RBSYN: Type- and Effect-Guided Program Synthesis

Sankha Narayan Guria
University of Maryland
College Park, Maryland, USA
sankha@cs.umd.edu

Abstract

In recent years, researchers have explored component-based
synthesis, which aims to automatically construct programs
that operate by composing calls to existing APIs. However,
prior work has not considered efficient synthesis of meth-
ods with side effects, e.g., web app methods that update a
database. In this paper, we introduce RBSYN, a novel type-
and effect-guided synthesis tool for Ruby. An RBSYN synthe-
sis goal is specified as the type for the target method and a
series of test cases it must pass. RBSYN works by recursively
generating well-typed candidate method bodies whose write
effects match the read effects of the test case assertions. After
finding a set of candidates that separately satisfy each test,
RBSYN synthesizes a solution that branches to execute the
correct candidate code under the appropriate conditions. We
formalize RBSYN on a core, object-oriented language Asyy
and describe how the key ideas of the model are scaled-up
in our implementation for Ruby. We evaluated RBSYN on 19
benchmarks, 12 of which come from popular, open-source
Ruby apps. We found that RBSYN synthesizes correct solu-
tions for all benchmarks, with 15 benchmarks synthesizing
in under 9 seconds, while the slowest benchmark takes 83
seconds. Using observed reads to guide synthesize is effec-
tive: using type-guidance alone times out on 10 of 12 app
benchmarks. We also found that using less precise effect an-
notations leads to worse synthesis performance. In summary,
we believe type- and effect-guided synthesis is an important
step forward in synthesis of effectful methods from test cases.

CCS Concepts: « Software and its engineering — Auto-
matic programming,.

Keywords: program synthesis, type and effect systems, Ruby

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI °21, June 20-25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8391-2/21/06...$15.00
https://doi.org/10.1145/3453483.3454048

Jeffrey S. Foster
Tufts University
Medford, Massachusetts, USA
jfoster@cs.tufts.edu

344

David Van Horn
University of Maryland
College Park, Maryland, USA
dvanhorn@cs.umd.edu

ACM Reference Format:

Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn. 2021.
RBSYN: Type- and Effect-Guided Program Synthesis. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI "21), June 20-25, 2021,
Virtual, Canada. ACM, New York, NY, USA, 15 pages. https://doi.
org/10.1145/3453483.3454048

1 Introduction

A key task in modern software development is writing code
that composes calls to existing APIs, such as from a library
or framework. Component-based synthesis aims to carry out
this task automatically, and researchers have shown how to
perform component-based synthesis using SMT solvers [26];
how to synthesize branch conditions [31]; and how to per-
form synthesis given a very large number of components [12].

This prior work guides the synthesis process using types
or special properties of the synthesis domain, which is crit-
ical to achieving good performance. However, prior work
does not explicitly consider side effects, which are perva-
sive in many domains. For example, consider synthesizing a
method that updates a database. Without reasoning about
effects—in this case, that the method body needs to change
the database—synthesis of such a method reduces to brute-
force search, limiting its performance.

In this paper, we address this issue by introducing RBSYN,
a new tool for synthesizing Ruby methods. In RBSYN, the
user specifies the desired method by its type signature and
a series of test cases it must pass. RBSYN then searches for
a solution by enumerating candidates and checking them
against the tests. The key novelty of RBSYN is that the search
is both type- and effect-guided. Specifically, the search begins
with a typed hole tagged with the method’s return type. Each
step either replaces a typed hole with an expression of that
type, possibly introducing more typed holes; inserts an effect
hole, annotated with a write effect that may be needed to
satisfy a test assertion; or replaces an effect hole with an
expression with the given write effect, possibly inserting
another effect hole. Once this process finds a set of method
bodies that cumulatively pass all tests, RBSYN uses a novel
merging strategy to construct a complete solution: It cre-
ates a method whose body branches among the conditions,
executing the corresponding (passing) code, thus yielding
a single method that passes all tests. (§ 2 gives a complete
example of RBSYN’s synthesis process.)

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454048
https://doi.org/10.1145/3453483.3454048
https://doi.org/10.1145/3453483.3454048

PLDI 21, June 20-25, 2021, Virtual, Canada

We formalize RBSYN for Agyp, a core object-oriented lan-
guage. The synthesis algorithm is comprised of three parts.
The first part, type-guided synthesis, is similar to prior work
[16,30,32], but is geared towards imperative, object-oriented
programs. The second part is effect-guided synthesis, which
tries to fill an effect hole ¢ : € with an expression with
effect €. In Asyp, an effect accesses a region A.r, where A
is a class and r is an uninterpreted identifier. For example,
Post.author might indicate reading instance field author
of class Post. This notion of effects balances precision and
tractability: effects are precise enough to guide synthesis
effectively, yet coarse enough that reasoning about them is
simple. The last part of the synthesis algorithm synthesizes
branch conditions to create a merged program that combines
solutions for individual tests into an overall solution for the
complete problem. (§ 3 discusses our formalism.)

Our implementation of RBSYN is built on top of RDL, a
Ruby type system [15]. Our implementation extends RDL to
include effect annotations, including a self region to give
more precise effect information in the presence of inheri-
tance. Our implementation also makes use of RDL’s type-level
computations [27] to provide precise typing during synthesis.
Finally, when searching for solutions, our implementation
heuristically prioritizes further exploration of candidates that
are small and have passed more assertions. (§ 4 describes our
implementation.)

We evaluated RBSYN on a suite of 19 benchmarks, in-
cluding seven benchmarks we wrote and 12 benchmarks
extracted from three widely used, open-source Ruby apps:
Discourse, Gitlab, and Disaspora. For the former, we wrote
our own specifications. For the latter, we used unit tests
that came with the benchmarks. We found that RBSYN syn-
thesizes correct solutions for all benchmarks and does so
quickly, taking less than 9 seconds each for 15 of the bench-
marks, and 83 seconds for the slowest benchmark. Moreover,
type- and effect-guidance is critical. Without it, a majority
of the benchmarks time out after five minutes. Finally, we
examine the tradeoff of effect precision versus performance.
We found that restricting effects to class names only causes 3
benchmarks to time out, and restricting effects to only puri-
ty/impurity causes 10 benchmarks to time out. (§ 5 discusses
the evaluation in detail.)

We believe that RBSYN is an important step forward in
synthesis of effectful methods from test cases.

2 Overview

In this section, we illustrate RBSYN by using it to synthesize
a method from a hypothetical web blogging app. This app
makes heavy use of ActiveRecord, a popular database access
library for Ruby on Rails. It is the ActiveRecord methods
whose side effects RBSYN uses to guide synthesis.

R=TEEC RN RS N I N LS

I S N N I N N I N N e s T e N N T S T e
X AR W N DS O NN R W N N D

345

Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

User schema {name: Str, username: Str}
Post schema {author: Str, title: Str, slug: Str}

define :update_post, "(Str, Str, {author: ?Str, title:
?Str, slug: ?Str}) — Post", [User, Post] do
spec "author can only change titles" do
setup {
seed_db # add some users and their posts to db
@post = Post.create(author: 'author', slug:
'hello-world', title: 'Hello World')
update_post('author', 'hello-world', author:
"dummy', title: 'Foo Bar', slug: 'foobar')
}
postcond { |updated]|
assert { updated.id == @post.id }
assert { updated.author == "author" }
assert { updated.title == "Foo Bar" }
assert { updated.slug == 'hello-world' }
3
end
spec "other users cannot change anything" do
setup { ... # same setup as above except next line
update_post('dummy', ...) # other args same
}
postcond { |updated| ...
assert { updated.title
3

end end

same other three asserts
"Hello World" }

Figure 1. Specification for update_post method

Figure 1 shows the synthesis problem. This particular app
includes database tables for users and posts. In ActiveRe-
cord, rows of these tables are represented as instances of
classes User and Post, respectively. For reference, the table
schemas are shown in lines 1 and 2. Each user has a name
and username. Each post has the author’s username, the
post’s title, and a slug, used to compute a permalink.

The goal of this particular synthesis problem, given by
the call to define, is to create a method update_post that
allows users to change the information about a post. Lines 4
and 5 specify the method’s type signature in the format of
RDL [15], a Ruby type system that RBSYN uses for types and
type checking. Here, the first two arguments are strings, and
the last is a finite hash type that describes an instance of
Hash with optional (indicated by ?) keys author, title, and
slug (all symbols, which are just interned strings) that map
to strings. The method itself returns a Post.

In addition to the type signature, the synthesis problem
also includes a list of constants that can be used in the target
method. In this case, those constants are the classes User
and Post, as given by the last argument to define on line 5.
These classes can then be used to invoke singleton (class)
methods in the synthesized method. For simplicity, we as-
sume that RBSYN can use only these constants for this exam-
ple. In practice, RBSYN can synthesize predefined numeric
or string constants like 0, 1 or the empty string.

RBSYN: Type- and Effect-Guided Program Synthesis

Finally, the synthesis problem includes a number of specs,
which are just test cases. Each spec has a title, for human
convenience; a setup block to establish any necessary pre-
conditions and call the synthesized method; and a postcond
block with assertions that must hold after the synthesized
method runs. As we will see below, separating the pre- and
postconditions allows RBSYN to more easily use effects to
guide synthesis. In this example, both specs add a few users
and a post created by each of them to the database (call to
seed_db, details not shown) and then create a post titled
“Hello World” by the user author. The first spec asserts that
update_post allows author to update a post’s title. The sec-
ond spec asserts that a dummy user cannot update the post.
The check for id ensures that only existing posts are updated
(any new posts will have a new unique id).

The final, synthesized solution is shown on the right of
Figure 2. Notice the synthesized code calls several ActiveRe-
cord methods (exists?, where, and first) as well as the
hash access method []. Applying solver-aided synthesis to
this problem would require developing accurate models of
these methods, which is a difficult challenge [29]. To address
this limitation, RBSYN instead enumerates candidates, which
can then be run to check them against the specs. As the
search space is vast, RBSYN uses update_post’s type signa-
ture and the effects from the specs’ postconds the guide the
search. Finally, RBSYN uses a novel merging algorithm to
synthesize the necessary branch condition to yield a solution
that satisfies both specs.

2.1 Synthesizing Spec Solutions

The left portion of Figure 2 shows the search process RBSYN
uses to solve this synthesis problem. To begin, RBSYN ob-
serves that the return type of update_post is Post. Thus,
the search begins (upper left) by creating a candidate method
body O:Post, which is a typed hole that must be filled by
an expression of type Post. RBSYN then iteratively expands
holes in candidates, running the specs whenever it produces
fully concretized candidates with no holes.

In general, RBSYN can fill a typed hole with a local variable,
a constant, or a method call. As there are no local variables
(which so far are just parameters) or constants of the ap-
propriate type, RBSYN chooses a method call. To do so, it
searches through the available method type annotations to
find those that could return Post. In this case, RBSYN takes ad-
vantage of RDL’s type annotations for ActiveRecord [27] to
synthesize candidates C1 and C2, among others (not shown).
It is straightforward for the user to add type annotations
for any other library methods that might be needed by the
synthesized method. For illustration purposes, we also show
a candidate C3 that returns the wrong type. Such candidates
are discarded by RBSyN, vastly reducing the search space.
Note that C2 contains two method calls, and thus would take
two steps to produce, but we show it here as a single step
for conciseness.

346

PLDI ’21, June 20-25, 2021, Virtual, Canada

Next, RBSYN tries to fill holes in candidate expressions,
starting with smaller candidates. In this case, it first consid-
ers C1, which has a hole of type Class<Post>, which is the
singleton type for the constant Post. Thus, there is only one
choice for the hole, yielding candidate C4. Since C4 has no
holes, RBSYN runs it against the specs. More specifically, it
runs it against the first spec—as we will discuss shortly, RB-
SYN synthesizes solutions for each spec independently, and
then combines them. In this case, C4 fails the spec (because
the first post in the database is not the one to be updated,
due to the initial database seeding) and hence is rejected.

Continuing with C5, RBSyN fills in the (finite hash-typed)
hole, yielding choices that include C6 and C7. RBSYN rejects
C6 since there is no way to construct an expression of type
Int. However, for C7, there are two local variables of type
Str from the method arguments. Substituting these yields
C8 and C9. C8 uses argo, the username, to query the Post
table’s slug, so it fails. C9 queries the Post table with the
correct slug value arg1. This passes the first two assertions
(line 15 onwards) but fails the third, which expects the post
title to be updated from “Hello World” to “Foo Bar”

RBSYN extends RDL’s type annotations to include read

and write effects. When the expression inside an assert
evaluates to false, RBSyYN infers the assert’s read and write
effects based on those of the methods it calls. For example,
we can give the Post#title! method, used by the third
assertion, the following signature:
type Post, :title, '() — Str', read: ['Post.title']
Thus, RBSYN sees that the failing assertion reads Post . title,
an abstract effect label. To make the assertion succeed, RB-
SYN inserts an effect hole ¢ : Post. title in the candidate
program (C10). It also saves the value of the previous candi-
date expression in a temporary variable, and inserts a hole
with the candidate’s type at the end. RBSYN then continues
the search, trying to fill the effect hole with a call to a method
whose write effect matches the hole—such a call could poten-
tially satisfy the failed assertion. Here, RBSYN replaces the
effect hole (C11) with a call to Post#title=, which is such
a method. (We should note that all previous candidates that
failed a spec due to a side effect will also have effect holes
added in a similar fashion. We omit these candidates from
the discussion as they do not lead to a solution.)

RBSYN continues by using type-guided synthesis for the
typed holes of C11—yielding C12, rejected due to assertion
failures—and then C13. After several steps (not shown), Rs-
Syn arrives at C14, which fails the spec, and C15, which fully
satisfies the first spec. Indeed, we see this exact expression
in lines 4-6 of the solution in Figure 2.

2.2 Merging Solutions

RBSYN next uses the same technique to synthesize an expres-
sion that satisfies the second spec, yielding the expression

1 A#m indicates instance method m of class A.

PLDI 21, June 20-25, 2021, Virtual, Canada

c
@(chlass<Post>) Post.firstXTeleailure
.first

oO: Post—> (O:Class<Post>) @ —> Post.where(o:{id: Int, -first

.where(o:{ ... }).first slug: Str, ...})
.first

(o:Class<Post>)
a
O .exists?(o:{... }) XTypeError

Post.where({

) first

t0 = Post.where({
slug: argl}).first
t0.title = arg0

to @ XTest Failure

t0 = Post.where({

slug: argl}).first
t0.title =

tlaargz[:author] slug: argl}).first Effect: Post.title to
Xestraiture t0 = Post.uhere(] (3Post) title - else
slug: argl}).first @ Pos @ t0 = Post.wh : i
t0 = Post.where({ t0.title = (o:{ piPost — slug?sargli;?\(‘irst POSt.Where(SIUlg. arg1)'flr5t
slug: argl}).first author: Str, title: Str, ...}) (o:Post.title) end
t0.title = <“«—— [o:author or title or ...] D~p.ost : @
arg2[:title] \/ t0 : 10 | end

t0o

6) Post.where({
id: (@:Int)})

slug: (o:Str)})

\ .first @

t0 = Post.where({

Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

X No Terms
X Test Failure

Post.where({
slug: argo})

def update_post(argd, argl, arg2)
if Post.exists?(author: argo,
slug: argl)
t0 = Post.where(slug:argl).first
t0.title=arg2[:title]

(\ x Test Failure

<)

~ post.where({
slug: argil})
.first

R=TRE RN RS R U SR SR

Figure 2. Left: Steps in the synthesis of solution to the first specification. Note C2 takes two steps to synthesize but is shown as
a single composite step. Some choices available to the synthesis algorithm have been omitted for simplicity. Right: Synthesized

update_post method.

shown on line 8. Now RBSYN needs to merge these individual
solutions into a single solution that passes all specs. At a
high-level, it does so by constructing a program if b; then
e; else if by then e, end, where the e; are the solutions
for the specs and the b; are branch conditions capturing the
conditions under which those expressions pass the specs.

To create the b;, RBSYN uses the same technique again, this
time synthesizing a boolean-valued expression that evaluates
to true under the setup of spec i. In this case, this process
results in the same branch condition true for both specs.
However, since this trivially holds for both specs, this branch
condition does not work—we need to find a branch condition
that distinguishes the two cases.

Next RBSYN tries to synthesize a branch condition b;
that evaluates to true for the setup of the first spec and
false for the setup of the second. This yields the more pre-
cise branch condition b] = Post.exists?(author: argo,
slug: argl). This is a sufficient condition, as the update_-
post method is supposed to update a post only if a post
with slug arg1 is authored by arg®@. It solves an analogous
synthesis problem for the second spec, yielding b, = !Post.-
exists?(author: argd, slug: argl). As these are the
negation of each other, RBSYN then merges these two to-
gether as if-then-else (rather than an if-then-else if--
then-else), yielding the final synthesized program in Fig-
ure 2.

3 Formalism

In this section, we formalize RBSYN on Ay, a core object-
oriented calculus shown in Figure 3. Values v include nil,
true, false, and objects [A] of class A. Note that we omit
fields to keep the presentation simpler. Expressions e include
values, variables x, sequences e; e, method calls e.m(e), con-
ditionals if b then e else e, and variable bindings let x =

347

Values
Expressions

nil | true | false | [A]
v | x| ee | em(e)

if b theneelsee
letx=eine | O:7 | O:¢€

Conditionals b e || bVd
Types T o= A|rtUr
Programs P = defm(x)=e
Specs s u= (S,0)

Setup S = e xr=P(e)
Postconditions Q == asserte | Q;0
Spec Set ¥ o= {s;}

Synthesis Goal G == (r—>1,¥)

Class Table CT == 0| Am:0,CT
Method Types o u= m

Type Env. r = 0| x:7,T
Dynamic Env. E = x>0

Constants > = 0|o:1,2
Effect € o | x| Ax | Ar | eUe

r € effect regions e Ce €C=*
Ajx C Ay x and Aj.r CAyrand Ajr C Ay x if A; < Ay
elcelue? e celue?
1.1 2 2\ _ oyl 22 1 2
(e, €50 U (e, €5) = (e, Uer, €, UES)

x € variables, m € methods, A € classes,
Nil<t 7<0b 11<1Un n<1Un

Figure 3. Syntax and Relations of Agyy,.

e in e. A conditional guard b can be an expression e, a nega-
tion !b, or a disjunction b V b. The grammar for guards is
limited to match what RBSYN can actually synthesize.

RBSYN: Type- and Effect-Guided Program Synthesis

Expressions also include typed holes O : T and effect holes
< @ €, which are placeholders that are eventually filled with
an expression of the given type, or expression with the given
write effect, respectively. We note our synthesis algorithm
only inserts effect holes at positions that can have any type.
Types are either classes or unions of types, and we assume
classes form a lattice with Nil (the class of nil) as the bottom
element and Obj as the top element. We write A < B when
class A is a subclass of B according to the lattice. We defer the
definition of effects for the moment. Finally, a synthesized
program P is a single method definition def m(x) = e. We
restrict the method to one argument for convenience.

A spec s in Agyy is a pair of setup code S and a postcondi-
tion Q. A setup ey; x, = P(e;) includes some initialization e;
followed by a special form indicating calling the synthesized
method in P with argument e; and binding the result to x;.
The postcondition is a sequence of assertions that can test
x, and inspect the global state using library methods. We
write ¥ for a set of specs, and a synthesis goal G is a pair
(11 = 13, ¥), where 1; and 7, are the method’s domain and
range types, respectively, and ¥ are the specs the synthesized
method should satisfy.

The next part of Figure 3 defines additional notation used
in the formalism. Synthesized methods can use classes and
methods from a class table CT, which maps class and method
names to the methods’ types. For example, the class table
has type information for other methods of a target app and

library methods such as those from ActiveRecord. A method

type o has the form (erew) 7/, where 7 and 7’ are the

domain and range types, respectively, and (e, €,,) specifies
the method’s read effect €, and write effect €,, (discussed
shortly). During type-guided synthesis, RBSYN maintains a
type environment I' mapping variables to their types. When
executing a synthesized program, the operational semantics
(omitted) uses a dynamic environment E mapping variables
to their values. During synthesis, X is a list of user-supplied
constants that can fill holes.

Effects. The last part of Figure 3 defines effects €. In RB-
Syn, effects are hierarchical names that abstractly label the
program state. The empty effect ® denotes no side effect,
used for pure computations. The effect * is the top effect,
indicating a computation that might touch any state in the
program. Lastly, effect A.x denotes code that touches any
state within class A, and A.r denotes code that touches the
region labeled r in A, where region names are completely
abstract. Effects can also be unioned together.

We define subsumption €; C €, on effects to hold when ¢,
includes €;. Effects o and * are the bottom and top, respec-
tively, of the C relation, and if A; < A, then A;.r C A;.r and
Air C Ay.xand A+ C Ay.x. We also have standard rules
for subsumption with effect unions.

In RBSYN, all effects arise from calling methods from the
class table CT, which have effect annotations of the form

348

PLDI ’21, June 20-25, 2021, Virtual, Canada

(&, €w), Where €, and €,, are the method’s read and write
effects, respectively. We extend subsumption to such paired
effects in the natural way. During synthesis, if RBSYN ob-
serves the failure of an assertion with some read effect ¢,, it
tries to fix the failure by inserting a call to some method with
write effect €,, such that ¢, C €,,, i.e., it tries writing to the
state that is read. For example, in Section 2, this technique
generated a call to Post#title.

Our effect language is inspired by the region path lists
approach of Bocchino Jr et al. [4], but is much simpler. We
opted for coarse-grained, abstract effects to make it easier to
write annotations for library methods. Although class names
are included in the effect language, such names are for hu-
man convenience only—nothing precludes a method in class
A being annotated with an effect to B.r for some other class
B. We found that this approach works well for our problem
setting of synthesizing code for Ruby apps, where trying
to precisely model heap and database state would be diffi-
cult. However, we believe the core of this approach—pairing
effects (in our case, reads and writes) and then creating can-
didates using the opposing element of such a pair—can be
generalized to more complex effect systems.

Synthesis Problem. We can now formally specify the syn-
thesis problem. Given a synthesis goal (r; — 72, {(S;, Qi)}),
RBSYN searches for a program P such that, for all i, assuming
that S; calls P with an argument of type 7, evaluating to x,
of type 7, it is the case that P + S;; Q; || v. In other words,
evaluating the setup followed by the postcondition yields
some value rather than aborting with a failed assertion. We
omit the evaluation rules as they are standard.

3.1 Type-Guided Synthesis

The first component of RBSYN is type-guided synthesis,
which creates candidate expressions of a given type by trying
to fill a hole O : 7, where 7, is the method return type. Fig-
ure 4 shows a subset of the type-guided synthesis rules; the
full set can be found in the companion technical report [22].
These rules have the form 3, T +cr €1 v e, : 7, meaning
with constants %, in type environment I', under class table
CT, the holes in e; can be rewritten to yield e;, which has
type 7.

The rules in Figure 4 have two forms. The T- rules apply
to expressions whose outermost form is not rewritten. Thus
these rules perform standard type checking. For example, T-
VAR type checks a variable x by checking its type against the
type environment I', leaving the term unchanged. T-LET type-
checks and recursively rewrites (or not) the subexpressions
and then rewrites those new expressions into a let-binding,
ensuring the resulting term is type-correct. Finally, T-HOLE
applies to a typed hole that is not being rewritten, in which
case it remains the same and has the given type.

The S- rules rewrite typed holes. S-ConsT replaces a hole
by a constant of the correct type from X. S-VAR is similar,

PLDI 21, June 20-25, 2021, Virtual, Canada

ST rerewe:t

I'x)=r

STrerx~x: T

T-Var

ST rer e el :my
ST[x— 1] brcrewe):n

- T T-LET
X, Trerletx=e ine; ~ letx =ejine): 1y
T-HoLE
Z,FFCTD:TW(I:I:T):T
V:T €EX 7151
S-ConsT
STbrerimwo:n
I'x)=1q 1 <1
S-Var
STrerdimwx:n
m:11 > €CT(A) n<n
S-Arp

STrerO:imw (O:A).m0:n): 0
Figure 4. Type-guided synthesis rules (selected).

replacing a hole by a variable from T'. Finally, S-App replaces
a hole with a call to a method with the right return type,
inserting typed holes for the method receiver and argument.

Type Narrowing. Notice that in these three S-rules, the
term replacing the hole may actually have a subtype of the
original hole’s type. Thus, type-guided synthesis could nar-
row types in a synthesized program, potentially also narrow-
ing the search space. For example, consider an expression
(Oq : Str).append(DO; : Str) that joins two strings, and as-
sume the set of constants ¥ includes nil. Notice that nil is
a valid substitution for Oy, which will then cause the type of
the receiver to narrow to Nil. But then the typing derivation
fails because the Nil type has no append method, stopping
further exploration along this path. In contrast, if we had
typed the replacement term at Str, then RBSY~n would have
fruitlessly continued the search, trying various replacements
for O, only to reject them due to a runtime failure for invok-
ing a method on nil.

3.2 Effect-Guided Synthesis

The second component of RBSYN is effect-guided synthesis,
used when type-guided synthesis creates a candidate that
does not satisfy the postcondition of the tests. If this happens,
RBSYN computes the effect (e, €,,) of the failed assertion in
the postcondition. (We defer the formal rules for comput-
ing this effect to the technical report [22], as they simply
union the effects of method calls in the assertion.) Then, we
hypothesize that the assertion may have failed because the
region denoted by €, is in the wrong state.

To potentially fix the state, RBSYN applies a new rule S-EFF,
shown in Figure 5. The hypothesis computes the type 7 of

349

Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

‘Z,F,er Fer e » e

S Treremw et

- S-EFF
ST, e, kcre»letx=ein (O :e;0:7)

‘Z,chrewezr

T-ErrOBJ
ST ker O e (O €): Obj

’ ot

, €.,
€ Ce, m:qy —— 1 € CT(A)

S-EFFAPP
STbrerC:ewO:ie;(0:A).mO:m): 1

S-EFrNIL

X,T'kter O e nil: Nil

Figure 5. Effect guided synthesis rule

e, the candidate expression that failed the postcondition. In
the conclusion, e is rewritten to let x = e in (¢ : €,;0: 1),
i.e., e is computed, bound to x, and two holes are sequenced.
The first must be filled with an expression of the desired
effect €,. The second must have e’s type 7, to preserve type-
correctness. For example, it could be filled by x, as happened
in Figure 2 when t0 is returned.

The rules for working with effect holes are shown in the
bottom of Figure 5, which extends Figure 4. T-EFrOBJ gives
an effect hole, that is not rewritten, type Obj. Since this is
the top of the type hierarchy, this ensures an effect hole
can safely be replaced by a term with any type. In other
words, effect holes are filled for their effects, not their types.
S-ErrAPP does the heavy lifting, filling an effect hole with a
call to a method m with a write effect €, that subsumes the
desired effect €,. Of course, this call may itself read state €/,
so the rule precedes the method call with a hole with that
effect, in case said state needs to change. Finally, S-EFFNIL
replaces an effect hole with nil, which removes it from the
program. This is used in case some extra effect holes are
added that are not actually needed.

3.3

The last component of RBSYN combines expressions that pass
individual specs into a final program that passes all specs.
More specifically, given a synthesis goal (r; — 7, {s;}),
RBSYN first uses type- and effect-guided synthesis to create
expressions e; such that e; is the solution for spec s;. Then,
RBSYN combines the e; into a branching program roughly of
the form if b; then e; else if b, then e, ... for some b;.

For each i, RBSYN uses the type-guided synthesis rules in
§ 3.1 to synthesize a b; such that under the setup S; of spec
s;, conditional b; evaluates to true, i.e., def m(x) = b; +
Si;assert x, || v. Note effect-guided synthesis is not used
here as the asserted expression x, is pure.

Merging Solutions

RBSYN: Type- and Effect-Guided Program Synthesis

(e1, b1, ¥1) ® (e2, b, ¥2) = (e1, b1, ¥1 U Fy)
ife1 = e and bl - bz
(e1,b1,¥1) ® (ez, b, ¥2) = (e, b1 V b2, ¥ U ¥y)
ife; =e,;and by =5 by
(e1,b1, 1) @ (€2, b2, ¥p) = (e1, b}, ¥1) @ (e2, 5,7, 1)
ifel Z e and b] - bz
where V(S;, Q;) € ¥;.def m(x) = b;?" + S;;assert x, | v
A Y{(S;,Q;) € ¥;.def m(x) = b;"" + Sj;assert Ix, || v
and V(S;, Q;) € ¥;.def m(x) = b,"" + S;;assert Ix, || v

A Y{(S;,Q;) € ¥r.def m(x) = b;"" + Sj;assert x, L v
®3)

Figure 6. Rewriting rules.

Notice that while each initial b; evaluates to true under
the precondition, there is no guarantee it is a sufficient con-
dition for s; to satisfy the postcondition—especially because
RBSYN aims to synthesize small expressions, as discussed
further in § 4. Moreover, there may be multiple e; that are ac-
tually the same expression, and therefore could be combined
to yield a smaller solution.

Thus, RBSYN next performs a merging step to create the
final solution. This process operates on tuples of the form
(e, b, ¥), which is a hypothesis that the program fragment
if b then e satisfies the specs ¥. RBSYN repeatedly merges
such tuples using an operation (e;, b1, ¥1) @ (ez, bz, ¥3) to
represent that if b; then e; else if b, then e; satisfies the
specs ¥; U ¥,. We define Specs({ey, by, ¥1) @ ...) = U ¥}, Le.,
the specs from merged tuples, and ProG({e, b1, ¥1) & ...)
= def m(x) = if b; then ¢, else ..., a definition with the
expression represented by the merged tuples.

Figure 6 defines rewriting rules that are applied to create
the final solution. Rule 1 simplifies the case where e; and e;
are the same and b, implies b, yielding a single expression
and branch that satisfy ¥; U ¥,. Note we omit the symmetric
case for all rules due to space limitations. Rule 2 applies when
by does not imply b, but e; and e, are the same. In this case,
e satisfies the union of the specs under the disjunction of the
branch conditions. (Note this rule could also applied if b; =
b,, but the resulting solution would be longer than Rule 1
generates.) Finally, Rule 3 applies when e; and e, differ but b,
implies b;. In such a scenario, b, holds for both e; and e; and
thus it must be that by and b, are insufficient to branch among
e; and e;. Thus, RBSYN synthesizes a stronger conditional
biyn that hold for all specs in ¥; and does not hold for the
specs in ¥, and the reverse for b;y". For example, recall the
application of this rule in the example of § 2, to synthesize a
more precise branch condition because the initial condition
true was the same for both branches.

350

PLDI ’21, June 20-25, 2021, Virtual, Canada

Algorithm 1 Merge programs

1: procedure MERGEPROGRAM(candidates = {{e;, b;, ¥;)})
22 merged — {Pe;, bi, i)}
3. final « {}
4. for all m € merged do
5 m « apply (1)-(3) to m until no rewrites possible
6 final « final U {m} if ¥(S;, Q;) € SpECcs(m).
7 AProG(m) + S;;Q; J v
1
8: end for
9: return ProG(m) s.t. m € final
10: end procedure

RBSYN also includes a number of other merging rules,
deferred to the technical report [22], for further simplifying
expressions. Like, if b; then e; else if !b; thene; elsenil
can be rewritten as if b; then e; else e,, which was used
to generate the solution in Figure 2.

Checking Implication. Checking the implications in Fig-
ure 6 is challenging since branch conditions may include
method calls whose semantics is hard to reason about. To
solve this problem, RBSYN checks implications using a heuris-
tic approach that is effective in practice. Each unique branch
condition b is mapped to a fresh boolean variable z. Simi-
larly, b is encoded as —z, and by V by is encoded as z; V z,.
Then to check an implication b; = by, RBSYN uses a SAT
solver to check the implication of the encoding. While this
check could err in either direction (due to not modeling the
semantics of the b; precisely), we found it works surprisingly
well in practice. In case the implication check fails due to
lack of precision, we fall back on the original @ form which
represents the complete program if b; then e; else if ...
without loss of precision. Should the implication check in-
correctly succeed, it will be caught by running the merged
program against the assertions.

Constructing the Final Program. Finally, notice that
the merge operation & is not associative, and it may yield
different results depending on the order in which it is ap-
plied. Thus, to get the best solution, RBSYN uses Algorithm 1.
It builds the set of all possible merged fragments (line 2).
Then it simplifies each candidate solution using the rewrite
rules and only considers a candidate valid if it passes all tests.
It returns any such program as the solution. This branch
merging strategy tries all combinations, so it is less sensi-
tive to spec order than other component based synthesis
approaches [31]. In practice, we found that reordering the
specs does not have much effect.

3.4 Discussion

Before discussing our implementation in the next section,
we briefly discuss some design choices in our algorithm.

PLDI 21, June 20-25, 2021, Virtual, Canada

Our effect system uses pairs of read and write effects in
regions. As mentioned, this core idea could be extended to
any effects in a test assertion that can be paired with an effect
in the synthesized method body. For example, throwing and
catching exceptions, I/O to disk or network, or enabling/dis-
abling features in a Ul could all be expressed this way. We
leave exploring such effect pairs to future work.

One convenient feature of our algorithm is that correct-
ness is determined by passing specs, which are directly exe-
cuted. Thus, the synthesizer can generate as many candidates
as it likes—i.e., be as over approximate as it likes—as long
as its set of candidates includes the solution. This feature
enables RBSYN to use a fairly simple effect annotation system
compared to effect analysis tools [4].

We could potentially adapt our algorithm to work in a
capability-based setting, using the observation that capabili-
ties and effects are related [6, 8, 19]. In this setting, assertion
failures in tests would indicate specific capabilities needed
by the synthesized code. We leave exploring this idea further
to future work.

Finally, we distinguish typed holes from effect holes, rather
than have a single type-and-effect hole, to control where to
use type-guidance and where to use effect-guidance. When
initially trying to synthesize a method body, we omit effects
because it is unclear which effects are needed. For example,
in Figure 1, the second spec has read effects on all fields of the
post, and yet the target method does not write any fields, as
the spec is checking the case when the post is not modified.
Thus, we cannot simply compute the union of all read effects
in all assertions and use those for effect guidance. Moreover,
type-guided synthesis often will synthesize effectful expres-
sions, e.g., the call to Post.where in Figure 2. Conversely,
our algorithm only places effect holes in positions where
the type does not matter—hence type information for such a
hole would not add anything. Nonetheless, type-and-effect
holes would be a simple extension of our approach, and we
leave exploration of them to future work in other synthesis
domains.

4 Implementation

RBSYN is implemented in approximately 3,600 lines of Ruby,
excluding its dependencies.

Synthesis specifications, as discussed in § 2, are written
in a custom domain-specific language. Each has the form:

define :name, "method-sig", [consts,...] do
spec "spec1" do setup { ... } postcond { ... } end ...
end

where : name names the method to be synthesized; method-sig
is its type signature; and consts lists constants that can be
used in the synthesized method. Each spec is a test case the
method must pass: setup describes the test case setup, and
postcond makes assertions about the results.

351

Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

In Ruby, do. . .end and {. ..} are equivalent syntax for
creating code blocks, i.e., closures. Having the setup and post-
condition in separate code blocks allows RBSYN to run the
setup code and check the postcondition independently.

RBSYN also has optional hooks for resetting the global
state before any setup block is run. This ensures candidate
programs are tested in a clean slate without being affected by
side-effects from previous runs. In our experiments, RBSYN
resets the global state by clearing the database.

Program Exploration Order. While our synthesis rules
are non-deterministic, our implementation is completely de-
terministic. This makes it sensitive to the order in which
expressions are explored. RBSYN uses two metrics to prior-
itize search. First, programs are explored in order of their
size; smaller programs are preferred over larger ones. Pro-
gram size is calculated as the number of AST nodes in the
program.

Second, RBSYN prefers trying effect-guided synthesis for
expressions that have passed more assertions rather than
fewer. (The technical report [22] formally describes counting
passed assertions.) Untested candidates are assumed to have
passed zero assertions. In general, expressions are explored
in decreasing order of number of passed assertions, then in
increasing order of program size.

These metrics combined also help when RBSyN synthe-
sizes a candidate that does not make any progress towards a
solution: after running tests and effect-guided synthesis on
such candidates, their size increases, but if they do not pass
more assertions, they are pushed further down the search
queue. We leave experimenting with other search strategies
to future work.

Effect Annotations. We extended RDL to support effect
annotations along with type annotations for library methods.
Programmers specify read and write effects following the
grammar in § 3. For example a method annotated with a write
effect Post . author writes to some region author in some
object of class Post. Here author is an uninterpreted string,
selected by the programmer. Similarly the labels “.” and “+”
stand for pure and any region (or simply “impure”), respec-
tively. A region Post. * is written as Post for convenience.
One important extension is a self effect region, which in-
dicates a read or write to the class of the receiver. This is
essential for supporting ActiveRecord, whose query methods
are inherited by the actual Rails model classes. For exam-
ple, we use the self effect on the exists? query method of
ActiveRecord: :Base. Then at a call Post.exists?, where
Post inherits from ActiveRecord: :Base, we know the query
reads the Post table and not any other table.

Effect annotations are similar to frame conditions [5, 14,
28] used in verification literature. More precise effect an-
notations help RBSy~ find a solution faster because it will
have fewer methods with subsumed effects than an impre-
cise one, shrinking the search space. But effect precision

RBSYN: Type- and Effect-Guided Program Synthesis

does not affect the correctness of the synthesized program,
since correctness is ensured by the specs. For example, if
the effect annotation for the method Post#title= shown in
§ 2.1 had just Post as its write annotation, synthesis would
still work, but would try more candidate programs. In some
cases, coarse effects are required, e.g. the Post.where method
queries records from the Post table. It has the coarser Post
annotation because which columns such a query will access
cannot be statically specified: it depends on the arguments.
We evaluate some of the tradeoffs in effect precision in § 5.4.

Type Level Computations. RBSYN uses RDL [15, 35] to
reason about types, e.g., checking if one type is a subtype of
another, and using the type environment and class table to
find terms that can fill holes. RDL includes type-level compu-
tations [27], or comp types, in which certain methods’ types
include computations that run during type checking. For
example, a comp type for the ActiveRecord#joins method
can compute that A. joins(B) returns a model that includes
all columns of tables A and B combined. Using a comp type
for joins encodes a quadratic number of type signatures,
for different combinations of receivers and arguments, into a
single type, and more for joins of more than two tables [27].

RBSYN uses RDL’s comp types, but with new type sig-
natures designed for synthesis. In particular, the previous
version of RDL’s comp types gave precise types when the
receiver and arguments were known, e.g., in A. joins(B),
RDL knows exactly which two classes are being joined. But
this may not hold during synthesis, e.g., if B is replaced by a
hole in the example, then the exact return type of the joins
call cannot be computed.

To address this issue, we modified RDL’s existing comp
type signatures for ActiveRecord methods like joins so
that they compute all possible types. For example, if a hole
is an argument to joins, then the type finds all models B1,
B2, ... that could be joined (i.e., those with associations);
gives the hole type B1 UB2 U .. .; and sets the return type
of joins to a table containing the columns of A,B1,B2,....
This over-approximation is narrowed as the argument terms
are synthesized, leading to cascading narrowing of types
throughout the program as discussed in § 3.1.

Optimizations. Synthesis of terms that pass a spec is an
expensive procedure. In practice, we found solutions to a
single spec often satisfy others. Thus, when confronted with
a new spec, RBSYN first tries existing solutions and condi-
tionals to see if they hold for the spec, before falling back on
synthesis from scratch if needed. This makes the bottleneck
for synthesis not the number of tests, but the number of
unique paths through the program. Moreover, this reduces
the number of tuples for merging, as a single expression and
conditional tuple can represent multiple specs V.

Finally, we found that in practice, the condition in one
spec often turns out to be the negation of the condition
in another. Thus during synthesis of conditionals, RBSYN

352

PLDI ’21, June 20-25, 2021, Virtual, Canada

tries the negation of already synthesized conditionals before
falling back on synthesis from scratch.

Limitations. While RBSYN works on a wide range of pro-
grams, as we will demonstrate next, it does have several
key limitations. First, RBSYN currently only synthesizes code
that does not need type casts to be well-typed. This ensures
programs do not have type errors at run time, but eliminates
some valid programs from consideration. Second, the set of
constants RBSYN can use during synthesis is fixed ahead of
time. This places programs that use unlikely constants out
of reach, e.g., we have encountered Rails model methods
that include raw SQL query strings (instead of only using Ac-
tiveRecord). Finally, because RBSYN uses enumerative search,
it can face a combinatorial explosion when searching for
nested method calls, e.g., if there are n possible method calls,
available, synthesizing A.m(A.m(A.m(x))) may require an
O(n®) search. In practice, we did not face this problem as
deeply nested method calls are rarely used in Rails apps.

5 Evaluation

We evaluated RBSYN by using it to synthesize a range of
benchmarks extracted from widely used open source appli-
cations that use a variety of libraries. We pose the following
questions in our evaluation:

e How does RBSYN perform using code based on existing
unit tests in widely deployed applications? (§ 5.2)

e How much improvement is type-and-effect guidance
compared to alternatives such as only type-guidance
or only effect-guidance? (§ 5.3)

e How does the precision of effect annotations affect
synthesis performance? (§ 5.4)

5.1 Benchmarks

To answer the questions above, we collected a benchmark
suite comprised of programs from the following sources:

o Synthetic benchmarks is a set of minimal examples that
demonstrate features of RBSYN.

e Discourse [24] is a Rails-based discussion platform used
by over 1,500 companies and online communities.

e Gitlab [18] is a web-based Git repository manager with
wiki, issue tracking, and CI/CD tools built on Rails.

e Diaspora [9] is a distributed social network, with groups
of independent nodes (called Pods), also built on Rails.

We selected these apps because they are popular, well-
maintained, widely used, and representative of programs
that are written with supporting unit tests. We selected a
subset of the app’s methods for synthesis, choosing ones that
fall into the Ruby grammar we can synthesize: method calls,
hashes, sequences of statements and branches. We currently
do not synthesize blocks (lambdas), for/while loops, case
statements, or meta-programming in the synthesized code.

PLDI 21, June 20-25, 2021, Virtual, Canada

All benchmarks from apps have side effects due to either
database accesses or reading and writing globals.

Table 1 lists the benchmarks. The first column group lists
the app name (or Synthetic for the synthetic benchmarks);
the benchmark id; the benchmark name; and the number of
specs. The synthetic benchmarks exercise features of RBSYN
by synthesizing pure methods, methods with side effects,
methods in which multiple branches are folded into a single
line program, etc. The Discourse benchmarks include a num-
ber of effectful methods in the User model, such as methods
to activate an user account, unstage a placeholder account
created for email integration, etc. The Gitlab benchmarks
include methods that disable two factor authentication for
a user, methods to close and reopen issues, etc. Finally, the
Disaspora benchmarks include methods to confirm a user’s
email, accept a user invitation, etc.

We derived the specs for the non-synthetic benchmarks
directly from the unit tests included in the app. We split
each test into setup and postcondition blocks in the obvious
way, and we added an appropriate type annotation to the
synthesis goal. Across all benchmarks, we started with a
base set of constants (2 in § 3) to be true, false, 0, 1 and the
empty string. Then we added nil and singleton classes (for
calling class methods) on a per benchmark basis as needed.
(As with many enumerative search based methods, we rely
on the user to provide the right set of constants.)

A few apps have several different unit tests with exactly
the same setup but different assertions in the postcondition.
We merged any such group of tests into a single spec with
that setup and the union of the assertions as the postcondi-
tion, to ensure that every spec setup can be distinguished
with a unique branch condition, if necessary. We indicate this
in the # Specs column of Table 1 by listing the final number of
specs followed by the original number of tests in parentheses
if they differ. We report the minimum and maximum number
of assertions over all specs per benchmark in the Asserts
columns and the number of paths through the method in the
true canonical solution (from the app) in the # Orig Paths
column.

Annotations for Benchmarks. Finally, the # Lib Meth
column lists the number of library methods available during
synthesis. These are methods for which we provided type-
and-effect annotations. In total, 164 such methods are shared
across all benchmarks, including, e.g., ActiveRecord and core
Ruby libraries. Since our benchmarks are sourced from full
apps, they often also depend on some other methods in the
app. We wrote type-and-effect annotations for such methods
and included those annotations only when synthesizing that
app. Since RBSYN needs to run the synthesized code, when
running specs we include the code for both general-purpose
methods, such as those from ActiveRecord, and required
app-specific methods. We slightly modify the set of library
methods for A9, as discussed further below.

353

Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

To find effect labels for app-specific methods, we found
examining the method name and quickly scanning its code
was typically quite helpful. Often it was clear if a method was
pure or impure. For impure methods, there were a few cases.
Sometimes, methods access the same object fields irrespec-
tive of how the method is called, so we give such methods the
most precise labels, e.g., the effect InvitationCode.count
was used for benchmark A10. Other times, it is apparent the
method accesses different fields of a class depending on the
method’s arguments or the global state, so we give these class
effect labels, e.g., User (equivalent to User.*). Overall, the
simplicity of the effect system helped here, as we could use
human-readable region identifiers even without any object
references, e.g., the effect InvitationCode.count abstracts
over all possible instances of InvitationCode class.

The other main category of effect labels was for Rails li-
braries such as ActiveRecord. We constructed these labels
by following the documentation. For metaprogramming-
generated column accessor methods, we extended RDL’s
existing type generating annotations [35] to also generate
effects. For example, when RDL creates the type signature
for an accessor method Post#title for the title column of
the Post table, it now also creates a read effect annotation
Post.title for it.

Overall, we found writing effect annotations to be eas-
ier than our previous efforts writing type annotations for
Ruby [27, 35], though of course we relied on that previous
experience. We leave a systematic evaluation of the effort of
writing effect annotations to future work.

5.2 Synthesis Correctness and Performance

RBSYN successfully synthesized methods that pass the specs
for every benchmark. We manually examined the output and
found that the synthesized code is equivalent to the original,
human-written code, modulo minor differences that do not
change the code’s behavior in practice. For example, one such
difference occurs with original code that updates multiple
database columns with a single ActiveRecord call, and then
has a sequence of asserts to check that each updated column
is correct. Because RBSYN considers the effects of assertions
in the postcondition one by one, it instead synthesizes a
sequence of database updates, one per column. Another dif-
ference occurs in Gitlab, which uses the state_machine gem
(an external package) to maintain an issue’s state (closed,
reopened, etc). RBSYN synthesizes correct implementations
that work without the gem.

The middle group of columns in Table 1 summarizes RB-
SYN’s running time. We set a timeout of 300 seconds on all
experiments. The first column reports performance num-
bers for the full system as the median and semi-interquar-
tile range (SIQR) of 11 runs on a 2016 Macbook Pro with a
2.7GHz Intel Core i7 processor and 16GB RAM. The next
three columns show the median performance when RBSYN
uses only type-guidance, only effect-guidance, and naive

RBSYN: Type- and Effect-Guided Program Synthesis

PLDI ’21, June 20-25, 2021, Virtual, Canada

Table 1. Synthesis benchmarks and results. # Specs is the number of specs used to synthesize the method; Asserts reports the
minimum and maximum number of assertions over all specs for every benchmark; # Orig Paths is the number of paths through
the method as written in the app; # Lib Meth is the number of library methods used for every benchmark; Time shows the
median and semi-interquartile range over 11 runs, followed by the median time for synthesis using only types, only effects
and naive term enumeration (Neither). Meth Size is the number of AST nodes in the synthesized method; # Syn Paths shows

the number of paths through the synthesized method.

%‘ # Asserts #Orig | #Lib Time (sec) Meth | #Syn
5 ID Name Specs | Min | Max | Paths | Meth || Median + SIQR | Types | Effects | Neither Size | Paths
S1 lvar 1 1 1 1 164 0.34 +0.01 1.36 11.97 - 4 1

S2 false 1 1 1 1 164 0.35 +0.01 1.37 | 12.19 - 4 1

‘% S3 method chains 2 1 1 1 164 0.98 +0.01 9.56 - - 10 1
FE S4 user exists 2 1 1 1 164 0.98 +0.02 9.52 - - 9 1
2| S5 branching 3 1 1 2| 165 249 +007 | 3837 - - 17 2
S6 overview (ext) 3 4 4 3 164 12.78 +0.09 - - - 72 3

S7 fold branches 3 1 1 1 164 82.44 +0.95 | 218.51 - - 13 1

| Al User#clear_glob... 3 2 2 3] 169 2.11 £ 0.04 - - - 24 3
’é‘ A2 User#activate | 2 (3) 1 4 2| 170 8.95 +0.23 - - - 28 2
S| A3 User#unstage | 3 (4) 1 5 2| 164 50.02 + 0.55 - - - 31 2
Al A4 User#check_site. .. 5 1 1 2 168 51.6 +0.23 - - - 28 3
A5 Discussion#build 1 4 4 1 167 0.24 +0.01 - - - 18 1

E A6 | User#disable_two... 1 10 10 1 164 0.25 +0.01 - 0.44 - 22 1
5 A7 Issue#close | 1(2) 3 3 1 166 0.77 £ 0.03 25.99 0.13 0.37 15 1
A8 Issue#reopen | 1 (3) 5 5 1| 166 3.68 £ 0.1 - 0.55 45.66 17 1

< A9 Pod#schedule._... 3 (4) 1 1 2 161 2.44 £ 0.04 - - - 19 2
é A10 | User#process_inv... 1 2 2 2| 165 2.64 £0.05 0.81 - 0.85 12 1
& | A1l | InvitationCode#use! 1 1 1 1 165 4.23 +0.06 - - - 12 1
A | A12 User#confirm_email 7 4 4 2 166 7.28 +0.11 - - - 31 3

enumeration, respectively. The SIQRs (omitted due to space
constraints) for these runs are very small compared to the
median runtime, similar to the performance numbers with all
features enabled. We discuss the runs with certain guidance
disabled in detail in § 5.3. The right-most group of columns
shows the synthesized method size (in terms of number of
AST nodes) and the number of paths through the method (1
for straight-line code).

Overall, RBSYN runs quickly, with around 80% of bench-
marks solving in less than 9s. Benchmarks like A3 take longer
because it requires synthesis of nil terms—recall nil is the
bottom element of our type lattice, causing RBSYN to synthe-
size nil at every typed hole for method arguments. Conse-
quently, this requires testing all completed candidates—even
though they eventually fail—consuming significant time.

For one benchmark, A9, we changed the set of default
library methods slightly due to some pathological behavior.
This benchmark includes an assertion that invokes ActiveRe-
cord’s reload method, which touches all fields of that record.
But then when RBSYN tries to find matching write effects,
it explores a combinatorial explosion of writes to different
subsets of the fields. This effort is almost entirely wasted,
because the remainder of the assertion looks at only one par-
ticular field—but that one read is subsumed by the effect of
the reload, making it invisible to RBSYN’s search. As a result,

354

synthesis for A9 slows down by two orders of magnitude.
We addressed this by removing four ActiveRecord methods
that manipulate specific fields and adding ActiveRecord’s
update! method as the only way to write a field back to the
database. An alternative approach would have been to move
the reload call to be outside the assertion.

As this example shows, and as is common with many syn-
thesis problems, performance is very hard to predict. Indeed,
we can see from Table 1 that performance is generally not
well correlated with either the size of the output program
or with the number of branches. The number of assertions
(which direct the side effect guided synthesis) does not cor-
relate with the synthesis time. We do observe that RBSYN’s
branch merging strategy is effective, often producing fewer
conditionals than there are specs, e.g., in A12 there are seven
specs but only three conditionals. Though, sometimes the
results are not always optimal if the branch merging strat-
egy finds a program that passes all tests, but a program with
fewer branches exists, e.g., for A4 and A12, RBSYN produces
a program with one more branch than the hand-written.

5.3 Performance of Type- and Effect-Guidance

Next, we explore the performance benefits of type- and effect-
guidance. Figure 7 plots the running times from Table 1
when all features of RBSYN are enabled (TE Enabled), with

PLDI 21, June 20-25, 2021, Virtual, Canada

19
—— TE Enabled
16 E Only
—— T Only
13 —— TE Disabled
® Synthetic
Apps

of benchmarks
~ 6o

IS

0 25 50 75 100 125

Time (s)

150 175 200

Figure 7. Number of benchmarks synthesized using type-
and-effect (TE Enabled) guided synthesis relative to using
only type (T Only) or effect (E Only) guidance separately and
naive enumeration (TE Disabled). Higher is better.

only type-guidance (T Only), with only effect-guidance (E
Only) and with neither (TE Disabled). The plot shows the
number of benchmarks that complete (y-axis) in a given
amount of time (x-axis), based on the median running times.
This experiment serves as a proxy to show how a synthesis
procedure that uses type-guidance but not effect-guidance,
such as SYPET [12] or MyTH [16, 30], may have performed if
adapted for Ruby.

We can clearly see that type- and effect-guided synthesis
performs best, successfully synthesizing all benchmarks; the
slowest takes 83s. In contrast, with both strategies disabled,
all but three small benchmarks time out. Performance with
only type- or only effect-guidance lies in between. With only
type-guidance, synthesis completes on eight benchmarks,
of which the majority are pure methods from the synthetic
benchmarks. From apps, it only synthesize A7 and A10. In
these benchmarks, the needed effectful expressions are small
and hence can be found with essentially brute-force search.
With only effect-guidance, synthesis performance signifi-
cantly worse, completing only five benchmarks, of which
only three are from apps. These benchmarks succeeded be-
cause effect-guided synthesis quickly generates the template
for the effectful method calls and then correctly fills them
since they are small and can be found quickly by naive enu-
meration.

5.4 Effect Annotation Precision vs. Performance

Finally, we explore the tradeoff between effect annotation
precision and synthesis performance. Recall that we found
writing effect annotations easier for our benchmarks than
writing type annotations. However, the effort can be further
minimized by writing less precise annotations. This will
not affect correctness, since RBSYN only accepts synthesis
candidates that pass all specs, but it does affect performance.

355

Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

300

I TITITrimmm

B Precise Effects
Class Effects
B Purity Effects

0 | | |
S2 S1 S4 S3 S5 A9 A6 Al S7 A5A10A7 A2A12S6 A4 ABAL1A3
Benchmarks

Figure 8. Performance of RBSyYN with varying effect annota-
tion precision: full, class effects only, and purity annotations
on library methods. Lower is better. Full height indicates
timeout.

Figure 8 plots the median of synthesis times for bench-
marks over 11 runs under three conditions: Precise Effects,
which are the effects used above; Class Effects, in which anno-
tations include only class names and eliminate region labels
(e.g.,Post. title becomes Post); and Purity Effects, in which
the only effect annotations are pure or impure (the e and
« effects, respectively, in our formalism). The benchmarks
(x-axis) are ordered in increasing order of time for Purity
Effects, then Class Effects, and finally Precise Effects.

From these experiments, we see that synthesis time in-
creases as effect annotation precision decreases, often lead-
ing to a timeout. Class labels were sufficient to synthesize 16
of 19 benchmarks. Overall, class labels take time similar to
precise labels, except for the three cases (A8, A11, and A3)
where side-effecting method calls require precise labels to
quickly find the candidate. As all precise effects are reduced
to class effects, RBSYN must try many candidates with class
effect before finding the correct one, leading to timeouts.

We note that A1 and A4 are slightly faster when using
class effects. The reason is an implementation detail. The
effect holes in these benchmarks can only be correctly filled
by methods whose regular annotations are class annotations
(more precise annotations are not possible). However, when
trying to fill holes, RBSYN first tries all methods with precise
annotations, only afterward trying methods with class an-
notations. Since the precise annotations never match, this
yields worse performance under the precise effect condition
than under the class effect condition, when the search could
by chance find the matching methods sooner.

Purity labels only enabled synthesis of 9 benchmarks, in-
cluding just 3 of 12 app benchmarks. The purity annotations
are slow in general and only effective in the cases where the
number of impure library methods is small.

6 Related Work

Component-Based Synthesis. Several researchers have
proposed component-based synthesis, which creates code by

RBSYN: Type- and Effect-Guided Program Synthesis

composing calls to existing APIs, as RBSYN does. For example,
Jha et al. [26] propose synthesis of loop-free programs for
bit-vector manipulation. Their approach uses formal spec-
ifications for synthesis, in contrast to RBSYN, which uses
unit tests. HOoGLE+ [25] uses Haskell tests and types to syn-
thesize potential solutions, primarily geared towards API
discovery. CopEHINT [17] synthesizes Java programs, using
a probabilistic model to guide the search towards expres-
sions more often used in practice. SYPET [12] also synthe-
sizes programs that use Java APIs, by modeling them as a
petri net and using SAT-based techniques to find a solution.
These approaches do not support synthesis of programs with
branches, which are common in the domain of web apps.
While SYPET supports synthesis with side-effecting methods
and CopeHINT detects undesirable side effects during the
search and avoids them, RBSYN uses side effect information
from test cases to guide the search.

Programming by Example. MYTH [16, 30] uses bidirec-
tional type checking to synthesize programs, using input/out-
put examples as the specification. However, MYTH expects
examples to be trace complete, meaning the user has to pro-
vide input/output examples for any recursive calls on the
function arguments. RBSYN does not synthesize recursive
functions, as they are rarely needed in our target domain
of Ruby web apps. EscHER [1] and spreadsheet manipula-
tion tools [20, 21, 23] all accept input/output examples as
a partial specification for synthesis. These tools primarily
target users who cannot program, whereas RBSYN is targeted
towards programmers. In addition, RBSYN’s specs are full
unit tests, so they can check both return values and side
effects. 12 [13] synthesizes data structure transformations
using higher-order functions, a feature not handled by Rs-
SYN because of our target domain of Rails web apps, which
rarely use such functions. STUN [2] uses a program merging
strategy that is similar to ours, but it depends on defining
domain-specific unification operators to safely combine pro-
grams under branches. In contrast, our approach may be
more domain-independent, using preconditions and tests to
find correct branch conditions. There have been multiple ap-
proaches to synthesizing database programs [7, 11]. Perhaps
the closest in purpose to RBSYN is ScYTHE [39], which synthe-
sizes SQL queries based on input/output examples. SCYTHE
uses a two-phased synthesis process to synthesize an ab-
stract query, after which enumeration is used to concretize
the abstract query. In contrast, the use of comp types [27]
allows RBSYN to quickly construct a template for a database
query. With precise types for the method argument holes,
this essentially builds abstract queries for free, whose holes
are then filled later during synthesis.

Solver-Aided Synthesis. In solver-aided synthesis, syn-
thesis specifications are transformed to a set of constraints
for a SAT or SMT solver. SYNQUID [32] uses polymorphic re-
finement types as the specification for synthesis. LIFTY [34]

356

PLDI ’21, June 20-25, 2021, Virtual, Canada

is a similar type system that verifies information flow control
policies and synthesizes program repairs as needed to satisfy
the policies. Both SyNQUID and L1FTY synthesize condition-
als using logical abduction. In contrast, RBSYN uses branch
merging to synthesize conditionals, since translating Rails
code and libraries into logical formulas is impractical.

Sketch [36] allows users to write partial programs, called
sketches, where the omitted parts are then synthesized by
the tool. MiGRATOR [40] uses conflict-driven learning [10] to
synthesize raw SQL queries, for use in database programs for
schema refactoring. In contrast, programs synthesized by Rs-
SYN use ActiveRecord to access the database. Rosette [37, 38]
is a solver-aided language that provides access to verifica-
tion and synthesis. It relies on symbolic execution, and thus
requires significant modeling of external libraries for syn-
thesizing programs that use such libraries.

EUSOLVER [3] synthesizes programs with branches, us-
ing an information-gain heuristic via decision tree learning.
While, the decision tree learning procedure can produce
branches in an enumerative search setting (provided the in-
put/output example set is complete), we leave an exploration
of how it compares to our rule-based merging to future work.
However, EUSOLVER requires a SMT solver to produce coun-
terexamples to build the input/output example set which
has the additional cost of requiring formal specifications of
library method semantics, an impractical task in the Rails set-
ting. SuSLik [33] synthesizes heap-manipulating programs
using separation logic to precisely model the the heap. RB-
SYN, in contrast, uses very coarse effects to track accesses
that can go beyond the heap, such as database reads and
writes.

7 Conclusion

We presented RBSYN, a system for type- and effect-guided
program synthesis for Ruby. In RBSYN, the synthesis goal is
described by the target method type and a series of specs
comprising preconditions followed by postconditions that
use assertions. The user also supplies the set of constants
the synthesized method can use, and type-and-effect an-
notations for any library methods it can call. RBSYN then
searches for a solution starting from a hole O : 7 typed with
the method’s return type, inserting (write) effect holes ¢ : €
derived from the read effects of failing assertions. Finally,
RBSYN merges together solutions for individual specs by
synthesizing branch conditions to select among the different
solutions as needed. We evaluated RBSYN by running it on a
suite of 19 benchmarks, 12 of which are representative pro-
grams from popular open-source Ruby on Rails apps. RBSyn
synthesized correct solutions to all benchmarks, completing
synthesis of 15 of the 19 benchmarks in under 9s, with the
slowest benchmark solving in 83s. We believe RBSYN demon-
strates a promising new approach to synthesizing effectful
programs.

PLDI 21, June 20-25, 2021, Virtual, Canada

Acknowledgments

Thanks to the anonymous reviewers for their helpful com-
ments. This research was supported in part by National Sci-
ence Foundation awards #1900563 and #1846350.

References

(1]

(6]

(10]

(11]

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Re-
cursive program synthesis. In International conference on computer
aided verification. Springer, 934-950. https://doi.org/10.1007/978-3-
642-39799-8_67

Rajeev Alur, Pavol Cerny, and Arjun Radhakrishna. 2015. Synthesis
through unification. In International Conference on Computer Aided
Verification. Springer, 163-179. https://doi.org/10.1007/978-3-319-
21668-3_10

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling
Enumerative Program Synthesis via Divide and Conquer. In Tools
and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, Part I (Lecture Notes in Computer
Science), Vol. 10205. 319-336. https://doi.org/10.1007/978-3-662-54577-
518

Robert L Bocchino Jr, Vikram S Adve, Danny Dig, Sarita V Adve,
Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Sim-
mons, Hyojin Sung, and Mohsen Vakilian. 2009. A type and effect
system for deterministic parallel Java. In Proceedings of the 24th ACM
SIGPLAN conference on Object oriented programming systems languages
and applications. 97-116. https://doi.org/10.1145/1640089.1640097
Alexander Borgida, John Mylopoulos, and Raymond Reiter. 1995. On
the frame problem in procedure specifications. IEEE Transactions on
Software Engineering 21, 10 (1995), 785-798. https://doi.org/10.1109/
32.469460

Jonathan Immanuel Brachthéuser, Philipp Schuster, and Klaus Oster-
mann. 2020. Effects as capabilities: effect handlers and lightweight
effect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA (2020),
126:1-126:30. https://doi.org/10.1145/3428194

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Op-
timizing database-backed applications with query synthesis. In ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Vol. 48. ACM New
York, NY, USA, 3-14. https://doi.org/10.1145/2499370.2462180
Aaron Craig, Alex Potanin, Lindsay Groves, and Jonathan Aldrich. 2018.
Capabilities: Effects for Free. In Formal Methods and Software Engi-
neering - 20th International Conference on Formal Engineering Methods,
ICFEM 2018, Gold Coast, QLD, Australia, November 12-16, 2018, Pro-
ceedings (Lecture Notes in Computer Science), Jing Sun and Meng Sun
(Eds.), Vol. 11232. Springer, 231-247. https://doi.org/10.1007/978-3-
030-02450-5_14

Diaspora Inc. 2020. Diaspora: A privacy-aware, distributed, open
source social network. https://github.com/diaspora/diaspora.

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program
synthesis using conflict-driven learning. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, Vol. 53. ACM
New York, NY, USA, 420-435. https://doi.org/10.1145/3192366.3192382
Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat
Chaudhuri. 2017. Component-based synthesis of table consolidation
and transformation tasks from examples. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Vol. 52. ACM

New York, NY, USA, 422-436. https://doi.org/10.1145/3062341.3062351
Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W

Reps. 2017. Component-based synthesis for complex APIs. In Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming

357

Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

Languages. 599-612. https://doi.org/10.1145/3093333.3009851

[13] JohnK Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data

structure transformations from input-output examples. Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation 50, 6 (2015), 229-239. https://doi.org/10.1145/
2737924.2737977

[14] Jean-Christophe Filliatre and Andrei Paskevich. 2013. Why3—where

programs meet provers. In European symposium on programming.
Springer, 125-128. https://doi.org/10.1007/978-3-642-37036-6_8

[15] Jeffrey Foster, Brianna Ren, Stephen Strickland, Alexander Yu, Milod

Kazerounian, and Sankha Narayan Guria. 2020. RDL: Types, type
checking, and contracts for Ruby. https://github.com/tupl-tufts/rdl.

[16] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Zdancewic. 2016. Example-directed synthesis: a type-theoretic in-
terpretation. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages 51, 1 (2016), 802—
815. https://doi.org/10.1145/2837614.2837629

Joel Galenson, Philip Reames, Rastislav Bodik, Bjérn Hartmann, and
Koushik Sen. 2014. Codehint: Dynamic and interactive synthesis
of code snippets. In Proceedings of the 36th International Conference
on Software Engineering. 653-663. https://doi.org/10.1145/2568225.
2568250

GitLab B.V. 2020. GitLab is an open source end-to-end software devel-
opment platform with built-in version control, issue tracking, code
review, CI/CD, and more. https://gitlab.com/gitlab-org/gitlab.

Colin S. Gordon. 2020. Designing with Static Capabilities and Effects:
Use, Mention, and Invariants (Pearl). In 34th European Conference
on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020,
Berlin, Germany (Virtual Conference) (LIPIcs), Robert Hirschfeld and
Tobias Pape (Eds.), Vol. 166. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 10:1-10:25. https://doi.org/10.4230/LIPlcs.ECOOP.2020.10
Sumit Gulwani. 2011. Automating string processing in spreadsheets
using input-output examples. Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
46, 1 (2011), 317-330. https://doi.org/10.1145/1925844.1926423

Sumit Gulwani, William R Harris, and Rishabh Singh. 2012. Spread-
sheet data manipulation using examples. Commun. ACM 55, 8 (2012),
97-105. https://doi.org/10.1145/2240236.2240260

Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn.
2021. RbSyn: Type- and Effect-Guided Program Synthesis.
arXiv:cs.PL/2102.13183

William R Harris and Sumit Gulwani. 2011. Spreadsheet table trans-
formations from examples. Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation 46,
6(2011), 317-328. https://doi.org/10.1145/1993316.1993536

Civilized Discourse Construction Kit Inc. 2020. Discourse: A platform
for community discussion. https://github.com/discourse/discourse.
Michael B James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg,
Ranjit Jhala, and Nadia Polikarpova. 2020. Digging for fold: synthesis-
aided API discovery for Haskell. Proceedings of the ACM on Program-
ming Languages 4, OOPSLA (2020), 1-27. https://doi.org/10.1145/
3428273

Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010.
Oracle-guided component-based program synthesis. In 2010 ACM/IEEE
32nd International Conference on Software Engineering, Vol. 1. IEEE,
215-224. https://doi.org/10.1145/1806799.1806833

Milod Kazerounian, Sankha Narayan Guria, Niki Vazou, Jeffrey S Foster,
and David Van Horn. 2019. Type-level computations for Ruby libraries.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 966-979. https://doi.org/10.
1145/3314221.3314630

Bertrand Meyer. 2015. Framing the Frame Problem. In Dependable
Software Systems Engineering. Vol. 40. I0S Press, 193-203.

https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1145/1640089.1640097
https://doi.org/10.1109/32.469460
https://doi.org/10.1109/32.469460
https://doi.org/10.1145/3428194
https://doi.org/10.1145/2499370.2462180
https://doi.org/10.1007/978-3-030-02450-5_14
https://doi.org/10.1007/978-3-030-02450-5_14
https://github.com/diaspora/diaspora
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3093333.3009851
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1007/978-3-642-37036-6_8
https://github.com/tupl-tufts/rdl
https://doi.org/10.1145/2837614.2837629
https://doi.org/10.1145/2568225.2568250
https://doi.org/10.1145/2568225.2568250
https://gitlab.com/gitlab-org/gitlab
https://doi.org/10.4230/LIPIcs.ECOOP.2020.10
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/2240236.2240260
https://arxiv.org/abs/cs.PL/2102.13183
https://doi.org/10.1145/1993316.1993536
https://github.com/discourse/discourse
https://doi.org/10.1145/3428273
https://doi.org/10.1145/3428273
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/3314221.3314630
https://doi.org/10.1145/3314221.3314630

RBSYN: Type- and Effect-Guided Program Synthesis

[29] Jaideep Nijjar and Tevfik Bultan. 2011. Bounded verification of Ruby on
Rails data models. In Proceedings of the 2011 International Symposium on
Software Testing and Analysis. 67-77. https://doi.org/10.1145/2001420.
2001429

[30] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-
directed program synthesis. Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation 50,
6 (2015), 619-630. https://doi.org/10.1145/2737924.2738007

[31] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost.

2014. Test-driven synthesis. Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation 49,

6, 408-418. https://doi.org/10.1145/2666356.2594297

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-

gram synthesis from polymorphic refinement types. Proceedings of

the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation 51, 6, 522-538. https://doi.org/10.1145/2908080.

2908093

[33] Nadia Polikarpova and Ilya Sergey. 2019. Structuring the synthesis of
heap-manipulating programs. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1-30. https://doi.org/10.1145/3290385

[34] Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis

Hance, and Armando Solar-Lezama. 2020. Liquid information flow

control. Proc. ACM Program. Lang. 4, ICFP (2020), 105:1-105:30. https:

//doi.org/10.1145/3408987

Brianna M Ren and Jeffrey S Foster. 2016. Just-in-time static type check-

ing for dynamic languages. In Proceedings of the 37th ACM SIGPLAN

(32

—

(35

—

358

[36]

[37]

[38]

[39]

[40]

PLDI ’21, June 20-25, 2021, Virtual, Canada

Conference on Programming Language Design and Implementation. 462—
476. https://doi.org/10.1145/2908080.2908127

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,
and Vijay Saraswat. 2006. Combinatorial sketching for finite programs.
In Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems. 404-415.
https://doi.org/10.1145/1168918.1168907

Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided lan-
guages with rosette. In Proceedings of the 2013 ACM international sym-
posium on New ideas, new paradigms, and reflections on programming
& software. 135-152. https://doi.org/10.1145/2509578.2509586
Emina Torlak and Rastislav Bodik. 2014. A lightweight symbolic
virtual machine for solver-aided host languages. Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation 49, 6 (2014), 530-541. https://doi.org/10.1145/2594291.
2594340

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Syn-
thesizing highly expressive SQL queries from input-output exam-
ples. In Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. 452-466. https:
//doi.org/10.1145/3062341.3062365

Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthe-
sizing database programs for schema refactoring. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 286-300. https://doi.org/10.1145/3314221.3314588

https://doi.org/10.1145/2001420.2001429
https://doi.org/10.1145/2001420.2001429
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2666356.2594297
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/3290385
https://doi.org/10.1145/3408987
https://doi.org/10.1145/3408987
https://doi.org/10.1145/2908080.2908127
https://doi.org/10.1145/1168918.1168907
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3314221.3314588

	Abstract
	1 Introduction
	2 Overview
	2.1 Synthesizing Spec Solutions
	2.2 Merging Solutions

	3 Formalism
	3.1 Type-Guided Synthesis
	3.2 Effect-Guided Synthesis
	3.3 Merging Solutions
	3.4 Discussion

	4 Implementation
	5 Evaluation
	5.1 Benchmarks
	5.2 Synthesis Correctness and Performance
	5.3 Performance of Type- and Effect-Guidance
	5.4 Effect Annotation Precision vs. Performance

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

