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Abstract

JavaScript (JS) is one of the most popular programming languages due to its
flexibility and versatility, but maintaining JS code is tedious and error-prone. In
our research, we conducted an empirical study to characterize the relationship
between co-changed software entities (e.g., functions and variables), and built a
machine learning (ML)-based approach to recommend additional entity to edit
given developers’ code changes. Specifically, we first crawled 14,747 commits in
10 open-source projects; for each commit, we created at least one change de-
pendency graph (CDG) to model the referencer-referencee relationship between
co-changed entities. Next, we extracted the common subgraphs between CDGs
to locate recurring co-change patterns between entities. Finally, based on those
patterns, we extracted code features from co-changed entities and trained an
ML model that recommends entities-to-change given a program commit.
According to our empirical investigation, (1) three recurring patterns com-
monly exist in all projects; (2) 80%—90% of co-changed function pairs either
invoke the same function(s), access the same variable(s), or contain similar
statement(s); (3) our ML-based approach CoRec recommended entity changes
with high accuracy (73%-78%). CoRec complements prior work because it sug-
gests changes based on program syntax, textual similarity, as well as software

history; it achieved higher accuracy than two existing tools in our evaluation.
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1. Introduction

JavaScript (JS) has become one of the most popular programming languages
because it is lightweight, flexible, and powerful [I]. Developers use JS to build
web pages and games. JS has many new traits (1) it is dynamic and weakly
typed; (2) it has first-class functions; (3) it is a class-free, object-oriented pro-
gramming language that uses prototypal inheritance instead of classical inheri-
tance; and (4) objects in JS inherit properties from other objects directly and
all these inherited properties can be changed at runtime. All above-mentioned
traits make JS unique and powerful; they also make JS programs very challeng-
ing to maintain and reason about [2] [3] [].

To reduce the cost of maintaining software, researchers proposed approaches
that recommend code co-changes [5, [6l [7, [8]. For instance, Zimmermann et
al. [5] and Rolfsnes et al. [6] mined co-change patterns of program entities from
software version history and suggested co-changes accordingly. Wang et al. [7, 8]
studied the co-change patterns of Java program entities and built CMSuggester
to suggest changes accordingly for any given program commit. However, existing
tools do not characterize any co-change patterns between JS software entities,
neither do they recommend changes by considering the unique language features
of JS or the mined co-changed patterns from JS programs (see Section for
detailed discussions).

To overcome the limitations of the prior approaches, in this paper, we first
conducted a study on 14,747 program commits from 10 open-source JS projects
to investigate (1) what software entities are usually edited together, and (2) how
those simultaneously edited entities are related. Based on this characterization
study for co-change patterns, we further developed a learning-based approach
CoRec to recommend changes given a program commit.

Specifically in our study, for any program commit, we constructed and com-

pared Abstract Syntax Trees (ASTs) for each edited JS file to identify all edited
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entities (e.g., Deleted Classes (DC), Changed Functions (CF), and Added Vari-
ables (AV)). Next, we created change dependency graphs (CDGs) for each com-
mit by treating edited entities as nodes and linking entities that have referencer-
referencee relations. Afterwards, we extracted common subgraphs between
CDGs and regarded those common subgraphs as recurring change patterns.

In our study, we explored the following research question:
RQ1: What are the frequent co-change patterns in JS programs?

We automatically analyzed thousands of program commits from ten JS projects
and revealed the recurring co-change patterns in each project. By manually
inspecting 20 commits sampled for each of the 3 most popular patterns, we
observed that 80%-90% of co-changed function pairs either invoke the same
function(s), access the same variable(s), contain similar statement(s), or get
frequently co-changed in version history.

Besides the above findings, our study reveals three most popular change pat-
terns: (i) one or more caller functions are changed together with one changed
callee function that they commonly invoke; (ii) one or more functions are
changed together to commonly invoke an added function; (iii) one or more
functions are changed together to commonly access an added variable. The
co-changed callers in each pattern may share commonality in terms of variable
accesses, function invocations, code similarity, or evolution history.

Based on the above-mentioned observations, we built a machine learning
(ML)-based approach—CoRec—to recommend functions for co-change. Given
the commits that contain matches for any of the above-mentioned co-change
patterns, CoRec extracts 10 program features to characterize the co-changed
function pairs, and uses those features to train an ML model. Afterwards, given
a new program commit, the model predicts whether any unchanged function
should be changed as well and recommends changes whenever possible. With

CoRec, we investigated the following research question:

RQ2: How does CoRec perform when suggesting co-changes based

on the observed three most popular patterns?
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We applied CoRec and two existing techniques (i.e., ROSE [5] and Transitive
Associate Rules (TAR) [9]) to the same evaluation datasets, and observed CoRec
to outperform both techniques by correctly suggesting many more changes.
CoRec’s effectiveness varies significantly with the ML algorithm it adopts. CoRec
works better when it trains three separate ML models corresponding to the three
patterns than training a unified ML model for all patterns. Our results show
that CoRec can recommend co-change functions with 73-78% accuracy; it sig-
nificantly outperforms two baseline techniques that suggest co-changes purely
based on software evolution.

We envision CoRec to be used in the integrated development environments
(IDE) for JS, code review systems, and version control systems. In this way,
after developers make code changes or before they commit edits to software
repositories, CoRec can help detect and fix incorrectly applied multi-entity ed-
its. In the sections below, we will first describe a motivating example (Sec-
tion , and then introduce the concepts used in our research (Section .
Next, we will present the empirical study to characterize co-changes in JS
programs (Section . Afterwards, we will explain our change recommenda-
tion approach CoRec (Section [5)) and expound on the evaluation results (Sec-
tion @ Our program and data are open sourced at: https://github.com/
NiSE-Virginia-Tech/wz649588-CoRec_jsAnalyzer.

2. A Motivating Example

The prior work [10] 11, 12| [13] shows that developers may commit errors
of omission (i.e., forgetting to apply edits completely) when they have to edit
multiple program locations simultaneously in one maintenance task (i.e., bug
fixing, code improvement, or feature addition). For instance, Fry et al. [10]
reported that developers are over five times more precise at locating errors
of commission than errors of omission. Yin et al. [I2] and Park et al. [13]
separately showed that developers introduced new bugs when applying patches

to fix existing bugs. In particular, Park et al. inspected the supplementary bug
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fixes following the initial bug-fixing trials, and summarized nine major reasons
to explain why the initial fixes were incorrect. Two of the nine reasons were
about the incomplete program edits applied by developers.

To help developers apply JS edits completely and avoid errors of omission, we
designed and implemented a novel change recommendation approach—CoRec.
This section overviews our approach with a running example, which is extracted
from a program commit to Node.js—an open-source server-side JS runtime envi-
ronment [14]. Figure[l|shows a simplified version of the exemplar program com-
mit [I5]. In this revision, developers added a function maybeCallback(...) to check
whether the pass-in parameter cb is a function, and modified seven functions in
distinct ways to invoke the added function(e.g., changing fs.write(...) on line
10 and line 14). The seven functions include: fs.rmdir(...), fs.appendFile(...),
fs.truncate(...), fs.write(...), fs.readFile(...), fs.writeFile(...), and fs.uriteAll

) [15]. However, developers forgot to change an eighth function—ts.read(...)—

to also invoke the added function (see line 19 in Figure |1)).

1. + function maybeCallback(cb) { 17. fs.read = function(fd, buffer, offset,

2.+ return typeof cb === 'function' ? cb : length, position, callback) {
rethrow(); 18.- callback =

3.+ } makeCallback(arguments[arguments.length - 1]);

19. -

4. fs.write = function(fd, buffer, offset, // an edit that developers forgot to apply:
length, position, callback) { //+ callback = maybeCallback(callback);

5. - callback = 20. req.oncomplete = wrapper;
makeCallback(arguments[arguments.length - 1]); 21. binding.read(fd, buffer, offset, ..);

6. 22. }

7. reqg.oncomplete = wrapper;

8. if (buffer instanceof Buffer) {

9. -

10.+ callback = maybeCallback(callback);

11. return binding.writeBuffer(..);

12. }

13. -

14.+ callback = maybeCallback(position);

15. return binding.writeBuffer(fd, buffer,
offset, ..);

16. }

Figure 1: A program commit should add one function and change eight functions to invoke
the newly added one. However, developers forgot to change one of the eight functions—

fs.read(...) [15].

CoRec reveals the missing change with the following steps. CoRec first trains
an ML model with the program co-changes extracted from Node.js software

version history. Then given the exemplar commit, based on the added function
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maybeCallback(...) and each changed function (e.g., fs.write(...)), CoRec ex-
tracts any commonality between the changed function and any unchanged one.
For each function pair, CoRec applies its ML model to the extracted commonal-
ity features and predicts whether the function pair should be changed together.

Because fs.write(...) and fs.read(...)
e commonly access one variable binding,

e commonly invoke two functions: makeCallback(...) and wrapper(...),

declare the same parameters in sequence,

have token-level similarity as 41%, and

have statement-level similarity as 42%,

the pre-trained ML model inside CoRec considers the two functions to share suf-
ficient commonality and thus recommends developers to also change fs.read(...)
to invoke maybeCallback(...). In this way, CoRec can suggest entities for change,

which edits developers may otherwise miss.

3. Terms and Definitions

This section first introduces concepts relevant to JS programming, and then
describes the terminology used in our research.

ES6 and ES5. ECMA Script is the standardized name for JavaScript [16].
ES6 (or ECMAScript2015) is a major enhancement to ES5, and adds many
features intended to make large-scale software development easier. ES5 is fully
supported in all modern browsers, and major web browsers support some fea-
tures of ES6. Our research is applicable to both ES5 and ES6 programs.

Software Entity. We use software entity to refer to any defined JS class,
function, variable, or any independent statement block that is not con-
tained by the definition of classes, functions, or variables. When developers
write JS code, they can define each type of entities in multiple alternative ways.

For instance, a class can be defined with a class expression (see Figure[2| (a)) or
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const Rectangle = class { class Rectangle{

constructor (height, width) { constructor (height, width) {
this.height = height; this.area = height * width;
this.width = width; }

} }

area() {
return this.height * this.width; console.log(new Rectangle(5, 8).area);

}
}i

console.log(new Rectangle(5, 8).area());

(a) (b)

Figure 2: A JS class can be defined with an expression (see (a)) or a declaration (see (b)).

class declaration (see Figure [2] (b)). Similarly, a function can be defined with
a function expression or function declaration. A variable can be defined with a
variable declaration statement; the statement can either use keyword const to
declare a constant variable, or use 1et or var to declare a non-constant variable.

Edited Entity. When maintaining JS software, developers may add, delete,
or change one or more entities. Therefore, as with prior work [I7], we defined
a set of edited entities to describe the possible entity-level edits, including
Added Class (AC), Deleted Class (DC), Added Function (AF), Deleted Func-
tion (DF), Changed Function (CF), Added Variable (AV), Deleted Variable
(DV), Changed Variable (CV), Added Statement Block (AB), Deleted State-
ment Block (DB), and Changed Statement Block (CB). For example, if a new
class is declared to have a constructor and some other methods, we consider the
revision to have one AC, multiple AFs, and one or more AV (depending on how
many fields are defined in the constructor).

Multi-Entity Edit and CDG. As with prior work [I8], we use multi-
entity edit to refer to any commit that has two or more edited entities. We
use change dependency graph (CDG) to visualize the the relationship be-
tween co-changed entities in a commit. Specifically, each CDG has at least two
nodes and one edge. Each node represents an edited entity, and each edge rep-
resents the referencer-referencee relationship between entities (e.g., a function
calls another function). Namely, if an edited entity F; refers to another edited

entity Fo, we say F; depends on F,. A related CDG is constructed to connect
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Commit ¢

« AC, AV, AF, AB
(f1_old, f1_new)
(f2_old, f2_new) 1.AsT | (45t 4t (3 program - DC, DV, DF, DB
...... Parsing Differencing
(fn_old, fn_new) * CV,CF,CB

Extraction

Figure 3: The procedure to extract changed entities given a commit.

the two entities with a directed edge pointing to Fs—the entity being depended
upon (i.e. By — Es). For each program commit, we may create zero, one, or

multiple CDGs.

4. Characterization Study

This section introduces our study methodology (Section and explains
the empirical findings (Section [4.2). The purpose of this characterization study
is to identify recurring change pattern (RCP) of JS programs. An RCP is a
CDG subgraph that is commonly shared by the CDGs from at least two distinct
commits. RCPs define different types of edits, and serve as the templates of co-
change rules. Our approach in Section [5| mines concrete co-change rules for the

most common RCPs.

4.1. Study Methodology

We implemented a tool to automate the analysis. Given a set of program
commits in JS repositories, our tool first characterizes each commit by extract-
ing the edited entities (Section and constructing CDG(s) (Section [4.1.2).
Next, it compares CDGs across commits to identify RCPs (Section .

4.1.1. Extraction of Edited Entities
As shown in Figure [3] we took three steps to extract any edited entities for

each commit.

Step 1: AST Parsing. Given a program commit ¢, this step first locates the
old and new versions of each edited JS file. For every edited file (f,, f), this
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Meteor: commit e9a88b0 3. Program AF: )
(1) tools/buildmessages.js (old) 1. AST | tools/buildmessages-ast.json (old) Differencing | ' SPACes(--
tools/buildmessages.js(new) ‘ Parsing | tools/buildmessages-ast.json (new) CF: capture(...)
2. Entity

Extraction

Entity Set Old (ES,)

V: debugBuild, currentlob, ...| V: debugBuild, currentlob, ...
F: Job.addMessage(...), F: Job.addMessage(...),

(7) tools/commands-packages.js(old)
tools/commands-packages.js(new)

capture(...), ... capture(...), spaces(...), ...
C: Job, Message, ... C: Job, Message, ...
B: N/A B: N/A

Figure 4: Extracting edited entities from a program commit of Meteor [21].

step adopts Esprima [19] and typed-ast-util [20] to generate Abstract Syntax
Trees (ASTs): (ast,,ast,). Esprima is a high performance, standard-compliant
JavaScript parser that supports the syntax of both ES5 and ES6; however, it
cannot infer the static type binding information of any referenced class, function,
or variable. Meanwhile, given JS files and the project’s package. json file, typed-
ast-util produces ASTs annotated with structured representations of TypeScript
types, which information can facilitate us to precisely identify the referencer-
referencee relationship between edited entities. We decided to use both tools for
two reasons. First, when a project has package.json file, we rely on Esprima to
identify the code range and token information for each parsed AST node, and
rely on typed-ast-util to attach relevant type information to those nodes. Sec-
ond, if a project has no package.json file, Esprima is still used to generate ASTs
but we defined a heuristic approach (to be discussed later in Section [4.1.2)) to
identify the referencer-referencee relationship between entities with best efforts.

To facilitate our discussion, we introduce a working example from a pro-
gram revision [21I] of Meteor [22]. As shown in Figure @, the program revi-
sion changes seven JS files. In this step, CoRec creates a pair of ASTs for
each edited file and stores the ASTs into JSON files for later processing (e.g.,

tools/buildmessages-ast.json (old) and tools/buildmessages-ast.json (new)).

Step 2: Entity Extraction. From each pair of ASTs (ast,, asty,) (i.e., JSON
files), this step extracts the entity sets (ES,, ESy,). In the example shown in
Figure[d ES, lists all entities from the old JS file, and ES,, corresponds to the



new file. We defined four kinds of entities to extract: variables (V), functions
(F), classes (C), and statement blocks (B). A major technical challenge here
is how to extract entities precisely and consistently. Because JS programming
supports diverse ways of defining entities and the JS syntax is very flexible,
we cannot simply check AST node types of statements to recognize entity def-
initions. For instance, a variable declaration statement can be interpreted as
a variable-typed entity or a statement block, depending on the program con-
text. To eliminate ambiguity and avoid any confusion between differently typed

entities, we classify and extract entities in the following way:

e A code block is treated as a function definition if it satisfies either of the fol-
lowing two requirements. First, the AST node type is “FunctionDeclaration”
(e.g., runBenchmarks() on line 7 in Figure [5)) or “MethodDefinition”. Sec-
ond, (1) the block is either a “VariableDeclaration” statement (e.g., const
getRectArea = function(...){...};) or an“Assignment” expression (see line
11 and line 20 of Figure [5)); and (2) the right-side operand is either
“FunctionExpression”, Or “CallExpression” that outputs another function as
return value of the called function. In particular, if any defined function
has its prototype property explicitly referenced (e.g., Benchmark.prototype
on lines 20 and 24) or is used as a constructor to create any object (e.g.,
line 12), we reclassify the function definition as a class definition, because

the function usage is more like the usage of a class.

e A code block is considered to be a class definition if it meets either of the
following two criteria. First, the block uses keyword ciass. Second, the
block defines a function, while the codebase either references the function’s
prototype (e.g., Benchmark.prototype on lines 20 and 24 in Figure [5)) or uses

the function as a constructor to create any object (see line 12).

e A code block is treated as a variable declaration if (1) it is either a
“VariableDeclaration” statement (e.g., var silent = ... on line 2 in Fig-

ure [5)) or an “Assignment” expression, (2) it does not define a function or

10
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1. var assert = requlre( assert’); — > N/A
2. var silent = +process.env.NODE BENCH SILENT; —— > variable

_ i

7 function runBenchmarks() {
var test = test.shift();

9 . ———> function

10.}

11.exports.creatBenchmark = function(fn, options) {

12. return new Benchmark(fn, options); —— > function

1315

15. this.fn = ——————> variable

16. this.option: options; —————> variable
5 is.config = parseOpts(options); variable

20.Benchmark.prototype.report = function(value) {

21. var heading = this.getHeading(); -—> class

22. .. ———> function

23.};

24 .Benchmark.prototype.getHeading = function() {
25. var conf = this.config;
26. . —— > function

27.}

Figure 5: Code snippets from the file benchmark. common. js of Node.js in revision 00a1d36 [15],

whose related entity types are shown on the right.

class, (3) it does not belong to the definition of any function but may
belong to a constructor (see lines 15-17), and (4) it does not declare a
required module (see line 1). Particularly, when a variable declaration is
an assignment inside a class constructor (e.g., lines 15-17), it is similar to

the field declaration in Java.

e A code block is treated as a statement block if (1) it purely contains
statements, (2) it does not define any class, function, or variable, and (3)
it does not belong to the definition of any class or function. For example,

lines 3-6 in Figure [5] are classified as a statement block.

Step 3: Program Differencing. To identify any edited entity between E.S,
and ES,,, we first matched the definitions of functions, variables, and classes
across entity sets based on their signatures. If any of these entities (e.g., a
function definition) solely exists in ES,, an entity-level deletion (e.g., DF) is
inferred; if an entity (e.g., a variable definition) solely exists in E.S,,, an entity-

level insertion (e.g., AV) is inferred. Next, for each pair of matched entities,

11
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we further exploited a fine-grained AST differencing tool—GumTree [23]—to
identify expression-level and statement-level edits. If any edit is reported, we
inferred an entity-level change (e.g., CF shown in Figure . Additionally, we
matched statement blocks across entity sets based on their string similarities.
Namely, if a statement block b; € ES, has the longest common subsequence
with a block by € ES,, and the string similarity is above 50%, we considered
the two blocks to match. Furthermore, if the similarity between two matched

blocks is not 100%, we inferred a block-level change CB.

4.1.2. CDG Construction
For each program commit, we built CDGs by representing the edited entities
as nodes, and by connecting edited entities with directed edges if they have either

of the following two kinds of relationship:

e Access. If an entity E; accesses another entity Fs (i.e., by reading/writing
a variable, invoking a function, or using a class), we consider E; to be de-

pendent on Fs.

e Containment. If the code region of Ej is fully covered by that of Es, we

consider F; to be dependent on Fs.

The technical challenge here is how to identify the relationship between
edited entities. We relied on ESprima’s outputs to compare code regions between
edited entities in order to reveal the containment relations. Additionally, when
package. json file is available, we leveraged the type binding information inferred
by typed-ast-util to identify the access relationship. For instance, if there is a
function call var() inside an entity F; while bar() is defined by a JS module £2,
then typed-ast-util can resolve the fully qualified name of the callee function as
£2.bar (). Such resolution enables us to effectively link edited entities no matter
whether they are defined in the same module (i.e., JS file) or not.

Since some JS projects have no package.json file, we could not adopt typed-

ast-util to resolve bindings in such scenarios. Therefore, we also built a simpler

12
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but more applicable approach to automatically speculate the type binding in-
formation of accessed entities as much as possible. Specifically, suppose that file
f1 defines F; to access Es. To resolve Fy and link Fy with E5’s definition, this
intuitive approach first scans all entities defined in £1 to see whether there is
any Fs definition locally. If not, this approach further examines all require and
import statements in f£1, and checks whether any required or imported module
defines a corresponding entity with F5’s name; if so, this approach links F; with
the retrieved Fs’s definition.

Compared with typed-ast-util, our approach is less precise because it cannot
infer the return type of any invoked function. For instance, if we have const foo
= bar() where bar() returns a function, our approach simply assumes foo to be a
variable instead of a function. Consequently, our approach is unable to link foo’s
definition with any of its invocations. Based on our experience of applying both
typed-ast-util and the heuristic method to the same codebase (i.e., nine open-
source projects), the differences between these two methods’ results account for
no more than 5% of all edited entities. It means that our heuristic method is
still very precise even though no package. json file is available.

Figures [6] and [7] separately present the code changes and CDG related to
tools/buildmessage.js, an edited file mentioned in Figure [d According to Fig-
ure [6] the program commit modifies file tools/buildmessage.js by defining a
new function spaces(...) and updating an existing function capture(...) to
invoke the new function. It also changes file tools/commands-package.js by up-
dating the function invocation of capture(...) inside a statement block (i.e.,
main.registerCommand(...);). Given the old and new versions of both edited JS
files, our approach can construct the CDG shown in Figure In this CDG,
each directed edge starts from a dependent entity F7, and points to the entity
on which F; depends. Each involved function, variable, or class has its fully
qualified name included in the CDG for clarity. As statement blocks have no
fully qualified names, we created a unique identifier for each block with (1) the
module name (e.g., tools.commands-packages) and (2) index of the block’s first

character in that module (e.g., 69933).

13
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1. + var spaces = function (n) { 1. main.registerCommand({..}, function

2.+ return _.times(n, function() { return ' ' (options) {
}).join(""); 2.
3.+ }; 3. - var messages =
buildmessage.capture(function () {
4. var capture = function (option, f) { 4.+ var messages = buildmessage.capture({
5. title: 'Combining constraints' }, function(){
6. - console.log("START CAPTURE", nestingLevel, 5. allPackages =
options.title, "took " + (end - start)); project.getCurrentCombinedConstraints();

7.+ console.log(spaces (nestingLevel * 2), 6. });
"START CAPTURE", nestingLevel, options.title, 7.
"took " + (end - start));

9.}

tools/buildmessage.js tools/commands-packages.js

Figure 6: A simplified program commit that adds a function spaces(...), changes a function

capture(...), and changes a statement block [21]

AF
8 Function CF Function
tools.commands-packages. [nvocation |tools.buildmessage.[ jnyocation | tools.buildmessage.
statement_block_69933 capture(options, f) spaces(n)

Figure 7: The CDG corresponding to the program commit shown in Figure|§|

4.1.3. Extraction of Recurring Change Patterns (RCP)

As with prior work [I8], we extracted RCPs by comparing CDGs across
program commits. Intuitively, given a CDG g; from commit ¢; and the CDG
g2 from commit ¢y, we matched nodes based on their edit-entity labels (e.g.,
AF) while ignoring the concrete code details (e.g., tools.buildmessage.spaces(n)
in Figure . We then established edge matches based on those node matches.
Namely, two edges are matched only if they have matching starting nodes and
matching ending nodes. Next, based on all established matches, we identified
the largest common subgraph between g; and g using the off-the-shelf subgraph
isomorphism algorithm VF2 [24]. Such largest common subgraphs are consid-

ered as RCPs because they commonly exist in CDGs of different commits.

4.2. Empirical Findings

To characterize JS code changes, we applied our study approach to a sub-
set of available commits in 10 open-source projects, as shown in Table We
chose these projects because (1) they are popularly used; (2) they are from

different application domains; and (3) they contain a large number of available

14



Table 1: Subject projects

Project

Description

KLOC

# of
Com-

mits

# of
Edited
Entities

Node.js

Node.js [I4] is a cross-platform JS
runtime environment. It executes JS

code outside of a browser.

1,755

2,701

11,287

Meteor

Meteor [22] is an ultra-simple
environment for building modern web

applications.

255

3,011

10,274

Ghost

Ghost is the most popular
open-source and headless Node.js content
management system (CMS) for

professional publishing.

115

1,263

5,142

Habitica

Habitica is a habit building program
that treats people’s life like a Role
Playing Game.

129

1,858

6,116

PDF.js

PDF.js is a PDF viewer that is built
with HTML5.

104

1,754

4,255

React

React is a JS library for building

user interfaces.

286

1,050

4,415

Serverless

Serverless [29] is a framework used to
build applications comprised of
microservices that run in response to

events.

63

1,110

3,846

‘Webpack

Webpack [30] is a module bundler, which
mainly bundles JS files for usage in a

browser. assets.

37

1,099

3,699

Storybook

Storybook [31] is a development

environment for Ul components.

43

528

2,277

Electron

Electron [32] is a framework that
supports developers to write
cross-platform desktop applications using

JS, HTML, and CSS.

35

673

1,808
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commits. In particular, we found these 10 projects by (1) ranking the JS repos-
itories available on GitHub based on star counts, (2) picking the projects with
lots of commits (>10,000 commits), and (3) focusing on the projects compliant
with ES5 or ES6—the two mainstream syntax definitions followed by develop-
ers when they write JS code. For simplicity, to sample the commits that may
fulfill independent maintenance tasks, we searched each software repository for
commits whose messages contain any of the following keywords: “bug”, “fix”,
“error”, “adjust”, and “failure”.

Table [I] shows the statistics related to the sampled commits. In particular,
column # of KLOC presents the code size of each project (i.e., the number
of kilo lines of code (KLOC)). Column # of Comumits reports the number
of commits identified via our keyword-based search. Column # of Edited
Entities reports the number of edited entities extracted from those sampled
commits. According to this table, the code size of projects varies significantly
from 35 KLOC to 1755 KLOC. Among the 10 projects, 528-3,011 commits
were sampled, and 1,898-11,287 edited entities were included for each project.
Within these projects, only Node.js has no package. json file, so we adopted our
heuristic approach mentioned in Section to link edited entities. For the
remaining nine projects, as they all have package. json files, we leveraged the type

binding information inferred by typed-util-ast to connect edited entities.

4.2.1. Commit Distributions Based on The Number of Edited Entities

We first clustered commits based on the number of edited entities they con-
tain. Because the commit distributions of different projects are very similar to
each other, we present the distributions for four projects in Figure[§] Among the
10 projects, 41%-52% of commits are multi-entity edits. Specifically, 15%-19%
of commits involve two-entity edits, and 7%-10% of commits are three-entity
edits. The number of commits decreases as the number of edited entities in-
creases. The maximum number of edited entities appears in Node.js, where
a single commit modifies 335 entities. We manually checked the commit on

GitHub [33], and found that four JS files were added and three other JS files
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Figure 8: Commit distributions based on the number of edited entities each of them contains

were changed to implement HTTP /2.

‘We noticed that about half of sampled program revisions involve multi-entity
edits. This observation implies the importance of co-change recommendation
tools. When developers have to frequently edit multiple entities simultaneously
to achieve a single maintenance goal, it is crucially important to provide au-
tomatic tool support that can check for the completeness of code changes and
suggest any missing change when possible. In order to build such tools, we de-

cided to further explore relations between co-changed entities (see Section |4.2.2)).

Finding 1: Among the 10 studied projects, 41-52% of studied commits
are multi-entity edits. It indicates the necessity of our research to char-

acterize multi-entity edits and to recommend changes accordingly.

4.2.2. Commit Distributions Based on The Number of CDGs
We further clustered multi-entity edits based on the number of CDGs con-

structed for each commit. As shown in Table 2] our approach created CDGs for
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Table 2: Multi-entity edits and created CDGs

# of Multi-Entity # of Multi-Entity % of Multi-Entity

Project Edite Edits with CDG(s) Edits with CDG(s)
Extracted Extracted

Node.js 1,401 785 56%
Meteor 1,445 670 46%
Ghost 604 356 59%
Habitica 962 345 36%
PDF.js 711 372 52%
React 538 320 60%
Serverless 480 171 36%
Webpack 483 253 52%
Storybook 243 119 49%
Electron 277 123 44%

36-60% of the multi-entity edits in distinct projects. On average, 49% of multi-
entity edits contain at least one CDG. Due to the complexity and flexibility of
the JS programming language, it is very challenging to statically infer all possi-
ble referencer-referencee relationship between JS entities. Therefore, the actual
percentage of edits that contain related co-changed entities can be even higher
than our measurement. Figure[J] presents the distributions of multi-entity edits
based on the number of CDGs extracted. Although this figure only presents the
commit distributions for four projects: Node.js, Meteor, Ghost, and Habitica,
we observed similar distributions in other projects as well. As shown in this
figure, the number of commits decreases significantly as the number of CDGs
increases. Among all 10 projects, 73%-81% of commits contain single CDGs,
9%-18% of commits have two CDGs extracted, and 3%—7% of commits have
three CDGs each. The commit with the largest number of CDGs constructed
(i.e., 16) is the one with the maximum number of edited entities in Node.js as
mentioned above in Section [£.2.11

The high percentage of multi-entity edits with CDGs extracted (i.e., 49%)

implies that JS programmers usually change syntactically related entities simul-
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Figure 9: The distributions of multi-entity edits based on the number of CDGs

taneously in program revisions. Such syntactic relevance between co-changed
entities enlightened us to build tools that recommend co-changes by observing
the syntactic dependences between changed and unchanged program entities.
To concretize our approach design for co-change recommendations, we further

explored the recurring syntactic relevance patterns between co-changed entities,

i.e., RCPs (see Section [4.2.3)).

Finding 2: For 36-60% of multi-entity edits in the studied projects, our
approach created at least one CDG for each commit. It means that many

simultaneously edited entities are syntactically relevant to each other.

4.2.3. Identified RCPs

By comparing CDGs of distinct commits within the same project repository,
we identified RCPs in all projects. As listed in Table [3] 32-205 RCPs are ex-
tracted from individual projects. In each project, there are 113-782 commits
that contain matches for RCPs. In particular, each project has 228-2,385 sub-
graphs matching RCPs. By comparing this table with Table [2 we found that
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Table 3: Recurring change patterns (RCPs) and their matches

Projects # of # of Commits with # of Subgraphs Matching
RCPs RCP Matches the RCPs
Node.js 205 782 2,385
Meteor 182 658 1,719
Ghost 123 351 1,223
Habitica 102 339 706
PDF.js 76 367 640
React 101 316 899
Serverless 52 164 372
‘Webpack 73 243 583
Storybook 38 113 337
Electron 32 117 228
Pattern Index P1 P2 P3 P4 P5
*CF | *CF | *CF | *AF|  [*CB]
Pattern Shape f f \J \J f
CF| |[AF] [AV] |AV| [CF|
f Function Invocation V__. Variable Read/Write
*AF: One or more added functions AV: One added variable

*CF: One or more changed functions ~ *CB: One or more changed statement blocks

Figure 10: The 5 most popular recurring change patterns among the 10 projects

95%-100% of the commits with CDGs extracted have matches for RCPs. It
means that if one or more CDGs can be built for a commit, the commit is very
likely to share common subgraphs with some other commits. In other words,
simultaneously edited entities are usually correlated with each other in a fixed
number of ways. If we can characterize the frequently occurring relationship
between co-changed entities, we may be able to leverage such characterization
to predict co-changes or reveal missing changes.

By accumulating the subgraph matches for RCPs across projects, we iden-

tified five most popular RCPs, as shown in Figure Here, P1 means that
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Table 4: The numbers of RCPs revealed by different threshold settings

Projects >2 commits >3 commits >4 commits >5 commits
Node.js 205 174 155 118
Meteor 182 145 120 104
Ghost 123 110 91 78
Habitica 102 69 53 43
PDF'.js 76 61 56 40
React 101 78 65 53
Serverless 52 35 31 24
‘Webpack 73 58 43 38
Storybook 38 21 19 17
Electron 32 28 21 16

when a callee function is changed, one or more of its caller functions are also
changed. P2 means that when a new function is added, one or more existing
functions are changed to invoke that new function. P3 shows that when a new
variable is added, one or more existing functions are changed to read/write the
new variable. P4 presents that when a new variable is added, one or more new
functions are added to read/write the new variable. P5 implies that when a
function is changed, one or more existing statement blocks invoking the function
are also changed. Interestingly, the top three patterns commonly exist in all 10
projects, while the other two patterns do not exist in some of the projects. The
top three patterns all involve simultaneously changed functions.

The threshold used to identify RCPs. By default, we detected an RCP
if the CDGs of at least two commits share any subgraph. Alternatively, we
can also set this threshold for the number of commits sharing RCP(s) to any
number beyond 2 (e.g., 3, 4, and 5). To study how the threshold setting affects
our RCP observations, we conducted an experiment to set the value to 3, 4,
and 5 separately. Table [4] presents the experiment results. Unsurprisingly, as
the threshold increases, the number of revealed RCPs decreases because fewer

RCPs can satisfy the requirement on commit counts. Specifically for Meteor,
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the threshold setting 2 leads to 182 RCPs found, while the threshold setting 5
causes 104 RCPs detected. Although the total number of RCPs decreases as the
threshold increases, we found the most popular five RCPs to remain the same.

To reveal as many RCPs as possible, by default, we set the threshold to 2.

Finding 3: Among the commits with CDGs extracted, 95%-100% of
commits have matches for mined RCPs. In particular, the most popular

three RCPs all involve simultaneously changed functions.

4.2.4. Case Studies for The Three Most Popular RCPs

We conducted two sets of case studies to understand (1) the semantic mean-
ings of P1-P3 and (2) any co-change indicators within code for those patterns.
In each set of case studies, we randomly sampled 20 commits matching each of

these RCPs and manually analyzed the code changes in all 60 commits.

The Semantic Meanings of P1-P3. In the 20 commits sampled for each
pattern, we summarized the semantic relevance of entity-level changes as below.
Observations for P1 (*CFQCF). We found the caller and callee func-
tions changed together in three typical scenarios. First, in about 45% of the in-
spected commits, both caller and callee functions experienced consistent changes
to invoke the same function(s), access the same variable(s), or execute the same
statement(s). Second, in about 40% of the commits, developers applied adap-
tive changes to callers when callees were modified. The adaptive changes involve
modifying caller implementations when the signatures of callee functions were
updated, or moving code from callees to callers. Third, in 15% of cases, callers
and callees experienced seemingly irrelevant changes.

Observations for P2 (*CFAAF). Such changes were applied for two
major reasons. First, in 65% of the studied commits, the added function im-
plemented some new logic, which was needed by the changed caller function.
Second, in the other 35% of cases, changes were applied for refactoring purposes.
Namely, the added function was extracted from one or more existing functions

and those functions were simplified to just invoke the added function.
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Observations for P3 (*CF-% AV). Developers applied such changes in two
typical scenarios. First, in 60% of cases, developers added a new variable for
feature addition, which variable was needed by each changed function (i.e., cross-
cutting concern [34]). Second, in 40% of the cases, developers added variables
for refactoring purposes. For instance, some developers added a variable to
replace a whole function, so all caller functions of the replaced function were
consistently updated to instead access the new variable. Additionally, some
other developers added a variable to replace some expression(s), constant(s), or
variable(s). Consequently, the functions related to the replaced entities were

consistently updated for the new variable.

The Code Indicators for Co-Changes in P1-P3. To identify potential
ways of recommending changes based on the mined RCPs, we randomly picked
20 commits matching each pattern among P1-P3; we ensured that each sampled
commit has two or more co-changed functions (e.g., *CF) referencing another
edited entity. We then inspected the co-changed functions in each commit, to
decide whether they share any commonality that may indicate their simultane-
ous changes. As shown in Table[5] the three case studies I-III correspond to the
three patterns P1-P3 in sequence. In our manual analysis, we mainly focused

on four types of commonality:

e FI: The co-changed functions commonly invoke one or more peer functions
of the depended entity E (i.e., CF in P1, AF in P2, and AV in P3). Here,

peer function is any function that is defined in the same file as E.

e VA: The co-changed functions commonly access one or more peer variables
of the depended entity E. Here, peer variable is any variable that is
defined in the same file as F.

e ST: The co-changed functions commonly share at least 50% of their to-
ken sequences. We calculated the percentage with the longest common

subsequence algorithm between two token strings.

23



475

480

485

e SS: The co-changed functions commonly share at least 50% of their state-
ments. We computed the percentage by recognizing identical statements
between two given functions £1(...) and f£2(...). Assume that the two

functions separately contain m; and ny statements, and the number of

common statements is n3. Then the percentage is calculated as

TL3><2

+ ng

x 100%

(1)

Table 5: Commonality observed between the co-changed functions

Commonality No

Case Study
FI VA ST SS Commonality
I (for P1: *CF-L:CF) 8 5 7 4 4
11 (for P2: *CFLsAF) 12 7 8 6 2
III (for P3: *CF-AV) 6 13 6 5 3

We will define more commonalities between co-changed functions in Sec-
tion[5.2land Table[f] We studied the above-mentioned four kinds of commonality
for two reasons. First, ST and SS capture the typical textual/syntactic similar-
ity between functions; Second, FI and VA reflect the typical semantic similarity
between functions (i.e., invoking the same functions or accessing the same vari-
ables). We were inspired to check these four types of commonality by prior
research on recommendation systems [35] [36, B7] and code clones [38] 39, [40].
Each of these inspiring papers is relevant to identifying similarity between pro-
gram entities. For instance, CCFinder [38] explores and adopts three types of
commonality: similar token sequences, common variable usage, and common
function calls.

According to Table |5, 80%-90% of co-changed functions share certain com-
monality with each other. There are only 2—4 commits in each study where the
co-changed functions share nothing in common. Particularly, in the first case
study, the FI commonality exists in eight commits, VA exists in five commits,
ST occurs in seven commits, and SS occurs in four commits. The summation of
these commonality occurrences is larger than 20, because the co-changed func-

tions in some commits share more than one type of commonality. Additionally,
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the occurrence rates of the four types of commonality are different between case
studies. For instance, FI has 8 occurrences in the first case study; it occurs in
12 commits of the second study and occurs in only 6 commits of the third study.
As another example, most commits (i.e., 13) in the third study share the VA
commonality, while there are only 5 commits in the first study having such com-
monality. The observed differences between our case studies imply that when
developers apply multi-entity edits matching different RCPs, the commonality

shared between co-changed functions also varies.

' D

Finding 4: When inspecting the relationship between co-changed func-

tions in three case studies, we found that these functions usually share
certain commonality. This indicates great opportunities for developing

co-change recommendation approaches.

5. Our Change Recommendation Approach: CoRec

In our characterization study (see Section , we identified three most pop-
ular RCPs: *CFQCF, *CFQAF, and *CF%AV. In all these patterns, there
is at least one or more changed functions (i.e., *CF) that references another
edited entity E (i.e., CF, AF, or AV). In the scenarios when two or more
co-changed functions commonly depend on FE, we also observed certain com-
monality between those functions. This section introduces our recommendation
system—CoRec—which is developed based on the above-mentioned insights.
As shown in Figure [[I} CoRec has three phases. In the following subsections
(Sections , we explain each phase in detail.

5.1. Phase I: Commit Crawling

Given the repository of a project P, Phase I crawls commits to locate any
data usable for machine learning. Specifically, for each commit in the repository,

this phase reuses part of our study approach (see Sections and [4.1.2)) to

extract edited entities and to create CDGs. If a commit ¢ has any subgraph
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{ Unchanged functions
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Figure 11: CoRec consists of three phases: commit crawling, training, and testing

matching P1, P2, or P3, this phase recognizes the entity E,, matching E (i.e.,
an entity matching CF in P1, matching AF in P2, or matching AV in P3) and
any co-changed function matching *CF. We denote these co-changed function(s)
with CF_Set = {cf1,cfa,...}, and denote the unchanged function(s) in edited
JS files from the same commit with UF_Set = {ufi,ufs,...}. If CF_Set has
at least two co-changed functions, CoRec considers the commit to be usable for

model training and passes E,,, CF_Set, and UF _Set to the next phase.

5.2. Phase II: Training

This phase has two major inputs: the software repository of program P,
and the extracted data from each relevant commit (i.e., E,,, CF_Set, and
UF_Set). In this phase, CoRec first creates positive and negative training
samples, and then extracts features for each sample. Next, CoRec trains a ma-
chine learning model by applying Adaboost (with Random Forest as the “weak
learner”) [4I] to the extracted features. Specifically, to create positive samples,
CoRec enumerates all possible function pairs in CF_Set, because each pair of
these functions were co-changed with E,,. We represent the positive samples
with Pos = {(cf1,cf2), (cfa,cf1), (cf1,¢f3),...}. To create negative samples,
CoRec pairs up each changed function cf € C'F_Set with an unchanged function

uf € UF_Set, because each of such function pairs were not co-changed. Thus,
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Table 6: A list of features extracted for function pair (f1, f2)

Id | Feature ‘ ‘ Id ‘ Feature
" Number of E,,-relevant parameter 6 Whether f; and fs have the same
types in f2 return type
Whether f1 and fs are defined in the
2 Whether fs has the E,,-related type 7
same way
3 Number of common peer variables 8 Token similarity
Number of common peer functions 9 Statement similarity
5 Number of common parameter types 10 Co-evolution frequency

we denote the negative samples as Neg = {(cf1,uf1), (uf1,cf1), (cfi,uf2),...}.

By preparing positive and negative samples in this way, given certain pair of

functions, we expect the trained model to predict whether the functions should
s be co-changed or not.

CoRec extracts 10 features for each sample. As illustrated in Figure [I1] two
features reflect code characteristics of the second function in the pair, seven
features capture the code commonality between functions, and one feature fo-
cuses on the co-evolution relationship between functions. Table [f] presents more

s details of each feature. Specifically, the 1% and 2"? features are about the

relationship between fo and E,,. Their values are calculated as below:

e When E,, is CF or AF, the 15! feature records the number of types used in
fo that match any declared parameter type of E,,. Intuitively, the more
type matches, the more likely that fo should be co-changed with E,,. The

545 274 feature checks whether the code in fo uses the return type of E,,.

e When E,, is AV, the 1% feature is set to zero, because there is no param-
eter type involved in variable declaration. The 2"? feature checks whether

the code in f5 uses the data type of the newly added variable.

The 3" and 4'" features were calculated in similar ways. Specifically, de-
ss0 pending on which JS file defines F,,,, CoRec locates peer variables (i.e., variables
defined within the same file as F,,,) and peer functions (i.e., functions defined in

the same file). Next, CoRec identifies the accessed peer variables (or peer func-
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tions) by each function in the pair, and intersects the sets of both functions to
count the commonly accessed peer variables (or peer functions). Additionally,
the 7t" feature checks whether f; and f are defined in the same manner. In

our research, we consider the following five ways to define functions:
(1) via FunctionDeclaration, €.g., function foo(...){...},
(2) via VariableDeclaration, €.g., var foo = function(...){...},
(3) via MethodDefinition, €.g., Class A {foo(...){...}},

(4) via PrototypeFunction to extend the prototype of an object or a function,

e.g., x.prototype.foo = function(...){...}, and

(5) via certain exports-related statements, e.g., exports.foo = function(...){...}

and module.exports = {foo: function(...){...}}.

If f; and f, are defined in the same way, the 7" feature is set to true. Finally, the
10*" feature assesses in the commit history, how many times the pair of functions
were changed together before the current commit. Inspired by prior work [5],
we believe that the more often two functions were co-changed in history, the
more likely that they are co-changed in the current or future commits.
Depending on the type of E,,, CoRec takes in extracted features to actually
train three independent classifiers, with each classifier corresponding to one
pattern among P1-P3. For instance, one classifier corresponds to P1: *CFLCF.
Namely, when E,, is CF and one of its caller functions cf is also changed,
this classifier predicts whether there is any unchanged function uf that invokes
F,, and should be also changed. The other two classifiers separately predict
functions for co-change based on P2 and P3. We consider these three binary-
class classifiers as an integrated machine learning model, because all of them can
take in features from one program commit and related software version history,

in order to recommend co-changed functions when possible.

28



580

585

590

595

600

605

5.3. Phase III: Testing

This phase takes in two inputs—a new program commit ¢, and the re-
lated software version history, and recommends any unchanged function that
should have been changed by that commit. Specifically, given ¢,, CoRec reuses
the steps of Phase I (see Section to locate E,,, CF_Set, and UF _Set.
CoRec then pairs up every changed function c¢f € CF_Set with every un-
changed one uf € UF _Set, obtaining a set of candidate function pairs Candi =
{(cfr,ufr), (uf1,cfr), (cfi,ufe),...}. Next, CoRec extracts features for each
candidate p and sends the features to a pre-trained classifier depending on E,,’s
type. If the classifier predicts the function pair to have co-change relationship,

CoRec recommends developers to also modify the unchanged function in p.

6. Evaluation

In this section, we first introduce our experiment setting (Section and the
metrics used to evaluate CoRec’s effectiveness (Section [6.2). Then we explain
our investigation with different ML algorithms and present CoRec’s sensitivity
to the adopted ML algorithms (Section , through which we finalize the
default ML algorithm applied in CoRec. Next we expound on the effectiveness
comparison between CoRec and two existing tools: ROSE [5] and Transitive
Associate Rules (TAR) [9] (Section [6.4). Finally, we present the comparison
between CoRec and a variant approach that trains one unified classifier instead

of three distinct classifiers to recommend changes (Section [6.5]).

6.1. Ezperiment Setting

We mined repositories of the 10 open-source projects introduced in Section 4]
and found three distinct sets of commits in each project that are potentially us-
able for model training and testing. As shown in Table[7] in total, we found 280
commits matching P1, 232 commits matching P2, and 182 commits matching
P3. Each of these pattern matches has at least two co-changed functions (*CF)

depending on E,,. In our evaluation, for each data set of each project, we could
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Table 7: Numbers of commits that are potentially usable for model training and testing

# of Commits # of Commits # of Commits
Project

Matching P1 Matching P2 Matching P3
Node.js 92 7 65
Meteor 67 59 39
Ghost 21 24 28
Habitica 11 8 5
PDF.js 14 12 14
React 18 12 5
Serverless 26 12 8
‘Webpack 22 24 8
Storybook 2 1 4
Electron 7 3 6
Sum 280 232 182

r Portion 1

Portion 2

Training —
Portion 3
Task t11: E,,, cfy, {cf,, ..., cf,} }
L Portion 4
Commit cl: E,, [ Task t12: E,,, cf,, {cfy, cfs, ..., cf.} }
cfy, cf,, ...cf, :
Testing Portion 5

Task tin: E, cf,, {cf,, ..., cf 1} }

Figure 12: Typical data processing for each fold of the five-fold cross validation

use part of the data to train a classifier and use the remaining data to test
the trained classifier. Because Storybook and Electron have few commits, we
excluded them from our evaluation and simply used the identified commits of
the other eight projects to train and test classifiers.

We decided to use k-fold cross validation to evaluate CoRec’s effectiveness.
Namely, for every data set of each project, we split the mined commits into &
portions roughly evenly; each fold uses (k—1) data portions for training and the
remaining portion for testing. Among the eight projects, because each project

has at least five commits matching each pattern, we set kK = 5 to diversify our
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evaluation scenarios as much as possible. For instance, Habitica has five commits
matching P3. When evaluating CoRec’s capability of predicting co-changes for
Hibitica based on P3, in each of the five folds, we used four commits for training
and one commit for testing. Figure illustrates our five-fold cross validation
procedure. In the procedure, we ensured that each of the five folds adopted a
distinct data portion to construct prediction tasks for testing purposes. For any
testing commit that has n co-changed functions (*CF) depending on E,,, i.e.,
CF_Set ={cfi1,cfa,...,cfn}, we created n prediction tasks in the following way.
In each prediction task, we included one known changed function cf; (i € [1,n])
together with E,, and kept all the other (n — 1) functions unchanged. We
regarded the (n — 1) functions as ground truth (GT') to assess how accurately
CoRec can recommend co-changes given FE,, and cf;.

For instance, one prediction task we created in React includes the followings:
E,, = src/isomorphic/classic/types.ReactPropTypes.createChainableTypeChecker (. . .)

Cf = src/isomorphic/classic/types.ReactPropTypes.createObject0fTypeChecker(...),

and GT Z{src/isomorphic/ classic/types.ReactPropTypes.createShapeTypeChecker(. ..

When CoRec blindly pairing c¢f with any unchanged function, it may extract
feature values as below: featurel = 1, feature2 = true, feature3 = 0, featured =
2, featureb = 0, feature6 = true, feature7 = true, feature8 = 76%, feature9 =
45%, featurel0 = 1}. Table [§ shows the total numbers of prediction tasks we
created for all projects and all patterns among the five-fold cross validation.
Notice that our five-fold cross validation is different from the leave-one-out
(LOO) cross validation. With LOO, given N prediction tasks, we need to use
(N —1) tasks for training and 1 task for testing, and to repeat the experiment N
times. However, in our five-fold cross validation, each commit corresponds to a
different number of tasks (see Table . Suppose that we are given five commits
in total, and each commit corresponds to n1, ns, ..., or ns tasks. When training
a model using the first four commits and testing that model with the fifth one,

we actually use (n1 + n2 + ns + ny) tasks for training and njs tasks for testing.
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Table 8: Total numbers of prediction tasks involved in the five-fold cross validation

Project # of Tasks # of Tasks # of Tasks

Matching P1 Matching P2 Matching P3
Node.js 398 309 223
Meteor 401 229 107
Ghost 76 7 99
Habitica 30 23 18
PDF.js 41 31 35
React 72 37 17
Serverless 81 38 23
‘Webpack 138 90 22
Sum 1,237 834 544

6.2. Metrics

We defined and used four metrics to measure a tool’s capability of recom-
mending co-changed functions: coverage, precision, recall, and F-score. We also
defined the weighted average to measure a tool’s overall effectiveness among all
subject projects for each of the metrics mentioned above.

Coverage (Cov) is the percentage of tasks for which a tool can provide

suggestion.

__ # of tasks with a tool’s suggestion
- Total # of tasks

Coverage varies within [0%, 100%]. If a tool always recommends some change(s)

Cov x 100% (2)
given a task, its coverage is 100%. All our later evaluations for precision, recall,
and F-score are limited to the tasks covered by a tool. For instance, suppose
that given 100 tasks, a tool can recommend changes for 10 tasks. Then the tool’s
coverage is 10/100 = 10%, and the evaluations for other metrics are based on
the 10 instead of 100 tasks.

Precision (Pre) measures among all recommendations by a tool, how many

of them are correct:

7 of correct recommendations

Pre = x 100% (3)

Total # of recommendations by a tool
This metric evaluates how precisely a tool recommends changes. If all sugges-

tions by a tool are contained by the ground truth, the precision is 100%.
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Recall (Rec) measures among all the expected recommendations, how
many of them are actually reported by a tool:

Rec — # of correct recommendations by a tool

x 100 4
Total # of expected recommendations % “)

This metric assesses how effectively a tool retrieves the expected co-changed
functions. Intuitively, if all expected recommendations are reported by a tool,
the recall is 100%.

F-score (F1) measures the accuracy of a tool’s recommendation:

_ 2x Pre x Rec

F1= 1
Pre + Rec x 100% (5)

F-score is the harmonic mean of precision and recall. Its value varies within [0%,
100%)]. The higher F-scores are desirable, as they demonstrate better trade-offs
between the precision and recall rates.

Weighted Average (WA) measures a tool’s overall effectiveness among

all experimented data in terms of coverage, precision, recall, and F-score:

Z?:l Fz * Mg
Z?:1 i

In the formula, ¢ varies from 1 to 8, representing the 8 projects used in our

(6)

Fove'rall =

evaluation (Storybook and Electron were excluded). Here, ¢ = 1 corresponds to
Node.js and 7 = 8 corresponds to Webpack; n; represents the number of tasks
built from the i*" project. I'; represents any measurement value of the i*” project
for coverage, precision, recall, or F-score. By combining such measurement
values of eight projects in a weighted way, we were able to assess a tool’s overall

effectiveness I'pperall-

6.3. Sensitivity to The Adopted ML Algorithm

We designed CoRec to use Adaboost, with Random Forests as the weak
learners to train classifiers. To make this design decision, we tentatively inte-
grated CoRec with five alternative algorithms: J48 [42], Random Forest [43],
Naive Bayes [44], Adaboost (default), and Adaboost (Random Forest).
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Figure 13: Comparison between different ML algorithms on different data sets
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e J48 builds a decision tree as a predictive model to go from observations
about an item (represented in the branches) to conclusions about the

item’s target value (represented in the leaves).

¢ Naive Bayes calculates the probabilities of hypotheses by applying Bayes’

theorem with strong (naive) independence assumptions between features.

¢ Random Forest is an ensemble learning method that trains a model to
make predictions based on a number of different models. Random Forest
trains a set of individual models in a parallel way. Each model is trained
with a random subset of the data. Given a candidate in the testing set,
individual models make their separate predictions and Random Forest uses

the one with the majority vote as its final prediction.

e Adaboost is also an ensemble learning method. However, different from
Random Forest, Adaboost trains a bunch of individual models (i.e., weak
learners) in a sequential way. Each individual model learns from mis-
takes made by the previous model. We tried two variants of Adaboost:
(1) Adaboost (default) with decision trees as the weak learners, and (2)

Adaboost (Random Forest) with Random Forests as the weak learners.

Figure [13]illustrates the effectiveness comparison when CoRec adopts differ-
ent ML algorithms. The three subfigures (Figure [13| (a)—(c)) separately present
the comparison results on the data sets of *CFLCF, *CFi>AF7 and *CF5AV.
We observed similar phenomena in all subfigures. By comparing the first four
basic ML algorithms (J48, Naive Bayes, Random Forest, and Adaboost (de-
fault)), we noticed that Random Forest achieved the best results in all metrics.
Among all datasets, Naive Bayes obtained the lowest recall and accuracy rates.
Although Adaboost obtained the second highest F-score, its coverage is the low-
est probably because it uses decision trees as the default weak learners. Based
on our evaluation with the first four basic algorithms, we were curious how well
Adaboost performs if it integrates Random Forests as weak learners. Thus, we

also experimented with a fifth algorithm: Adaboost (Random Forest).
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As shown in Figure Adaboost (Random Forest) and Random Forest
achieved very similar effectiveness, and both of them considerably outperformed
the other algorithms. But compared with Random Forest, Adaboost (Random
Forest) obtained better precision, better recall, better accuracy, and equal or
slightly lower coverage. Thus, we chose Adaboost (Random Forest) as the de-
fault ML algorithm used in CoRec. Our results imply that although ensemble
learning methods generally outperform other ML algorithms, their effectiveness
also depends on (1) what weak learners are used and (2) how we organize weak
learners. Between Adaboost (Random Forest) and Adaboost (default), the only
difference exists in the used weak learner (Random Forest vs. Decision Tree).
Our evaluation shows that Random Forest helps improve Adaboost’s perfor-
mance when it is used as the weak learner. Additionally, between Random
Forest and Adaboost (default), the only difference is how they combine decision
trees as weak learners. Our evaluation shows that Random Forest outperforms

Adaboost by training weak learners in a parallel instead of sequential way.

Finding 5: CoRec is sensitive to the adopted ML algorithm. CoRec
obtained the lowest prediction accuracy when Naive Bayes was used, but

acquired the highest accuracy when Adaboost (Random Forest) was used.

6.4. Effectiveness Comparison with ROSE and TAR

In our evaluation, we compared CoRec with a popularly used tool ROSE [5]
and a more recent tool Transitive Associate Rules (TAR) [9]. Both of these
tools recommend changes by mining co-change patterns from version history.
We included ROSE into our empirical comparison mainly because it has been
widely cited and can be considered as the most influential existing work to
recommend co-changes. We chose to also experiment with TAR because it is
the state-of-the-art tool that recommends co-changes based on software history.

Specifically, ROSE mines the association rules between co-changed entities

36



735

740

745

750

755

from software version history. An exemplar mined rule is shown below:

{(:Qdmodule.c, func, GrafObj_getattr())} = @)

{ (gdsupport.py, func, outputGetattr Hook()). }

This rule means that whenever the function Grafobj_getattr () in a file _Qdmodule.c
is changed, the function outputGetattrHook() in another file qdsupport.py should
also be changed. Based on such rules, given a program commit, ROSE ten-
tatively matches all edited entities with the antecedents of all mined rules and
recommends co-changes if any tentative match succeeds. Similar to ROSE, TAR
also mines association rules from version history. However, in addition to the
mined rules (e.g., F1 = E2 and E2 = FE3), TAR also leverages transitive
inference to derive more rules (e.g., E1 = FE3); it computes the confidence
value of each derived rule based on the confidence values of original rules (e.g.,
conf(El = E3) = conf(E1l = E2) x conf(E2 = E3)).

In our comparative experiment, we applied ROSE and TAR to the con-
structed prediction tasks and version history of each subject project. We con-
figured ROSE with support count=1 and confidence = 0.1, because the ROSE
paper [5] mentioned this setting multiple times and it achieved the best results
by balancing recall and precision. For consistency, we also configured TAR with
support count=1 and confidence=0.1.

As shown in Table [9] CoRec outperformed ROSE and TAR in terms of
all measurements. Take Webpack as an example. Among the 138 *CFLCF
prediction tasks in this project, CoRec provided change recommendations for
89% of tasks; with these recommendations, CoRec achieved 71% precision, 81%
recall, and 75% accuracy. On the other hand, ROSE and TAR recommended
changes for only 50% of tasks; based on its recommendations, ROSE acquired
only 7% precision, 29% recall, and 12% accuracy , while TAR obtained 5%
precision, 34% recall, and 9% accuracy. Among the eight subject projects, the
weighted average measurements of CoRec include 83% coverage, 72% precision,
73% recall, and 73% accuracy. Meanwhile, the weighted average measurements

of ROSE include 53% coverage, 21% precision, 52% recall, and 29% accuracy.
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Table 9: Evaluation results of CoRec, ROSE, and TAR for *CFL5CF tasks (%)

CoRec ROSE TAR

Project
Cov Pre Rec F1 Cov Pre Rec F1 Cov Pre Rec F1
Node.js 7 68 69 69 61 24 56 34 65 15 62 24
Meteor 88 72 70 71 46 16 43 24 52 15 47 23
Ghost 73 67 74 71 50 20 53 29 50 14 57 22
Habitica 80 80 78 79 40 7 37 12 35 5 42 9
PDF'.js 71 s 81 79 29 27 41 33 33 8 45 14
React 91 86 76 81 32 59 70 64 32 57 74 64
Serverless 84 7 79 78 64 20 75 32 68 16 80 27
‘Webpack 89 71 81 75 50 7 29 12 50 5 34 9
WA ‘ 83 72 73 73 ‘ 53 21 52 29 57 15 59 24

TAR achieved 59% average recall, but its average precision and accuracy are
the lowest among the three tools. Such measurement contrasts indicate that
CoRec usually recommended more changes than ROSE or TAR, and CoRec’s
recommendations were more accurate.

In addition to *CFLCF tasks, we also compared CoRec with ROSE and
TAR for *CF-LAF and *CF- AV tasks, as shown in Tables and Similar
to what we observed in Table 0] CoRec outperformed ROSE and TAR in terms
of all metrics for both types of tasks. As shown in Table given *CF L AF
tasks, on average, CoRec achieved 81% coverage, 76% precision, 80% recall,
and 78% accuracy. ROSE acquired 54% coverage, 21% precision, 48% recall,
and 28% accuracy . TAR obtained 56% coverage, 16% precision, 55% recall,
and 24% accuracy. In Table for Serverless, CoRec achieved 70% coverage,
80% precision, 85% recall, and 82% accuracy. Meanwhile, ROSE only provided
recommendations for 34% of the tasks, and none of these recommendations
is correct. TAR only provided recommendations for 38% of tasks; with the
recommendations, TAR achieved 1% precision, 13% recall, and 2% accuracy.

Comparing the results shown in Tables we found the effectiveness of
CoRec, ROSE, and TAR to be stable across different types of prediction tasks.

Specifically among the three kinds of tasks, on average, CoRec achieved 79%—
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Table 10: Result comparison among CoRec, ROSE, and TAR for *OF L5 AF tasks (%)

CoRec ROSE TAR

Project
Cov Pre Rec F1 Cov Pre Rec F1 Cov Pre Rec F1
Node.js 79 69 74 72 59 20 52 29 61 14 61 23
Meteor 86 7 82 80 40 22 44 29 46 21 50 29
Ghost 85 86 85 85 46 18 46 26 50 14 49 22
Habitica 87 s 85 81 56 23 7 58 2 39 4
PDF.js 65 87 88 87 22 28 14 23 11 58 19
React 71 84 82 83 16 66 7 13 17 67 8 14
Serverless 84 71 85 7 73 19 59 29 74 15 60 24
‘Webpack 75 79 85 82 53 16 46 24 56 13 49 21
WA 81 76 80 78 54 21 48 28 56 16 55 24

Table 11: Result comparison among CoRec, ROSE, and TAR for *CF-5AV tasks (%)
CoRec ROSE TAR

Project
Cov Pre Rec F1 Cov Pre Rec F1 Cov Pre Rec F1
Node.js 79 72 T 74 55 20 65 31 56 16 74 26
Meteor 72 s 84 81 26 2 14 4 27 2 31 3
Ghost 84 75 81 78 46 18 46 26 38 8 70 14
Habitica 89 82 85 83 27 20 45 28 28 17 54 26
PDF.js 78 87 84 85 20 4 28 8 20 5 29 8
React 89 73 78 76 36 8 33 13 12 98 34 50
Serverless 70 80 85 82 34 0 0 - 38 1 13 2
Webpack 87 86 83 85 36 8 33 13 40 3 34 5
WA 79 76 81 78 45 17 54 25 47 12 62 19
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83% coverage, 72%-76% precision, 73%-81% recall, and 73%-78% accuracy.
On the other hand, ROSE achieved 45%-54% coverage, 17%-21% precision,
48%-54% recall, and 25%-29% accuracy; TAR achieved 47%-56% coverage,
12%-16% precision, 55%—62% recall, and 19%-24% accuracy. The consistent
comparison results imply that CoRec usually recommended co-changed func-
tions for more tasks, and CoRec’s recommendations usually had higher quality.

Two major reasons can explain why CoRec worked best. First, ROSE
and TAR purely use the co-changed entities in version history to recommend
changes. When the history data is incomplete or some entities were never co-
changed before, both tools may lack evidence to predict co-changes and thus
obtain lower coverage and recall rates. Additionally, TAR derives more rules
than ROSE via transitive inference. Namely, if E1 = E2 and E2 = E3, then
FE1 = E3. However, it is possible that E1 and E3 were never co-changed be-
fore, neither are they related to each other anyhow. Consequently, the derived
rules may contribute to TAR’s lower precision. Meanwhile, CoRec extracts nine
features from a given commit and one feature from the version history; even
though history data provides insufficient indication on the potential co-change
relationship between entities, the other features can serve as supplements.

Second, ROSE and TAR observe no syntactic or semantic relationship be-
tween co-changed entities; thus, they can infer incorrect rules from co-changed
but unrelated entities and achieve lower precision. In comparison, CoRec ob-
serves the syntactic relationship between co-changed entities by tracing the
referencer-referencee relations; it also observes the semantic relationship by ex-
tracting features to reflect the commonality (1) between co-changed functions
(*CF), and (2) between any changed function cf and the changed entity E on
which ¢f depends (F is CF in P1, AF in P2, and AV in P3).

Although CoRec outperformed ROSE and TAR in our experiments, we con-
sider CoRec as a complementary tool to existing tools. This is because CoRec
bases its change recommendations on the three most popular RCPs we found.
If some changes do not match any of the RCPs, CoRec does not recommend

any change but ROSE may suggest some edits.
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Table 12: The effectiveness of CoRec, when it trains and tests a unified classifier (%)

Project Cov Pre Rec F1
Node.js 72 50 57 53
Meteor 7 59 58 59
Ghost 53 61 70 65
Habitica 55 53 68 60
PDF.js 29 60 73 66
React 76 75 73 74
Serverless 54 47 61 53
‘Webpack 66 54 63 58
WA | 70 56 61 59

Finding 6: CoRec outperformed ROSE and TAR when predicting co-
changed functions based on the three recurring change patterns (P1-P3).

CoRec serves as a good complementary tool to both tools.

6.5. Comparison with A Variant Approach

Readers may be tempted to train a unified classifier instead of three separate
classifiers, because the three classifiers all take in the same format of inputs
and output the same types of predictions (i.e., whether to co-change or not).
However, as shown in Table [b| the commonality characteristics between co-
changed functions vary with RCPs. For instance, the co-changed functions in
P2 usually commonly invoke peer functions (i.e., FI), the co-changed functions
in P3 often commonly read/write peer variables (i.e., VA), and the co-changed
functions in P1 have weaker commonality signals for both FI and ST (i.e.,
common token subsequences). If we mix the co-changed functions matching
different patterns to train a single classifier, it is quite likely that the extracted
features between co-changed functions become less informative, and the trained
classifier has poorer prediction power.

To validate our approach design, we also built a variant approach of CoRec—
CoRec,—that trains a unified classifier with the program commits matching ei-

ther of the three RCPs (P1-P3) and predicts co-change functions with the single
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classifier. To evaluate CoRec,,, we clustered the data portions matching distinct
RCPs for each project, and conducted five-fold cross validation. As shown in
Table on average, CoRec, recommended changes with 70% coverage, 56%
precision, 61% recall, and 59% accuracy. These measured values are much lower
than the weighted averages of CoRec reported in Tables The empirical
comparison corroborates our hypothesis that when data matching distinct RCPs

are mixed to train a unified classifier, the classifier works less effectively.

Finding 7: CoRec, worked less effectively than CoRec by training a
unified classifier with data matching distinct RCPs. This experiment

validates our approach design of training three separate classifiers.

7. Threats to Validity

Threats to External Validity: All our observations and experiment results
are limited to the software repositories we used. These observations and results
may not generalize well to other JS projects, especially to the projects that use
the Asynchronous Module Definition (AMD) APIs to define code modules and
their dependencies. In the future, we would like to include more diverse projects
into our data sets so that our findings are more representative.

Given a project P, CoRec adopts commits in P’s software version history
to train classifiers that can recommend co-changes for new program commits.
When the version history has few commits to train classifiers, the applicability of
CoRec is limited. CoRec shares such limitation with existing tools that provide
project-specific change suggestions based on software version history [5l 45} [9].
To further lower CoRec’s requirement to available commits in software version
history, we plan to investigate more ways to extract features from commits and
better capture the characteristics of co-changed functions.

Due to the time limit, we did not experiment with all commits from all sub-
ject projects. Instead, we sampled a subset of commits in each project based on

the keywords “bug”, “fix”, “error”, “adjust”, and “failure” in commit messages.
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Pattern Index P1’ P2’ P3’ P4’ P5’
*CF] *CF]| *CF] *AF|  [*AF]
Pattern Shape f f \Y f \%
f Function Invocation Y. Variable Read/Write
*AF: One or more added functions AV: One added variable

*CF: One or more changed functions

Figure 14: The five most popular recurring change patterns among all commits of Node.js

Such sampling may jeopardize the generalizability of our findings. Therefore,
to validate the potential threat, we actually conducted an extra experiment to
revisit the characterization study on all commits from Node.js [14]. We observed
very similar results to what we reported in Section [4]

Specifically, among the 6,555 commits in Node.js that edit JS files, the ma-
jority of commits (i.e., 58%) are multi-entity edits. Within those multi-entity
edits, 25% of commits involve two-entity edits, and 18% of commits are three-
entity edits. The number of commits decreases as the number of edited entities
increases. Our approach extracted CDGs in 62% of multi-entity edits, most of
which commits (i.e., 74%) have single CDGs extracted. We extracted in total
358 RCPs from CDGs. We found that 96% of the commits with CDGs extracted
have matches for RCPs. Figure|l4|shows the five most popular recurring change
patterns among all commits in Node.js. When comparing this figure with Fig-
ure we noticed that the most popular three patterns P1-P3 remain the same
across different datasets. This experiment shows that our sampling method does
not considerably impact the empirical findings.

Threats to Construct Validity: When creating recommendation tasks for
classifier evaluation, we always assumed that the experimented commits con-
tain accurate information of all co-changed functions. It is possible that devel-
opers made mistakes when applying multi-entity edits. Therefore, the imper-
fect evaluation data set based on developers’ edits may influence our empirical
comparison between CoRec and ROSE. We share this limitation with prior

work [0l [45] O B7, 146, [, [7]. In the future, we plan to mitigate the problem
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by conducting user studies with developers. By carefully examining the edits
made by developers and the co-changed functions recommended by tools, we

can better assess the effectiveness of different tools.

8. Related Work

The related work includes empirical studies on JS code and related program

changes, JS bug detectors, and co-change recommendation systems.

8.1. Empirical Studies on JS Code and Related Program Changes

Various studies were conducted to investigate JS code and related changes [47,
48, [49] [50], 51]. For instance, Ocariza et al. conducted an empirical study of 317
bug reports from 12 bug repositories, to understand the root cause and con-
sequence of each reported bug [47]. They observed that 65% of JS bugs were
caused by the faulty interactions between JS code and Document Object Mod-
els (DOMs). Gao et al. empirically investigated the benefits of leveraging static
type systems (e.g., Facebook’s Flow [52] and Microsoft’s TypeScript [53]) to
check JS programs [49]. To do that, they manually added type annotations to
buggy code and tested whether Flow and TypeScript reported an error on the
buggy code. They observed that both Flow 0.30 and TypeScript 2.0 detected
15% of errors, showing great potential of finding bugs.

Silva et a. [51] extracted changed source files from software version history,
and revealed six co-change patterns by mapping frequently co-changed files to
their file directories. Our research is different in three ways. First, we focused on
software entities with finer granularities than files; we extracted the co-change
patterns among classes, functions, variables, and statement blocks. Second,
since unrelated entities are sometimes accidentally co-changed in program com-
mits, we exploited the syntactic dependencies between entities to remove such
data noise and to improve the quality of identified patterns. Third, CoRec
uses the identified patterns to further recommend co-changes with high quality.

Wang et al. [I8] recently conducted a study on multi-entity edits applied to
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Java programs, which study is closely relevant to our work. Wang et al. focused
on three kinds of software entities: classes, methods, and fields. They created
CDGs for individual multi-entity edits, and revealed RCPs by comparing CDGs.
The three most popular RCPs they found are: *CMZ%CM (a callee method is
co-changed with its caller(s)), *CM-5AM (a method is added, and one or more
existing methods are changed to invoke the added method), and *OMLAF (a
field is added, and at least one existing method is changed to access the field).

Our research is inspired by Wang et al.’s work. We decided to conduct a
similar study on JS programs mainly because JS is very different from Java. For
instance, JS is weakly typed and has more flexible syntax rules; Java is strongly
typed and variables must be declared before being used. JS is a script language
and mainly used to make web pages more interactive; Java is used in more do-
mains. We were curious whether developers’ maintenance activities vary with
the programming languages they use, and whether there are unique co-change
patterns in JS programs. In our study, we adopted JS parsing tools, identified
four kinds of entities in various ways, and did reveal some co-change patterns
unique to JS programs because of the language’s unique features. Surprisingly,
the three most popular JS co-change patterns we observed match exactly with
the Java co-change patterns mentioned above. Our study corroborates obser-
vations made by prior work. More importantly, it indicates that even though
different programming languages provide distinct features, developers are likely
to apply multi-entity edits in similar ways. This phenomenon sheds lights on

future research directions of cross-language co-change recommendations.

8.2. JS Bug Detectors

Researchers built tools to automatically detect bugs or malicious JS code [54]
55, (6l 57, 2, 58], 59, [60]. For example, EventRacer detects harmful data races
in even-driven programs [67]. JSNose combines static and dynamic analysis
to detect 13 JS smells in client-side code, where smells are code patterns that
can adversely influence program comprehension and software maintenance [2].

TypeDevil adopts dynamic analysis to warn developers about variables, prop-
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erties, and functions that have inconsistent types [59]. DeepBugs is a learning-
based approach that formulates bug detection as a binary classification problem:;
it is able to detect accidentally swapped function arguments, incorrect binary
operators, and incorrect operands in binary operations [60]. EarlyBird conducts
dynamic analysis and adopts machine learning techniques for early identification
of malicious behaviors of JavaScript code [56].

Some other researchers developed tools to suggest bug fixes or code refac-
torings [611 62} [63], [64] [65] [66] 67]. With more details, Vejovis suggests program
repairs for DOM-related JS bugs based on two common fix patterns: parameter
replacements and DOM element validations [64]. Monperrus and Maia built a
JS debugger to help resolve “crowd bugs” (i.e., unexpected and incorrect out-
puts or behaviors resulting from the common and intuitive usage of APIs) [65].
Given a crowd bug, the debugger sends a code query to a server and retrieves all
StackOverflow answers potentially related to the bug fix. An and Tilevich built
a JS refactoring tool to facilitate JS debugging and program repair [67]. Given a
distributed JS application, the tool first converts the program to a semantically
equivalent centralized version by gluing together the client and server parts.
After developers fixed bugs in the centralized version, the tool generates fixes
for the original distributed version accordingly. In Model-Driven Engineering,
ReVision repairs incorrectly updated models by (1) extracting change patterns
from version history, and (2) matching incorrect updates against those patterns
to suggest repair operations [68].

Our methodology is most relevant to the approach design of ReVision. How-
ever, our research is different in three aspects. First, our research focuses on
entity-level co-change patterns in JS programs, while ReVision checks for con-
sistencies different UML artifacts (e.g., the signature of a message in a sequence
diagram must correspond to a method signature in the related class diagram).
Second, the co-changed recommendation by CoRec intends to complete an ap-
plied multi-entity edit, while the repair operations proposed by ReVision tries to
complete consistency-preserving edit operations. Third, we conducted a large-

scale empirical study to characterize multi-entity edits and experimented CoRec
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with eight open-source projects, while ReVision was not empirically evaluated.

8.3. Co-Change Recommendation Systems

Approaches were introduced to mine software version history and to extract
co-change patterns [511 [69] [70, 36, Bl [7T], 451 @, [72] [73], [74], [75] [76, [6]. Specifically,
Some researchers developed tools (e.g., ROSE) to mine the association rules
between co-changed entities and to suggest possible changes accordingly [5, [71]
45, 91 [72], [76], 6]. Some other researchers built hybrid approaches by combining
information retrieval (IR) with association rule mining [73}, [74], [75]. Given a
software entity F, these approaches use IR techniques to (1) extract terms from
E and any other entity and (2) rank those entities based on their term-usage
overlap with F. Meanwhile, these tools also apply association rule mining to
commit history in order to rank entities based on the co-change frequency. In
this way, if an entity G has significant term-usage overlap with E and has been
co-changed a lot with F, then G is recommended to be co-changed with FE.

Shirabad et al. developed a learning-based approach that predicts whether
two given files should be changed together or not [36]. In particular, the re-
searchers extracted features from software repository to represent the relation-
ship between each pair of files, adopted those features of file pairs to train an
ML model, and leveraged the model to predict whether any two files are rele-
vant (i.e., should be co-changed) or not. CoRec is closely related to Shirabad
et al.’s work. However, it is different in two aspects. First, CoRec predicts
co-changed functions instead of co-changed files. With finer-granularity rec-
ommendations, CoRec can help developers to better validate suggested changes
and to edit code more easily. Second, our feature engineering for CoRec is based
on the quantitative analysis of frequent change patterns and qualitative analysis
of the commonality between co-changed functions, while the feature engineer-
ing by Shirabad is mainly based on their intuitions. Consequently, most of our
features are about the code commonality or co-evolution relationship between
functions; while the features defined by Shirabad et al. mainly focus on file

names/paths, routines referenced by each file, and the code comments together
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with problem reports related to each file.

Wang et al. built CMSuggester—an automatic approach to suggest method-
level co-changes in Java programs [7}[8]. CoRec and CMSuggester are different in
four aspects. First, the tools take in different inputs. To recommend co-changes
for a project’s commit, CoRec requires two inputs: the commit and the history
data of that project. CMSuggester generates suggestions purely based on the
given commit. Second, the tools implement different methodologies. CoRec is
a data-driven instead of rule-based approach; it requires for co-change data to
train an ML model while CMSuggester requires tool builders to hardcode the
suggestion strategies. Third, the target programming languages are different.
CoRec targets JS, so it has unique handlings for ASTs of JS programs to parse
four kinds of entities: classes, functions, variables, and blocks. CMSuggester
targets Java, so it has simpler processing for ASTs of Java programs to parse
three kinds of entities: classes, methods, and fields. Fourth, the tools have dif-
ferent applicable scopes. CoRec can recommend changes based on three RCPs:
*CFLCF, *CFL>AF7 and *CFAV; CMSuggester only recommends changes
based on the last two patterns mentioned above. Overall, CoRec is more flexible

due to its usage of ML and is applicable to more types of co-change scenarios.

9. Conclusion

It is usually tedious and error-prone to develop and maintain JS code. To
facilitate program comprehension and software debugging, we conducted an
empirical study on multi-entity edits in JS projects and built an ML-based
co-change recommendation tool CoRec. Our empirical study explored the fre-
quency and composition of multi-entity edits in JS programs, and investigated
the syntactic and semantic relevance between frequently co-changed entities. In
particular, we observed that (i) JS software developers frequently apply multi-
entity edits while the co-changed entities are usually syntactically related; (ii)
there are three most popular RCPs that commonly exist in all studied JS code

repositories: *CFLCF, *CFLAF, and *CFAV; and (iii) among the entities
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matching these three RCPs, co-changed functions usually share certain com-
monality (e.g., common function invocations and common token subsequences).

Based on our study, we developed CoRec, which tool extracts code features
from the multi-entity edits that match any of the three RCPs, and trains an ML
model with the extracted features to specially characterize relationship between
co-changed functions. Given a new program commit or a set of entity changes
that developers apply, the trained model extracts features from the program
revision and recommends changes to complement applied edits as necessary.
Our evaluation shows that CoRec recommended changes with high accuracy and
outperformed two existing techniques. In the future, we will investigate novel
approaches to provide finer-grained code change suggestions and automate test

case generation for suggested changes.
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