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Abstract— We present a framework that incorporates the
principle of bounded rationality into a pursuit-evasion game
between two aerial vehicles in a stochastic wind field. We ini-
tially formulate the problem as a continuous zero-sum stochastic
game under perfect rationality. We then discretize the game
via the Markov Chain Approximation Method. Leveraging
the cognitive hierarchy theory (“level-k thinking”) we relax
the perfect rationality assumption and compute the solution
of the ensuing discrete game, while taking into consideration
the rationality level of each agent. We also present an online
algorithm to infer the rationality of the opponent, which enables
the agents to deploy appropriate countermeasures. Finally, we
verify the efficacy of this framework through simulations.

I. INTRODUCTION

Pursuit-evasion games (PEGs) [1] are a special class of
dynamic games introduced in the 60s. An extensive amount
of literature exists on the topic; some notable examples
include [2]–[4]. Most of these prior works are concerned
with finding the equilibrium policy(s) of the game, which
requires the assumption that all agents are rational [5]. Per-
fect rationality is, however, considered to be too strong and
perhaps unrealistic for many applications, especially the ones
involving humans [6]. Furthermore, finding the equilibrium
of a game is, in general, computationally expensive [7].
To address these issues, we study pursuit-evasion games
with agents that are not perfectly rational, but rather are
of bounded rationality. Several manifestations of bounded
rationality exist in the literature [8]–[10]. In this paper we
will adopt the level-k thinking [10] to model agents under
cognitive capability constraint.

Level-k thinking has demonstrated promising results mod-
eling agents of limited cognitive capability (e.g., humans) in
many scenarios [10]–[12]. Under this notion, a level-k agent
no longer seeks the (Nash) equilibrium, but instead seeks
a best response to its level-(k−1) opponent. The notion of
rationality is captured through the parameter k, and each
agent has a maximum level up to which it can compute,
hence the term bounded rationality.
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Under the level-k framework, a pursuit-evasion game can
be cast as a sequence of single-sided Markov-Decision-
Processes (MDPs) [10], each of which can be solved ef-
ficiently. The computational complexity of finding the op-
timal policy for a participating agent is thus significantly
reduced [7].

We are especially interested in the scenarios where an
autonomous aerial vehicle competes with a human pilot in an
aerial engagement. The level-k framework would enable the
autonomous agent to actively exploit any weakness exhibited
by the human pilot and deploy a level-(k + 1) optimal
response, should it know that the human pilot is of level k.
The important question of how well the level-k framework
captures human behavior in stochastic PEG is to be answered
in future work.

Contributions: The main contribution of this work is a
detailed construction of a comprehensive and implementable
method to find solutions to continuous stochastic PEG
involving bounded rational agents. The proposed method
first discretizes the continuous stochastic PEG in a way
that ensures the convergence of the optimal solution of the
discretized problem to that of the original continuous game.
In addition, we show that if level-k thinking is applied
to encode bounded rational decision-making, the discrete
PEG can be solved efficiently using value iteration. We
also present an inferring algorithm that updates the agent’s
belief regarding the rationality level of its opponent during
the game. The effectiveness of the proposed approach is
demonstrated using a two-dimensional two-agent PEG in a
stochastic wind field, in which the two agents’ rationalities
are bounded by different maximum levels.

II. PROBLEM FORMULATION

Let us consider a two-agent pursuit-evasion differential
game (PEG) in which the Pursuer and the Evader are
indexed by i = 1, 2, respectively. In the sequel, we use 9i to
denote the opponent of agent i. As the names of the agents
suggest, the Pursuer tries to capture the Evader, while the
Evader tries to enter certain regions to evade the Pursuer.
For simplicity, we assume that the game evolves in a two-
dimensional compact domain C ⊂ R2, and the position of
agent i at time t is denoted by pi(t) = [pix(t), piy(t)]T ∈ R2.
We define the state of the game as the joint positions of the
two agents. Specifically, at time t ≥ 0, the state of the game
is given by s(t) =

[
p1(t)T, p2(t)T

]T ∈ S = C × C ⊂ R4.
The action set for each agent is a finite collection of

desired heading angles θ1 and θ2. Specifically, we assume
that agent i moves along the direction of its heading angle
θi ∈ Θi = {0, π/2, π, 3π/2} at a fixed speed vi > 0. The
joint action space for the agents is denoted as Θ = Θ1×Θ2.
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A. Wind Field and Game Dynamics
The game is played in the presence of a stochastic wind

field, which will be modeled by a variant of a Wiener process.
The dynamics of the agents are governed by the following
stochastic differential equations (SDEs)

dpi =

[
vi cos θi + wx(pi)
vi sin θi + wy(pi)

]
dt+ dW i

t (p
i), i = 1, 2, (1)

where wx(p) and wy(p) denote the mean wind velocity at p,
and the two-dimensional Wiener process dW i

t (p
i) satisfies

E[dW i
t (p)dW i

t (p)
T] = σ2

wI2. For brevity, we denote θ =
(θ1, θ2) and dW i

t = dW i
t (p

i). We also denote bi(pi, θi) =[
vi cos θi + wx(pi), vi sin θi + wy(pi)

]T
.

The dynamics of the game can then be re-written as

ds =

[
b1(p1, θ1)
b2(p2, θ2)

]
dt+

[
dW 1

t

dW 2
t

]
= b(s, θ) dt+dWt. (2)

Under some mild assumptions, the solution of the SDE
in (2) is a stochastic process {s(t); t ≥ 0} such that

s(t) =s(0) +

∫ t

0

b(s(τ), θ(τ))dτ +

∫ t

0

dWτ

, Φ(s(0), t, θ[0,t], dW [0,t]),

(3)

where the last term in equation (3) is treated as the usual
Itô integral [13], θ[0,t] = {θ(τ); τ ∈ [0, t]} is the joint action
history, and dW [0,t] is the realization of the wind field.

B. Terminal Conditions of the Game
We define three terminal conditions for the PEG: Crash,

Capture and Evasion.
(1) Crash corresponds to the scenario when an agent runs

into obstacles or reaches the boundary of the domain C. Let
the closed set O ⊂ C denote the obstacle-region in C. Then,
agent i crashes into an obstacle or the boundary of the set
∂C, if at some time t > 0,

dist
(
pi(t), O ∪ ∂C

)
= 0,

where the distance of a point p from a set M is dist(p,M) ,
infm∈M ‖p −m‖2. We define the two crash boundaries for
each agent and their union in the state space as

∂Sicrsh =
{
s ∈ S : dist

(
pi(t), O ∪ ∂C

)
= 0
}
, i = 1, 2

∂Scrsh = ∂S1
crsh ∪ ∂S2

crsh.

(2) Capture is considered successful when the distance
between the two agents at some time instance t > 0 is less
than a prescribed positive value ρ, while neither of the agents
crashes. The capture condition defines a boundary of S via

∂Scap =
{
s ∈ S : dist

(
p1(t), p2(t)

)
≤ ρ
}
\ ∂Scrsh.

(3) Evasion is successful when the Evader enters a closed,
non-empty evading region E ⊂ C with no capture nor crash.
Similarly, the boundary for evasion is defined as

∂Sevs =
{
s ∈ S : dist

(
p2(t), E

)
= 0
}
\
(
∂Scrsh ∪ ∂Scap

)
.

The boundary of the state space ∂S is defined by the three
(disjoint) terminal conditions, ∂S = ∂Scrsh ∪ ∂Scap ∪ ∂Sevs.

When the process {s(t); t ≥ 0} hits the boundary ∂S, the
game terminates and the outcome of the game is determined
by the part of the boundaries (∂Scrsh, ∂Scap, ∂Sevs) reached.

To this end, we define the interior of the state space
S = C × C as So = S \ ∂S. Without loss of generality, we
assume that the game starts at some initial state s(0) ∈ So.

C. Admissible Policies and Rewards

An admissible policy for an agent at time t is a measurable
mapping from the observation history ({s(τ); τ ∈ [0, t]}) to
a probability distribution over its action set. It is well known
that, with full state information, the best Markov policy
performs as well as the best admissible policy [7]. A Markov
policy of agent i depends only on the current state s(t) and
is represented by the mapping µi(·, ·) : So × Θi → [0, 1].
The set of all such policies for agent i is denoted by Πi.
We denote the joint policy as µ = (µ1, µ2) and the set of
joint policies as Π. Define the first exit time Tµ under joint
policy µ as

Tµ = inf
{
t : s(t) ∈ ∂S, s(t) = Φ(s(0), t, θ[0,t],W [0,t]

∣∣µ)
}
,

where the control sequence θ[0,t] is a realization under the
joint policy µ. Therefore, Tµ is a random variable that reflects
the first time a successful capture, or evasion, or crash occurs.

We assume a zero-sum formulation and let the Pursuer be
the maximizer and the Evader be the minimizer. Then, the
terminal reward at terminal state s ∈ ∂S is given by

g(s) =


1 if s ∈ ∂Scap

⋃(
∂S2

crsh \ ∂S1
crsh

)
,

−1 if s ∈ ∂Sevs
⋃(

∂S1
crsh \ ∂S2

crsh

)
,

0 otherwise.
(4)

This work formulates the PEG as a game of type [1], where
we use the win-rate as the performance index of the agents,
instead of other metrics such as capture time. As a result,
only the terminal reward is included, and no running reward
is introduced. An extension to include running reward (such
as time or fuel cost) into the formulation requires a minor
modification and will be addressed elsewhere.

We use Jµ to denote the expected reward-to-go under the
joint policy µ. Starting from initial state s0, the expected
reward is given by

Jµ(s0) = Jµ1,µ2(s0) = Es0,µ
[
g
(
s(Tµ)

)]
, (5)

where the conditional expectation is given by

Es0,µ
[
·
]

= E
[
·
∣∣s(t) = Φ

(
s0, t, θ

[0,t],W [0,t]
∣∣µ)].

In the PEG setting, Jµ incorporates the expected win
rate of the Pursuer. Each agent tries to maximize its own
expected win rate by choosing policy µi, and the resulting
optimization problem is given by

sup
µ1∈Π1

inf
µ2∈Π2

Jµ1,µ2(s0) = inf
µ2∈Π2

sup
µ1∈Π1

Jµ1,µ2(s0). (6)
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III. MARKOV CHAIN APPROXIMATION

In this section, we introduce the Markov Chain Approxi-
mation Method (MCAM) [14] to approximate the stochastic
process in (2) via a sequence of discrete-state, discrete-time
competitive Markov Decision Processes (cMDPs) [7].

A discretized two-agent zero-sum cMDP is a tuple
Mh = 〈Sh,Θ1,Θ2, Ph, Gh〉 where h is the discretization
size and Sh is the discretized finite state space. We let Θi be
the same action set as the original problem. The transition
function is Ph(·|·, ·, ·) : Sh × Sh ×Θ1 ×Θ2 → [0, 1], and
Gh : Sh → R is the terminal reward.

A. Discrete State Space Sh and Terminal Reward Gh
We start by discretizing the compact region C with a

grid-size h > 0 (see Fig. 1). The discretization size h is a
user-defined parameter that determines the resolution of the
discretization. Let us define the set Ch = {ch,1, . . . , ch,N}
denoting the elementary squares of the grid, so that we can
always properly cover the compact set C with Ch, namely,
C ⊆ Ch. Due to the compactness of C, the cardinality of Ch
is always finite for any h > 0. Note that each ch represents a
unique square cell of size h in R2 (including boundary). Let
coh be the interior of the square cell ch. The cell ch is labeled
as an obstacle cell if and only if coh ∩O 6= ∅. The boundary
cells and the evasion cells are defined similarly. We say that
agent i is in cell ch, if pi(t) ∈ coh1. The discretization of S is
then Sh = Ch ×Ch. Each sh ∈ Sh denotes a hyper-cube of
side length h in R4. We denote the interior of the hyper-cube
sh as soh and define

∂Sih,crsh = {sh ∈ Sh : soh ∩ ∂Sicrsh 6= ∅},
∂Sh,crsh = ∂S1

h,crsh ∪ ∂S2
h,crsh ,

∂Sh,cap = {sh ∈ Sh \ ∂Sh,crsh : soh ∩ ∂Scap 6= ∅},
∂Sh,evs = {sh ∈ Sh \ (∂Sh,crsh ∪ ∂Sh,cap) : soh ∩ ∂Sevs 6= ∅},

(7)

and the whole boundary ∂Sh = ∂Sh,crsh ∪ ∂Sh,cap ∪ ∂Sh,evs.
The discretized terminal cost Gh is defined similar to (4):

Gh(sh) =


1 if sh ∈ ∂Sh,cap

⋃(
∂S2

h,crsh \ ∂S1
h,crsh

)
,

−1 if sh ∈ ∂Sh,evs
⋃(

∂S1
h,crsh \ ∂S2

h,crsh

)
,

0 otherwise.

B. Discrete Transition Ph
For each discretization h, we have s[0,N ]

h = {snh;n ≤ N}
as a controlled Markov Chain [14] under some policy, which
terminates when it hits ∂Sh. The superscript n in snh denotes
the time instance in the discrete cMDP Mh.

We associate each state s ∈ So in the original continuous
space with a non-negative interpolation interval ∆th(s),
known as the holding time [14]. For each elementary hyper-
cube sh ∈ Sh, the centroid of sh is denoted as α(sh). Let us
also define ∆snh = α(sn+1

h ) − α(snh). Since the mapping α
is bijective, with a slight abuse of the notation, we use sh to
denote both the hyper-cube and its centroid. For brevity, we

1If an agent is located on the common boundary of two cells, it is assigned
to one of the cells based on a prior assignment rule.

Fig. 1: An example of a discretization of the two-dimensional
domain. Left is the continuous domain C, where the shaded red and
gray areas are the evasion regions and the obstacles respectively.
The orange and blue markers represent the positions of the Pursuer
and the Evader. Right is the discretized space Ch, where the red
and black cells correspond to the evasion and the obstacle cells. The
orange and blue cells are the cells in which the agents are located.

denote ∆tnh to be the holding time at state snh , i.e., ∆th(snh),
and define tnh =

∑n−1
0 ∆tnh for n ≥ 1 and t0h = 0.

Let Ωh be the sample space of Mh, let θnh = (θ1,n
h , θ2,n

h )
be the joint action at time n. The holding times ∆tnh and
the transition probabilities Ph are chosen to satisfy the local
consistency property [14], with respect to (2), which are
given by the following conditions.

1) For all sh ∈ Sh, limh→0+ ∆th(sh) = 0.
2) For all sh ∈ Sh and all joint controls θ ∈ Θ:

lim
h→0+

EPh
[∆snh|snh = s, θnh = θ]

∆th(s)
= b(s, θ)

lim
h→0+

CovPh
[∆snh|snh = s, θnh = θ]

∆th(s)
= σwσ

T
w

lim
h→0+

sup
N∈N0, s

[0,N]
h ∈Ωh

‖∆snh‖2 = 0.

As the chain {snh;n ∈ N0} is a discrete-time process,
we use an approximate continuous-time interpolation [14] to
approximate the continuous-time process in (2). We define
the continuous-time interpolation sh(·) of the chain {snh}
and the continuous-time interpolation θh(·) of the action
sequence {θnh} under the holding time function ∆th as
follows: sh(τ) = snh , and θh(τ) = θnh for all τ ∈ [tnh, t

n+1
h ).

There are multiple ways to construct such a locally con-
sistent Markov Chain. For our specific problem, we follow
the construction found in [14] that splits the control inputs
of agent 1 (Pursuer) and agent 2 (Evader).

Specifically, given the dynamics of the PEG as in (2), we
rewrite the drift term as

b(s, θ) = [b1(s, θ), b2(s, θ), b3(s, θ), b4(s, θ)]T.

We then define the quantity Qh(sh) as

Qh(sh) = hmax
θ∈Θ

{ 4∑
i=1

|bi(sh, θ)|
}

+ 4 σ2
w,

and define the interpolation interval as

∆th(sh) =
h2

Qh(sh)
. (8)

Notice that ∆th(sh) → 0 as h → 0, for all sh ∈ Sh. The
transition probabilities of the cMDP that approximates the
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original PEG can be calculated via

Ph(sh ± hej |sh, θ) =
(σ2

w

2
+ hb±j (sh)

)
/Qh(s),

Ph(sh|sh, θ) = 1−
4∑
j=1

Ph(sh ± hej |sh, θ),

Ph(s′h|sh, θ) = 0, if s′h 6= sh ± hej and s′h 6= sh,

(9)

where b+ = max{b, 0} and b− = max{−b, 0}, and ei are
the unit vectors in R4 (e.g., e3 = [0 0 1 0]T). The next states
sh ± hej are the states s′h such that α(s′h) = α(sh) ± hej .
One can verify that the transition probabilities defined in (9)
are locally consistent with (2).

Under this discretization scheme, any advantage an agent
has in its speed is translated into a probabilistic advantage
in (9). Specifically, Ph depends on vi through bi(sh, θ) and
one can observe that within the same wind field, the agent
with a higher speed is more likely to end up in the cell that
it intends to visit.

As stated in [14], the local consistency property implies
the convergence of the continuous-time interpolations of the
trajectories of the controlled Markov Chain to the trajectories
of the stochastic dynamical system in (2). It also guarantees
the convergence of the optimal reward-to-go functions of the
discrete cMDPs to that of the original problem.

Finally, we define a (mixed) policy for Mh as a mapping
µih : Sh ×Θi → [0, 1]. The set of all admissible policies is
denoted by Πi

h. To this end, given a joint policy µh, the
expected reward-to-go from sh due to µh is

Jh,µh
(sh) = Jh,µ1

h,µ
2
h
(sh) = EPh,µh

[
Gh
(
sIhh )

)]
, (10)

where the expectation is taken under Ph and joint policy µh,
and sIhh is the terminal state reached at the terminal time Ih2.

IV. LEVEL-K THINKING

Under the framework of level-k thinking, an agent best
responds to a given level-(k−1) policy of its opponent.
Consider a cMDP Mh in Section II, suppose that agent i is
given the policy of its opponent µ9i

h , it can marginalize the
transition in (9) using µ9i

h . The cMDP Mh is then reduced
to a standard MDP optimizing with respect to only µih. In
what follows, we use the superscript k ∈ {0, 1, 2, . . .} within
a parenthesis to denote the rationality level. We also use s
to denote the state sh ∈ Sh for brevity.

Given the level-(k−1) policy of the opponent µ9i,(k91),
we can define a one-sided MDP for the level-k agent i
via Mi,(k)

h = 〈Sh,Θi, P
i,(k)
h , Gh〉, where the marginalized

transition P i,(k)
h for each action θi is given by

P
i,(k)
h (s′|s, θi) ,

∑
θ9i∈Θ9i

Ph(s′|s, θi, θ9i)µ9i,(k91)(s, θ9i).

Then the optimal value for agent k at level-k can be
computed from the fixed point of the Bellman equation [7]:

V i,(k)(s)= ext
µi,(k)

{∑
s′∈S

P i,(k)
(
s′|s, µi,(k)

)
V i,(k)(s′)

}
, (11)

2The terminal time is well-defined, i.e. Ih <∞ w.p.1, since the generated
cMDP does not have any recurrent states, assuming σw > 0.

with the boundary condition V i,(k)(s) = Gh(s) for s ∈ ∂Sh.
The ext operator in (11) corresponds to a sup when the
Pursuer optimizes and to an inf for the Evader. It has been
shown that there exists at least one pure Markov policy [7]
that solves (11).

To initialize the level-k policy construction, we choose the
level-0 policies µi,(0) to be

µi,(0)(s, θi) =
1

|Θi|
for all θi ∈ Θi, s ∈ S, (12)

where |Θi| denotes the cardinality of the action set Θi. This
level-0 policy places a uniform distribution over the action
set Θi. Such policy reflects the idea that a level-0 agent is
most naive and does not perform any optimization3.

The level-1 agents then calculate their best response to
their opponent’s level-0 policy via (11). Similarly, the level-2
agents compute their best response to the given level-1
policies via (11). This process of building policies level-
after-level continues. In practice, an agent with limited
computational resources (e.g., a human) can continue this
process only up to a certain level kimax [10].

Clearly, the best response to a level-k policy µ9i,(k) is, by
definition, µi,(k+1) and not necessarily the Nash policy. We
want to emphasize the fact that the Nash policy [7], even
though robust, is not always optimal given the opponent’s
policy. For example, if an autonomous agent is certain that
its opponent (say, a human, bounded rational pilot) is unable
to deploy a Nash policy but instead uses a policy at level-
k, then there is an incentive for the autonomous agent to
respond using a level-(k + 1) policy rather than a Nash policy
to exploit the weakness of its opponent and thus maximize
its reward.

As discussed above, the level-wise best response structure
in (11) can be equivalently represented by

µi,(k+1) ∈ BestResponse(µ−i,(k)). (13)

We present the following Lemma regarding the convergence
of level-k policies to the Nash equilibrium.

Lemma 1. Given a two-agent cMDP solved under the level-
k thinking framework, if µi,(K+2) = µi,(K) for an agent
at some finite level K, then the two agents reach a Nash
equilibrium by applying the joint policy

(
µi,(K), µ−i,(K+1)

)
.

Proof. By the construction of level-k policies, we have

µi,(K+2) ∈ BestResponse(µ−i,(K+1)),

µ−i,(K+1) ∈ BestResponse(µi,(K)).

From the assumption µi,(K+2) = µi,(K), we have the follow-
ing fixed point property:

µi,(K) ∈ BestResponse(µ−i,(K+1)),

µ−i,(K+1) ∈ BestResponse(µi,(K)).

The joint policy
(
µi,(K), µ−i,(K+1)

)
then corresponds to a

Nash equilibrium, by definition.
3One may choose different level-0 policies. For example, a simple Pursuer

policy is one that keeps the heading towards the Evader. Different level-0
policies, however, may result in different level-k policies.
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Remark 1. Suppose no maximum level constraint is im-
posed. Then, the level-k iterative process terminates at some
level K if µi,(K+2) = µi,(K) for some i ∈ {1, 2}.

Remark 2. Lemma 1 ensures that any converging level-k
policy is a Nash Equilibrium. However, in general, there is no
guarantee that the previous iterative level-k construction will
converge. Furthermore, in case of multiple Nash equilibria
for a general-sum game, one cannot comment on which
equilibrium the level-k policy will converge to, as it may
depend on the selection of the level-0 policies.

Under the level-k framework, we have reduced a cMDP
Mh into a series of one-sided MDPs {Mi,(k)

h }. For each
of the MDPs, the optimization is only over a single agent’s
policy and we utilize value iteration [15] to find the optimal
policy. We use the subscript m to denote the iteration index.
Following this notation, the value iterations are given by

V
i,(k)
m+1 (s)= ext

θi∈Θi

{∑
s′∈S

P i,(k)
(
s′|s, θi

)
V i,(k)
m (s′)

}
s ∈ Soh,

V
i,(k)
m+1 (s) = Gh(s) s ∈ ∂Sh.

As the action space is assumed to be finite, solving the value
iteration at step m+ 1 becomes a problem of finding the
heading angle at each non-terminal state s that maximizes
the expected future rewards, given the value function V i,(k)

m

from the previous iteration m.

V. INFERRING THE OPPONENT’S LEVEL

In Section IV, we argued that agent i can deploy its “coun-
termeasure” policy µi,(k+1), if agent i knows its opponent is
of level k and k+1 does not exceed its maximum level kimax.
In real world situations, it is not always possible to know the
opponent’s exact level, hence, the agent must infer the level
of its opponent based on the trajectory of the game. Below,
we propose an online algorithm to estimate the opponent’s
rationality level k−i based on the state trajectory s[0,N ]. The
algorithm uses a maximum likelihood inferring algorithm
similar to the one in [16].

To make the interactions between the two agents more
realistic, we allow the two agents to adapt their levels
based on their observations. We assume that agent i al-
ways plays one level higher than the estimated level of
its opponent, without exceeding its maximum level kimax.
With an observation window of length w+1, denote the
observed trajectory at tN as s[N9w,N ] = {sN9w, . . . , sN}
and denote the levels played by agent i over this period
as ki,[N9w,N ] = {kiN9w, . . . , k

i
N}. With a maximum level

kimax, agent i can infer the opponent’s level in the range
of Ki = {0, 1, . . . , kimax-1}4. The probability of observing
this specific trajectory s[N−w,N ] with a fixed k−i ∈ Ki is

P(s[N9w,N ]|ki,[N9w,N ], k9i)

=
N91∏

n=N9w

Ph

(
sn+1|sn, µi,(k

i
n), µ9i,(k9i)

)
.

(14)

4To construct its policy up to level kimax, agent i is given or has computed
its opponent’s policies up to level kimax−1, which decides the set Ki.

We use maximum likelihood estimator to infer the oppo-
nent’s level at tN via

k̂−iN ∈ argmax
k−i∈Ki

P
(
s[N−w,N ]|k−i, ki,[N−w,N ]

)
. (15)

Using this estimator, at the next time step tN+1, agent i
would play at level min{k̂−iN + 1, kimax} as an adaptation
based on the observed trajectory of the system.

VI. NUMERICAL EXAMPLE

We consider a two-agent pursuit-evasion game in a con-
tinuous wind field and discretize it using an 18×18 grid. The
mean wind velocity is generated randomly, while the wind
covariance is set to σw = 0.4 with no spatial correlation.
The starting positions of the agents, the evasion regions and
the obstacles are shown in Fig. 2. We use the MCAM to
discretize the original PEG to obtain the grid to the right.
The reward Gh and the transition Ph are assigned according
to (4) and (9). Both agents have the same speed v1 = v2 = 1
and the same action set Θ1 = Θ2 = {0, π2 , π,

3π
2 }.

Fig. 2: The continuous space (left) and the discretized grid (right).

We construct the level-k thinking hierarchy as presented
in Section IV. We then simulate the computed policies at
some selected level pairs over 1500 games. We present two
tables of win rates to illustrate the results.

In Tables I and II, we fix one agent to be level-2 while
varying the level of the other agent. In both tables, the highest
winning rates are attained at level 3. This result is expected,
since level 3 policies are by definition the best responses to
the level-2 opponents. It can also be observed that after level
5 the performance only varies slightly, since the policies at
high levels do not differ much from each other.

TABLE I: Pursuer win percentages against level-2 Evader.

Pursuer Level 1 2 3 4 5 6
Pursuer Wins 48.5 47.6 51.7 50.9 51.2 51.1

Capture 36.4 38.2 45.3 43.1 42.7 42.9

TABLE II: Evader win percentages against level-2 Pursuer.

Evader Level 1 2 3 4 5 6
Evader Wins 47.5 52.4 53.8 52.9 53.2 53.1
Due to Evasion 35.6 42.2 45.3 44.5 44.7 44.2

In Fig. 3 two sample trajectories are shown. The first
trajectory in Fig. 3(a) depicts a level-3 Evader against a
level-2 Pursuer. One observes the “deceiving” behavior of
the Evader: it first moves towards evasion cell #2 (on the
right), which tricks the level-2 Pursuer to also go right and
take the shorter route beneath the obstacles for defending
the evasion cell #2. The Evader then suddenly turns left and
goes to the evasion cell #1 (on the left). When the Evader
reveals its true intention of evading at evasion cell #1, it is
too late for the Pursuer to capture the Evader.

3220

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 11,2022 at 18:52:56 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3(b) depicts a successful capture. Different from the
previous scenario, the level-3 Pursuer has perfect knowledge
on the level-2 policies of the Evader, and it predicts well
regarding the next action the Evader will take.

(a) (b)
Fig. 3: Sample trajectories of agents with fixed levels. (a) Level-2
Pursuer vs. level-3 Evader; (b) Level-3 Pursuer vs. level-2 Evader.

Fig. 4 presents an example of the outcomes from the in-
ferring algorithm introduced in Section V. The color depicts
the (normalized) conditional probability in (14).

Fig. 4: Examples of inference results. (a) A level-3 Evader’s
inference of a level-2 Pursuer; (b) A level-2 Pursuer’s inference
of a level-3 Evader. In both cases, agents have maximum level of
5 and use a fixed level.

In Fig. 4(a), the level-3 Evader can infer the rationality
level of the level-2 Pursuer with high confidence for most
of the time steps. However, in Fig. 4(b), the level-2 Pursuer
has some trouble inferring the level-3 Evader accurately after
t = 37. As discussed earlier, at high levels the policies of
the agents are the same at most of the states. For example,
a level-4 Pursuer and a level-3 Pursuer may take the same
action in certain regions of the state space. In Fig. 4(b), from
time step 37 to 49, the two agents have entered such a region.
This phenomenon makes the inferring process challenging
at high rationality levels, in general. However, since the
policies of both the Pursuer and the Evader become similar
at high levels, even picking a wrong level does not harm the
performance significantly.

Finally, we present in Fig. 5 the outcome of the adaptive
level selection in Section V, where each agent always plays
one level higher than the inferred level of its opponent
without exceeding its maximum rationality level. One may
notice some oscillations at the beginning, but eventually, the
Pursuer starts to play at its highest level, and the Evader plays
at one level higher accordingly till the game terminates.

Fig. 5: An example of the dynamic level model. The Evader has a
maximum rationality level of 3 and the Pursuer has 5. Both agents
start at level 2. The game terminates at n = 43.

VII. CONCLUSIONS

In this work, we provide a framework to incorporate
the notion of bounded rationality for continuous stochastic
pursuit-evasion problems. We first presented a discretization
scheme to reduce the original game to a discrete competitive
MDP. We then utilized the level-k framework to model
agents of bounded rationality and demonstrated how the
game can then be solved efficiently using value iteration.
Moreover, we proposed an inferring algorithm that estimates
the opponent’s rationality level and enables the agents to
adapt their levels accordingly. Finally, we demonstrated the
behavioral and statistical outcomes of a game with bounded-
rational agents with a simulation example.

Future work will examine how well the level-k framework
models human behaviors in PEGs. It is also of interest to
investigate this framework in a team game setup.
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