene expression patterns in mouse kidney tissue and human breast cancer tissue. (a) The annotated H&E image of mouse kidney is shown on the right with different
colors denoting three anatomical structures, inner stripe of the outer medulla (ISOM), the outer stripe of the outer medulla (OSOM) and Cortex. Spatial patterns of the 10 clusters
are matched to ISOM (1, 2, 3 and 4), OSOM (5, 6, 7 and 8) and Cortex (9 and 10). (b) The annotated H&E image of breast cancer tissue is shown on the right with different col-
ors denoting two tumor types, Ductal Carcinoma In Situ (DCIS), Invasive Ductal Carcinoma (IDC) and the surrounding benign stroma is shown in background color. Spatial pat-
terns of the 10 clusters are matched to surrounding benign stroma (1 and 2), DCIS (3, 4 and 5), IDC (6, 7) and the mixture of all 3 cell types (8, 9 and 10).
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reported in previous studies (Brown and Wagner, 2012; Crowley
etal.,2005).

The average expressions of the genes in the 10 clusters are visual-
ized with the annotated H&E image of human breast cancer tissue
in Figure 3b. The spatially co-expressed patterns match anatomical
structures of the tissues, in this case the Ductal Carcinoma In Situ
(DCIS), Invasive Ductal Carcinoma (IDC) and surrounding benign
stroma. The enriched functions of the clusters for the three anatom-
ical structures are listed in Supplementary Table S3 along with sup-
porting citations. The biological functions of the significant GO
terms are relevant to benign stroma, DCIS and IDC. The spatial pat-
terns in clusters 1 and 2 covering surrounding benign stroma are
enriched in biological functions of extracellular matrix (ECM) con-
struction, including glycosaminoglycan, proteoglycan, biosynthetic
and metabolic processes and the regulation of immune cells, includ-
ing lymphocytes and macrophages proliferation and activation.
ECM and immune cells are two main components constituting a
tumor micro-environment that closely interacts with tumor cells and
further promotes tumor progression (Place et al., 2011; Soysal et al.,
2015). The spatial expression patterns in clusters 3, 4 and 5 high-
lighting DCIS are enriched by biological functions for interferon sig-
naling and chemokine signaling, where interferon signaling may
contribute to tumor dissemination, and chemokine signaling pro-
motes tumor invasion and survival (Critchley-Thorne et al., 2009;
Gao and Fish, 2018). The spatial patterns in clusters 6 and 7 high-
lighting IDC are enriched by biological functions for cholesterol and
sphingolipid metabolism, which are highly connected to tumor me-
tastasis (Ehmsen et al., 2019; Nagahashi et al., 2016), and aerobic
glycolysis energy metabolism, which are proven to be the main en-
ergy source for tumor cells and regarded as an indication of malig-
nancy (Liberti and Locasale, 2016; Wu et al., 2020). Finally, the
spatial patterns in clusters 8, 9 and 10 overlapping both DCIS and
IDC are mainly enriched in biological functions for aerobic respir-
ation energy metabolism, which are rewired to modulate tumor pro-
gression (Avagliano et al., 2019; Jia et al., 2018), and interleukin
signaling, which are reported as identifiers of tumor proliferation
and invasion (Fasoulakis et al., 2018).

In addition, we also compared the enriched GO terms by AEH
and CNN on the MK and HBC1 datasets by taking the most signifi-
cant enrichment among all the clusters for each of the GO terms in
Supplementary Tables S3 and S4. As expected, even though clusters
identified by AEH and CNN could display some similar spatially co-
expressed patterns, the genes in the clusters do not have or produce
less significant enrichment on the same biological functions related
to tissue anatomical structures (Supplementary Tables S3 and S4).
Specifically, 28/36 and 30/36 GO terms are missing or less signifi-
cantly enriched on MK, and 44/48 and 40/48 GO terms on HBC1
by AEH and CNN, respectively. All these observations corroborate
that CNN-PReg provides better biological interpretation in under-
standing the functional relationship between spatial gene expression
patterns and tissue anatomical structures.

4 Conclusion

In this study, we propose a CNN model coupled with PPI graph
regularization to discover gene co-expression clusters with spatial
patterns in ST data. To our knowledge, this is the first gene cluster-
ing method integrating both spatial and functional information for
clustering spatial transcriptomes. The experimental results show
that spatial relationships among captured spots and functional rela-
tionships among genes can significantly improve the coherence of
spatial co-expression patterns and the biological interpretation of
the clusters. Further enrichment analysis also shows that the spatial
co-expression patterns in the gene clusters correspond to distinct
anatomical structures within tissue suggesting more biologically in-
formative clusters.

Deep neural networks have been shown to be useful for various
challenging learning problems in the analysis of single-cell and ST
data, such as removing batch effects in clustering scRNAseq data (Li
et al., 2020), and integrating H&E image with spatial gene expres-
sion for cell-type identification (Tan et al., 2020) or correlating local

gene expression with H&E image features (He et al., 2020). Our
current model relies on using a pre-trained neural network and inte-
gration of PPI-based graph-regularization to avoid complex model
tuning with a relative small sample size. In the future, we will focus
on improving the neural network architecture for these more
advanced data integration approaches to be applied to detecting and
interpreting spatial co-expression patterns.
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