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Information-Theoretic Abstractions for Planning in
Agents with Computational Constraints

Daniel T. Larsson

Abstract—In this paper, we develop a framework for path-
planning on abstractions that are not provided to the agent
a priori but instead emerge as a function of the available
computational resources. We show how a path-planning problem
in an environment can be systematically approximated by solving
a sequence of easier-to-solve problems on abstractions of the
original space. The properties of the problem are analyzed, and
a number of theoretical results are presented and discussed. A nu-
merical example is presented to show the utility of the approach
and to corroborate the theoretical findings. We conclude by
providing a discussion detailing the connections of the proposed
approach to anytime algorithms and bounded rationality.

Index Terms—hierarchical abstractions, planning, information
theory, information bottleneck method.

I. INTRODUCTION

ATH and motion planning for autonomous systems has

long been an area of research within the robotics and
artificial intelligence communities. This has led to the devel-
opment of a number of frameworks which formulate planning
tasks in terms of mathematical optimization problems, which
can then be solved by utilizing techniques from optimization
and optimal control theory [1], [2]. However, planning in
complex domains can be a challenging problem, and requires
the agents to spend time and computational resources in order
to find solutions, giving rise to an intrinsic need for agents
to balance computational complexity with optimality of the
resulting plan [3]-[7].

As a result, a number of approaches within the path-
planning community have been developed that aim to explic-
itly capture the interplay between complexity and optimality.
For example, in [5], [8]-[13], the authors utilize wavelets
to obtain multi-resolution representations of two-dimensional
environments for planning. The use of abstractions for path-
planning allows these works to leverage the computational
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benefits of executing graph-search algorithms, such as Dijkstra
or A*, on reduced graphs of the environment that contain
fewer vertices as compared to the original, full-resolution,
representation.

In a similar spirit, other works [4], [14], [15] consider
abstractions for planning, but instead employ hierarchical
representations of the world in the form of multi-resolution
quadtrees and octrees. The use of probabilistic tree struc-
tures enables these works to incorporate environment uncer-
tainty [16]. With this added flexibility, these approaches can
be used in an on-line manner, allowing autonomous agents
to plan based on occupancy grid (OG) representations of the
world that are dynamically updated as the agent interacts with
the environment. To strike a balance between the complexity
of the search and satisfactory performance, the aforementioned
works recursively re-solve the planning problem as the agent
traverses the world.

It should be noted that the interplay between complexity
and optimality is not unique to the path-planning community.
Recent work related to bounded-rational decision making
has illustrated a growing need to develop decision-making
frameworks for agents that are resource limited [17]-[22].
This area of research considers limitations in the traditional
assumptions of artificial intelligence, and approaches problems
by viewing agents as resource-limited entities that are con-
strained in terms of their information-processing capabilities.
To model such agents, the authors in [19] utilize concepts
from information theory, arguing that bounded-rational deci-
sion making can be modeled by considering Kullback-Leibler
(KL) divergence constraints added to traditional maximum ex-
pected utility problems. Extensions of this work to sequential
decision-making problems in stochastic domains is considered
in [17], [21], whereby Markov Decision Processes (MDPs)
are utilized with information-theoretic constraints to formu-
late information-limited MDPs (IL-MDPs). The frameworks
include a trade-off parameter that balances the optimality of
the decision policy and the effort required to obtain it, as
measured by a KL-divergence measure between the resulting
posterior policy and a default prior policy. These approaches
offer one perspective of bounded-rational decision making
and provide for interesting connections with information-
theoretic frameworks for compression, such as rate-distortion
theory [17], [19].

In this paper, we consider complexity reduction in path-
planning problems by means of graph abstractions for
resource-limited agents by combining aspects from both the
planning and bounded-rational decision-making communi-
ties. Our contribution is two-fold. Firstly, we employ an



information-theoretic approach to generate multi-resolution
abstractions that are not provided a priori for the purposes
of path-planning and secondly, our framework couples the
environment resolution to the resulting path quality. To the
best of our knowledge, there are no existing approaches
that utilize information-theoretic abstractions for complexity
reduction in path-planning that also guarantee the monotonic
improvement of the path-cost as a function of environment
resolution. Coupling the path-cost with the environment reso-
lution provides a link between the path quality, the complexity
of executing graph-search algorithms and the information-
processing capabilities of the agent determined by the infor-
mation contained in the generated abstractions. In summary,
our framework: (i) utilizes concepts from information theory
to obtain reduced environment representations as a function
of agent information-processing capabilities, and (ii) provides
provable guarantees on the monotonic improvement of the
path-cost as a function of environment resolution.

II. PRELIMINARIES

Denote the set of real numbers by R and, for any positive
integer d, let R? denote the d-dimensional Euclidean space.
Assume that the environment V) C R? is given by a d-
dimensional OG and that there exists an integer ¢ > 0 and
real number a € (0, c0) such that the environment is contained
within a hypercube of side length @ - 2°. The real number a
is a scaling factor, and so we will assume, without loss of
generality, that a = 1. The environment is represented as a tree
T = (N(T),E(T)), where the edge set £(T) describes the
relationship between the nodes in (7). In what follows, we
restrict our attention to the case where the tree representation
is that of a quadtree, however the contributions of this paper
are valid for any tree structure. Let 72 be the space of all
feasible quadtree representations of W, where each 7 € T <
encodes a multi-resolution, hierarchical, representation of the
world. Take Ty, € T be the quadtree corresponding to
the original environment W, that is, 7y encodes the finest
resolution depiction of W.

Consider any node n € N(Ty) at depth k € {0,...,¢},
then n’ € N'(Tyy) is a child of n if the following hold:

1) Node n' is at depth k + 1 in Tyy,
2) Nodes n and n’ are incident to a common edge, i.e.,
(n,n") € €(Tw).

In the sequel, we let the set of child nodes for any n &
N (Tw) be denoted by C(n) and Ny (Ty) to be the set of
nodes at depth k. For any 7 € T2 we take Ny (7))
{n" e N(T):C(n')NN(T) =@} to denote the set of leaf
nodes and Ny (7)) = N (T )\ Neat(T) to be the set of interior
nodes of the tree 7.

While useful for describing the relationship between nodes
in a given tree, the aforementioned sets do not describe how
the nodes in the tree 7 € T < are related to the spatial
region described by the environment Y. This brings us to
the following definition.

Definition 2.1 ([14]): Let k € {0,...,£} and n € Ni(Tw).
Then the node n:
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Fig. 1. Tree representation (top) of some 7 € T, corresponding grid
depiction (left) and associated graph (right) for a 2¢ x 2¢ with £ = 4
environment. The connectivity of the graph is consistent with the definition
of nodal neighbor. The nodes in 7y that are not in 7 are shown in grey.

1) Is at depth k and has an r-value given by the function 7 :
N(Tw) — {0,..., ¢} defined by the rule r(n) = ¢ — k.
The inverse image of the function 7 is the set 7~ 1(L)
{n e N(Tw) : v(n) € L} for any L C {0,...,¢}.

2) Represents a hypercube H(n) C W with side length
27(") and volume 2%"(") centered at the point p(n) €
R4,

3) The hypercubes corresponding to the nodes that are the
children of n form a partition of H(n). That is,

U H(n').

n’eC(n)

H(n)

In order to utilize the tree 7 € T for planning, we must
specify how the nodes in the tree 7 are connected. To this end,
we consider the nodes n,n € N (Ty) as nodal neighbors if
the following statements hold:

D [[p(n) = p(A)[le = 2771 4 2771,

2) There exists a unique ¢ € {1,...,d} such that

[p(n) = p(R)];] = 27~ 4 27 (W=,

where [p(n) — p(7)], denotes the ™ entry of the vector
p(n) —p(n) and |- | is the absolute value. For each tree T €
T2 there exists an associated graph G(7) = (V(T), E(T)),
constructed from the leaf nodes of 7, consisting of a set of
vertices V(7 ) and edges E(T ), where the set E(7) describes
the connectivity of the vertices in V(7). To describe the
relation between V(7)) and Ny (7)), we define the mapping
Nodeg() : V(T) — N(Tw) such that if n,, = Nodegr)(v),
then the vertex v € V(T) corresponds to the node n, €
N(Tw).! Thus, for any two vertices v,9 € V(T), (v,9) €
E(T) if and only if the nodes n,,ns € Mear(T) C N (Thy)
are nodal neighbors. A visualization is provided in Fig. 1.

In order to develop and information-theoretic framework for
abstraction, we require the formalism of a probability space.
Thus, let (2, F,P) be a probability space with finite sample
space (), o-algebra F, and probability measure P : F —
[0,1]. Define random variables X : © — N (Ty) and
Y : Q@ — {0,1}. The distribution p(z) is given by p(z) =
P{weQ: X(w)=z}), where p(y) is defined analogously.
The random variables X and Y represent each of the unit

'The mapping Nodeg 7 has co-domain N (7yy) since the set N'(Ty)
contains all nodes of any tree 7 € T <.
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hypercubes of VW and the total cell occupancy, respectively,
where for y € Qy = {0,1}, we let y = 1 represent
the outcome of “occupied” and y = 0 correspond to the
outcome of “empty”. The OG representation of ¥V provides
the conditional distribution p(y = 1|z) for all x € Qx.

IIT. PROBLEM FORMULATION

Our problem is defined as follows.

Problem 1: Given the tree Ty, a scalar ¢ € [0, 1], constants
A1 € (0,1],A2 € [0,1] with A = (Aq, ), a start node
S0 € Mei(Tw) and a goal node s, € Near(Tw), we
consider the problem of obtaining a finest-resolution path
(FRP) 7 = {zo,...,2x} C Meat(Tww) wWhere zy = so,
T = Sg, each x € 7 is distinct and x;, ;41 € 7 are nodal
neighbors for all ¢ € {0,..., K — 1}, so as to satisfy

7 € argmin J2 (), (1
well
where
()= (), 2)
TET
and

if x € P.,
if x € Meaf(TW) \Psy

AL+ Aop(y = 1|z),
20~
£

with M2 = 29(\; + e)lg) + 7 for any v > 02 P. =
{z € Qx : p(y = 1|z) < e} and where II denotes the set of
FRPs leading from the start node sg to the goal s, in the tree
Tw. We aim to reduce the computational complexity of the
planning problem (1) by leveraging environment abstractions
that can be tailored to agent resource constraints. A

We call an FRP 7 for which m C P, an e-feasible FRP.
The role of ¢ is to define a feasible cell when the obstacle
information is encoded probibalistically, and M2 is a constant
that penalizes nodes considered to be obstacles. The value of
M? is chosen so as to ensure search algorithms do not include
infeasible nodes as part of an FRP unless no feasible paths
exist, as we do not exclude nodes « € P¢ from the search. By
not removing the nodes « € PS, we guarantee that II is non-
empty. The cost function (3) is inspired by previous works that
have considered planning on multi-scale abstractions [14]. The
approach in this paper is distinct from existing works in that
we: (i) utilize an information-theoretic framework to generate
abstractions not provided a priori, and (ii) provide theoretical
results that couple environment resolution and path cost.

The resulting search problem on the graph G(7,y) may be
computationally expensive. However, notice that by changing
the leaf nodes of the tree 7 € T<, we alter the graph
representation G(7) and, as a result, the complexity of the
resulting graph-search. Thus, instead of solving (1) directly on
G(Tw), we propose to approximate (1) by a computationally
easier-to-solve problem on a graph G(7") for some 7 € T<.
The challenge is then to select the tree 7 € 7 < as a function
of agent resource constraints.

3)

2Strictly speaking, v > 0 may be any positive number. However, we let
v = 2 in this paper.

IV. SOLUTION APPROACH

Our approach to approximating Problem 1 proceeds in two
phases. The first phase consists of selecting a tree 7, € Te
according to the agent’s information-processing capabilities.
The second phase is concerned with defining the planning
problem on the abstract representations of the world.

A. Information-Theoretic Tree Selection

The mutual information between a compressed representa-
tion Z of X, given by

. N p(z,7)

1(2; X) ;p(z z)log sy 4)
measures the amount of compression between the random
variables X and Z [23]. However, maximizing compression
via the minimization of I(Z; X) is not a well-posed problem,
as I(Z; X)) = 0 is always attainable. Instead, the compression
problem must be constrained by a measure that captures how
good of a compressed representation Z is of X.

One particular method of interest is the information bottle-
neck (IB), which defines the quality of an abstraction by the
amount of information retained in the compressed representa-
tion regarding a third, relevant, random variable [24]. The IB
method considers the problem

p*(z|x):argmaXI(Z;Y)—lI(Z;X), (5)
plz2) A

where X, Y, Z are random variables corresponding to the
original signal, relevant variable and compressed signal, re-
spectively, I(Z;Y) is the amount of relevant information
retained in the compressed representation, and p(z|z) maps
outcomes of X to outcomes of Z. The IB method as-
sumes the joint distribution factors according to p(z,y,z) =
p(z]x)p(z,y), which implies I(Z;Y) < I(X;Y) [24]. The
trade-off parameter S > 0 balances the amount of relevant
information retained in the compressed representation vs. the
achieved compression of the original signal.

The problem (5) can be formulated over the space of multi-
resolution trees by noting that each 7, € 7 < corresponds to an
encoder of the form p,(z|x), where p,(z|z) specifies how the
leaf nodes = € Near (Tyy) are mapped to nodes z € Near (75)
to create the tree 7, [25]. Thus, the IB problem over the space
of multi-resolution trees is formulated as

Tq~ € argmax Ly (7g; B), (6)
TeETS
where 1
Ly (Tg; 8) = 1(Z;Y) — BI(Z;X), (7)

and the quantities I(Z;Y) and I(Z; X) are evaluated using
the joint distribution py(z,y, 2) = pg(z|z)p(z,y). In contrast
to the original IB problem (5), the added constraint requiring
Ty € T< presents a significant challenge in obtaining a
solution to (6). It was recently shown that (6) can be solved
by employing an algorithm called Q-tree search [25]. We will
employ the Q-tree search algorithm to obtain multi-resolution
abstractions of the environment as a function of 8 > 0.



While we employ the abstraction framework from [25], we
emphasize that [25] does not address the use of abstractions
for the purposes of path-planning. The path-planning aspect of
our problem is novel and has not been previously discussed.
We present the path-planning details next.

B. Path-Planning on Abstractions

Given a sequence of strictly increasing 8 > 0, denoted
by {5i}£\i1’ we generate a corresponding sequence of trees
{7}}?;1 by employing the Q-tree search algorithm to solve
the information-theoretic problem in Section IV-A. A cor-
responding sequence of graphs {G (7}31)}5\;1 can then be
constructed, where each G(73,) for ¢ € {1,..., N} represents
a multi-resolution depiction of the environment W with fewer
vertices than G(Tyy). We will now use these reduced graphs
to form approximations to Problem 1, which brings us to the
following definitions.

Definition 4.1 ([25]): Let n € N(T) be a node in the tree
T € TC. The subtree of T € T< rooted at node n is denoted
by 7(») and has node set

N (Ton) = {n' € N(T) 20 € Ui},
where Dy = {n}, D11 = A(D;), and
A(Dy) = {n EN(Tw):n' € | @) }

neD;

Definition 4.2: An abstract path (AP) is a sequence of
nodes # = {zp,...,2r} € Mea (T) for some 7 € T<,
T # Tw, such that each z € # is distinct, the nodes zg
and zp satisfy so € Neat(Tw(z)) and sg € Neat(Tw(zz))s
respectively, and if R > 0 then z;, z;41 are nodal neighbors
forall i € {0,..., R—1}. An e-feasible abstract path (c-AP)
is an AP 7 such that |J Near(Tov(2)) C Pe.

ZET

To obtain an AP requires the specification of a cost-function
for abstracted representations. This is challenging as the cost
must: (i) be consistent with an FRP on the finest resolution;
(ii) appropriately account for the cost of traversing aggre-
gated nodes; and (iii) monotonically decrease with increased
resolution, or equivalently, with increased 3. The criterion
(iii) is needed to ensure that the paths {7%5}1]\;1 represent
approximations to an FRP 7 in that the cost of a path g,
should approach that of an FRP 7 as f3; — oc.

To plan on abstractions, we define V* : N (Ty) — (0, 00)

as
AMn , n € Mear (Ty s
V;‘(TL) _ { 15( ) o \ l.eaf( W) 8)
37 Domreciny V2 (), otherwise,
and consider the objective
TA(#:8) =Y 27 IVA(2). )

zZET

Note that J(7; 3) depends on the trade-off parameter 3 > 0,
as (3 determines the tree 73 € T on which the AP # is
planned. Given 8 > 0, we consider the problem
75 € argmin JN#;B),
erﬁB

(10)
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Fig. 2. Example OG of an environment V¥V with two AP 71 (blue) and 72
(black) leading from a given start location (cyan) to goal location (green). For
probabilistic obstacles (red), shading scales with the probability of occupancy.
Notice that both 711 and 72 pass through identical (adjacent) abstracted cells
with non-zero probability of occupancy. To determine the feasibility of these
paths requires refinement, shown to the right. Observe that, upon refinement,
the path 71 (blue) will be deemed infeasible, as it is not possible to traverse
the left abstracted cell in the direction stipulated by 7r1. In contrast, the path
7o (black) is feasible, since the right abstracted cell can be traversed in the
direction required by 7r1. Our definition of feasibility precludes an agent from
discovering a path is infeasible upon refinement.

where ﬁ,g is the set of APs in 73 € 7<. What we must
show is that the objective function value of (9) monotonically
decreases with increased 8 > 0. The following theorem
establishes this result.

Theorem 4.3: Let ¢ € [0,1] and assume that there ex-
ists S > (1 > 0 such that the corresponding trees
T5,, Tp, € T satisfy N (Tg,) \ N (Tz,) = C(n) for some
n € MNear (T3,). Furthermore, let 75 C Neat (Tp,) denote
an abstract path in the tree 73, € T< satisfying 75 €
argming JM(#g,;81). Then there exists an abstract
path 7, C Meat (73,) such that J;A(fr?;l;ﬁl) > jg\(ﬁ52;52).

Proof: The proof is presented in Appendix A. [ ]

By definition, J*(7s,; 82) > js)\(’ﬁ'ﬁz;ﬂg) for all 75, €
I13,, and hence Theorem 4.3 establishes that jg\(fr;gl; B1) >
JAE’\(frEQ; B2). Note that the result holds even if two consecutive
trees in the sequence {73,}, do not satisfy N (7p,,,) \
N (Ts,) = C(n) for some n € Ny (7p,). This is because
moving from 7, to T, , can be done by considering another
sequence {7}, where 7o = Tp,, Tm = Tp,,,, and
N (Tos1) \ N (Ty) = C(n) holds for some n € Niear (7,)
and all uw € {0,...,m — 1}.

While Theorem 4.3 guarantees the monotonic improvement
of the cost as a function of resolution, it does not guarantee
that the cost of an AP converges to that of an FRP as 8 — oo.
To address this, we require the following proposition.

Proposition 4.4: Let Aly Nie(Tww) — [0,00) be
the change in relevant information by expanding the node
n € Nm(Tw).> Then the Q-tree search algorithm returns
the tree 7y as § — oo if and only if Aly(n) > 0 for all
nec ./\/z71(7—w)

Proof: See the unabridged version [26]. [ ]

Theorem 4.3 in conjunction with Proposition 4.4 guarantee
that the path-cost sequence {J2 (7 ;6i)};L, monotonically
decreases and converges to J(7*) as By — oo. We now
present a number of other properties of our problem, for which
the following fact is useful.

3See [25] for more information.
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Fact 4.5: Letu € {0,...,¢}, e €[0,1] and n € r~}({u}).*
Then VA(1) = 5757 Loweni(Tminy) V2 (7):
Proof: See the unabridged version [26]. [ |
Proposition 4.6: Let £ € [0,1] and 3 > 0. Then JX(#; 8) <
M? if and only if 7 is a e-feasible abstract path.
Proof: The proof is presented in Appendix B. ]

Corollary 4.7: Let € € [0,1]. Then JX(7) < M2 if and
only if 7 is a e-feasible finest resolution path.

Proof: Identical to the proof of Proposition 4.6. ]

The utility of Proposition 4.6 and Corollary 4.7 is that they
provide conditions for quickly determining the feasibility of
a path from knowledge of only the objective function value
JM(#;8) (or JX(x)). If the search terminates before an e-
feasible path has been found, the agent is provided with the
most recent solution, which is guaranteed to be the least
infeasible path available in the current tree. Furthermore, as
a result of Theorem 4.3 and Proposition 4.6, if an AP frgj
is e-feasible for some j € {1,...,N}, then all AP in the
sequence {75 }i; are also e-feasible. This ensures that the
autonomous agent can never discover that a feasible path
becomes infeasible with further refinement of the environment.
An illustration is provided in Fig. 2. To conclude this section,
we present the following proposition.

Proposition 4.8: Let € € [0,1] and n € Ny (Ty). Then
VA(n) > A\ + € if and only if Mesr (Tw(n)) NP+ o.

Proof: The proof is presented in Appendix C. ]

Proposition 4.8 allows an autonomous agent to quickly identify
which leafs of the tree 7 € 7T < are considered to be
e-obstacles and, consequently, which vertices in G(7) to
avoid, if possible. Next, we present a numerical example to
demonstrate the utility of our approach.

V. NUMERICAL EXAMPLE

We consider the world W to be given by the 128 x 128 OG
shown in Fig. 3a. The OG representation provides information
regarding the conditional distribution p(y|z), whereby we
then define the joint distribution p(z,y) = p(y|z)p(x) with
(1) = VY |Ne(Tw)| for all & € Niear (Tyy).> By utilizing the
uniform distribution p(x), we encode that the autonomous
agent is equally likely to occupy any cell x € Nt (Thy)
and will result in the IB method refining the environment in
a region-agnostic manner [25]. The joint distribution p(z,y),
along with a sequence of strictly increasing positive values
of {52‘}5\;1, are provided to the IB abstraction framework of
Section IV-A to obtain the sequence of trees {7'5}5\7:1 along
with the corresponding {G (7]3)}1]\;1 Given a start and goal
location, the path planning problem (10) is solved on each of
the trees {7}3}5\; to obtain {fr;}f\]:l Examples of obtained
abstract paths are shown in Figs. 3¢ — 3d with an FRP shown
in Fig. 3b.

In Fig. 4, we show the average path-cost ratio when the
conditions of Proposition 4.4 are satisfied. To generate the

“Notice that r~1({u}) = Ny_(Tw) for any u € {1,...,¢}.
SWhile we assume for the numerical example that p(z) is uniform, any
valid p(x) is allowable.

(© (d

Fig. 3. 128x128 environment (|Q2x | = 16384) with graph abstraction and
path examples for € = 0.5. Cost parameters are A; = 0.001 and A2 = 1.
Shading of grey scales with probability of occupancy. Red vertices are consid-
ered e-obstacles as determined by Proposition 4.8. (a) original environment,
(b) example FRP, (c) example AP and graph for 8 = 55 (%|Qx| = 8.3%),
(d) example AP and graph for f =1 x 106 (%|Qx| = 83.4%).

average results, we consider a sequence {3;}¥.; and sample
200 pairs of start-goal points on the finest resolution. A
sequence of reduced graphs {G(73,)}Y, is then created,
which are employed to obtain N abstract paths for each
sampled start-goal pair. This processes furnishes a dataset of
compression and path-cost values for each start and goal pair
sampled, which forms the basis of the averaging results.

From Fig. 4, we see that, on average, roughly 15% to 18% of
the vertices of G(7yy) are required in order to obtain a feasible
path in the environment. A reduced graph containing only
15% to 18% of the vertices of G(Tyy) substantially reduces
the computational effort required to find feasible solutions.
Furthermore, Fig. 4 shows that the path-cost monotonically
decreases with increased resolution. The decreasing nature of
the cost in Fig. 4 is expected, since Theorem 4.3 guarantees
that the path-cost between any two points monotonically de-
creases as a function of resolution (or, equivalently, increased
B > 0). We also observe that the average path-cost ratio
converges to 1, corroborating the conditions for convergence
set forth by Proposition 4.4. Lastly, note that by utilizing
a representation with approximately 70% of the nodes in
Ty results, on average, in an abstract path g, for which
jg‘(frg,ﬁz) is within 30% of J2(7*). Next, we discuss how
elements of our framework relate to bounded-rational decision
making and anytime algorithms.

VI. DISCUSSION

The role of 5 > 0 in our framework can be interpreted sim-
ilarly to its role in other approaches for resource-constrained
and bounded-rational decision making. Previous works [17],



[19], [20] have considered information-constrained MDPs by
adding KL-divergence constraints to traditional MDP prob-
lems. The KL-constraints limit to what extent an optimal
policy is permitted to differ from a default policy provided to
the agent beforehand, where 8 > 0 serves as a parameter to
weight the relative importance of maximizing expected reward
and minimizing deviation from the default policy. These
studies argue that § > 0 parameterizes a spectrum of agents,
where optimal policies for rational agents are recovered as
B — oo and for resource-limited agents as 5 — 0. Similarly,
in our work, g trades the complexity of the search with the
value of the resulting path, where larger values of /3 lead to
lower path costs at the penalty of increased search complexity.
In actual agents, the value of 8 > 0 should be chosen so
that the worst-case computational cost of obtaining a path as
well as the memory requirements for storing the environment
representation do not exceed the on-board resources available
to the system.

A number of other approaches aim to decrease planning
complexity by leveraging environment abstractions [4], [5],
[8]-[15]. While these works simplify the planning problem,
they provide no guarantees that the solution improve with
increased planning time or resolution. A connection between
time ¢ > 0 and plan quality can be established in our method
by considering a strictly increasing mapping I'(¢) = £. In this
way, the IB abstractions as well as the planning problem (10)
become time-dependent, whereby the improvement of the
objective value with time is established by Theorem 4.3. This
is akin to the interplay of plan quality and deliberation time
as suggested by anytime algorithms [3].

To quantify the computational cost of our approach, we
note that the complexity of the Q-tree search algorithm
is O(|Meat(Tw)|) [25]. Thus, the worst-case complexity of
executing Q-tree search and planning is O(|Neat(Tw)|) +
O(|E(T)|+V(T)|log|V(T)|) for any T € T<, as compared
to O(|E(Tw)|+|V(Tw)|log|V(Tw)|) for an FRP. We provide

wt e 1.3 FRP Path Cost
—-= FRP Path Cost

—e— Abstract Path Cost

—— Ave. First Feasible Path

10

= 5

Average Path Cost Ratio
=)

0 10 20 30 40 50 60 70 80 90
Compression ( % || )

T
100

Fig. 4. Logarithmic (base 10) value of average jg‘(ﬁ},i;ﬁi)/J;‘(w*) versus
compression for e = 0.5, A1 = 0.001 and A2 = 1. Note that |2 x | = 16384.
Average values computed over 200 randomly sampled start and goal locations.
Moving along the curve to the right is done by increasing 3. Average first
feasible path line represents average compression at which first guaranteed
feasible path in the abstracted environment is found.
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Fig. 5. Average computation time vs. environment compression for two-
dimensional grid sizes of 128 x 128, 256 x 256 and 512 x 512. By increasing
[ one moves along the curves to the right. Timing results are obtained
by averaging over 100 randomly selected start and goal locations. The y-
axis represents average (normalized) time obtained by averaging the time
for (i) information computation, (ii) computing Q-values, (iii) running Q-tree
search and (iv) employing Dijkstra graph-search to obtain an abstract path and
normalizing by the average time to run Dijkstra on the finest-resolution map.
Timing results assume the worst-case scenario that abstractions are generated
from scratch for each value of 8 (or compression level) on a computer with
a 2.9 GHz Intel i5 CPU with 8 GB of RAM running MATLAB.

experimental timing results for various two-dimensional grid
sizes in Fig. 5. Comparing Fig. 4 and Fig. 5, we see that,
for the example considered in Section V, a feasible path
can be found faster than executing a search on the finest
resolution. Furthermore, the computational benefits of our
approach increase as the size of the finest resolution space
grows. The computational savings come at the cost of a
diminished performance due to the intrinsic need to trade
computational complexity and path optimality, as discussed
throughout this paper. Lastly, it is important to view Fig. 5
keeping in mind: (i) the results assume the worst-case scenario
that the abstractions must be generated from scratch and used
to produce a single abstract path and (ii) the environment is
two-dimensional.

To conclude, recall that for a given value of 5 > 0,
the abstraction returned by Q-tree search will be a tree that
retains the maximum amount of information regarding the
relevant variable Y. This process is subject to the choice of the
relevant variable, which we assumed to be the cell occupancy.
Importantly, our framework holds for other choices of the
relevant variable. An investigation into the selection of the
relevant random variable and its implications is left for future
work.

VII. CONCLUSIONS

In this paper, we have shown how a path-planning problem
can be systematically simplified by employing multi-resolution
tree abstractions generated by an information-theoretic frame-
work. The abstractions are not provided a priori and can be
tailored to agent resource constraints. A number of theoret-
ical results were presented that establish formal connections
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between the path quality, graph-search complexity, and the
information contained in the reduced graphs. To corroborate
our theoretical findings, a non-trivial numerical example was
presented together with a discussion analyzing the interpre-
tation of our framework in the context of bounded-rational
decision making and anytime algorithms.
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APPENDIX A
PROOF OF THEOREM 4.3

The proof is given in two parts. We first present and provide
a proof of the following lemma before providing the proof of
Theorem 4.3.

Lemma A.1: Let n € Ny (Tw). Then 24 VA(n) >
Ywccimps 2IVA () for all S € C(n).

Proof: The proof is given by contradiction. Assume that

2Ir (M)A () < dwecnn\s 20 ()Y A (n!) for some S C
C(n). This means,

2dr(n') 2d‘/€)\(n) _ Z ‘/g)\(n/) <0,

n’eC(n)\S
as n/ € C(n) and since 27" > 0, VMn) <
2~ donecnNs V2 (n'). However, 0 < V2 (n') for all n/ €
C(n), and so

Vi <2t Y VA <2t Y VAWM,
n’eC(n)\S n’eC(n)
Since 27937 oy V2 (') = V2(n), the above implies

V2 (n) < V2 (n), a contradiction. [
We now prove Theorem 4.3.

Proof: The proof is given by construction. There are two
cases to consider: 75 N{n} =@, and 73 N {n} # 2.
First consider the case 75 N {n} = 2. It follows,

7%;1 g Meaf (7231) N -/\[leaf (7-52) C -/\[leaf (7-52) .

Take 7, = 75 and thus J2 (7% 5 B1) > J2(7s,5 B2).

Now consider 75 N {n} # <. Without loss of general-
ity, 7}21 = {Zo, ey Zie 13 Ziy Big Ly s ZR} - ./\/ieaf('Tﬁl) is
an abstract path where z; = n. As the node n is ex-
panded, we re-route the path through the children of n. Con-
sider g, = {20,.-+,%i—1,%},,---» %}, Zi+1,-- -, 2R}, Where
{#i,,---,#,} €C(n) is a sequence of nodes so as to render
7, an abstract path. Notice that 7g, C Mear(73,), and

T2 (#5,5 Br) — J2 (7 Be)

— er(n) ‘/E)\ (n) _ Z 2dr(n,)‘/€>\(n/)'
n’E{zil,...,zl’A“
Since {z; ,...,2; } € C(n), it follows from Lemma A.1 that
2dr(7z)v'6)\(n) N Z 2d7'(n/)Vv€)\(n/) >0,
n’G{zgl,...,z;u}

and so js)‘(frﬁl;ﬂl) > J2 (7tp,; Ba). u



APPENDIX B
PROOF OF PROPOSITION 4.6

Proof: (Neccessity) The proof is given by contradiction.
Assume there exists 3 > 0 such that J(#; 3) > M2 for some
e-AP 7. From the definition of .J; JA and Fact 4.5, we have

M)\ < Z2dr(z V)\ Z Z

zER ZET 0/ ENiear(Tiw(2) )

>

n€ U Mer(Tw(s))
zZETR

Now, from the definition of VEA, the non-negativity of the cost
cg‘, and that 7 is e-feasible, we obtain

> V2n) < > M+ dap(y = 1),

ne U Mem[(TW(z)) z€P:
zZETR
< Z )\1 + /\26,
xENeat (Tw)

< 2% (A 4 Xog) +y = M2
The above result implies
M2 < SOV <
zET
which is a contradiction.

(Sufficiency) Now assume J2(7;3) < M2 for some AP #

and define the sets

Az = U Meaf (TW(Z)) N7Pe,

ZET

B = U Meaf (TW(Z)) n 775

zef
Then, by Fact 4.5 and the definition of V’\, we have
=2 VG
z€EA#
Note that A5 C P, and hence
0< ) VA2) < 2%\ + doe) < M.
2E€A;
Thus, if J2 (ﬁ'ﬁ) < M then

NS

zEA5

) + |Ba| M2

)+ [Ba| M2 < M2,

which requires JA(#;8) < M2 then
B: = @. Hence U Meaf (Tw(z)) € Pe, which implies # is

zZET

an -AP. |

APPENDIX C
PROOF OF PROPOSITION 4.8

Proof: (Neccessity) Let n € Ny (T) and assume
Nieat (Tw(n)) NPE # @. Define the sets
Ay, £ Meaf (TW(n)) N Pe,
Bn £ Meaf (TW(n)) N PEC,
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and note that, by assumption, |B,| # 0. From Fact 4.5, we
have that
V2 (n)

g

>, v

n'€A,

+ > VA

dr(n)
2 n’'€B,

and since the function V;‘ is non-negative,

VA0 = 50 [ > VA + |Bn|M2] ,
n'€A,
A
= 2dr(n) |B |M
Now, as |B,,| # 0,
1 1
A by
‘/6 (n) 2 2dr(n | n‘ e = 2dr(n) ME’

and, hence, from the definition of Mé\ we obtain

VA (n) > M2 > 24D (N 4 Npe).

1
= 9dr(n) (1)

Since 2¢¢=7(") > 1, relation (11) implies V2 (n) > Ay +ae.

(Sufficiency) Now, let n € Ny (Tyy) and assume V> (n) >
A1 + Ase. Then, from the definition of VE’\, we have

1 24€(\1 + Aag) + v
VX (n) = T Z VXA + Sdr(n) B,
n’'€A,
and,
1 A 1
0 S W Z V ( ) S 2d (n )()\1+5A2)‘An| < >\1+5/\2,
n'€A,

which follows since \A | < 29(™), Consequently,
A
- 2d7 (n) Z V
n'€An,
Therefore, if V2 (n) > A\; + Aze then

1 N/ 2d12(/\1 + )\26) + v
9dr(n) Z ‘/5 (n ) + 9dr(n)
n’'€A,

which requires |B,,| > 0. This means Near (Tov(n)) NPE # 2.
||

< A1+ eo.

‘Bn| > A1 + Age,



