
Article

Analysis of
Computational
Thinking in Children’s
Literature for K-6
Students: Literature as
a Non-Programming
Unplugged Resource

Evan David Ballard1 and
Rachelle Haroldson1

Abstract

As schools and districts across the United States adopt computer science standards

and curriculum for K-12 computer science education, they look to integrate the

foundational concepts of computational thinking (CT) into existing core subjects of

elementary-age students. Research has shown the effectiveness of teaching CT ele-

ments (abstraction, generalization, decomposition, algorithmic thinking, debugging)

using non-programming, unplugged approaches. These approaches address common

barriers teachers face with lack of knowledge, familiarity, or technology tools.

Picture books and graphic novels present an unexplored non-programming,

unplugged resource for teachers to integrate computational thinking into their CT

or CT-integrated lessons. This analysis examines 27 picture books and graphic novels

published between 2015 and 2020 targeted to K-6 students for representation of

computational thinking elements. Using the computational thinking curriculum

framework for K-6, we identify the grade-level competencies of the CT elements

featured in the books compared to the books’ target age groups. We compare

grade-level competencies to interest level to identify each CT element representa-

tion as “foundational,” “on-target,” or “advanced.” We conclude that literature

1Teacher Education Department, University of Wisconsin-River Falls, River Falls, Wisconsin, United States

Corresponding Author:

Evan David Ballard, 2335 Blomquist Ave, White Bear Lake, MN 55110, United States.

Email: e.dave.ballard@gmail.com

Journal of Educational Computing

Research

0(0) 1–30

! The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/07356331211004048

journals.sagepub.com/home/jec

https://orcid.org/0000-0002-5554-8626
https://orcid.org/0000-0002-5375-846X
mailto:e.dave.ballard@gmail.com
http://us.sagepub.com/en-us/journals-permissions
http://dx.doi.org/10.1177/07356331211004048
journals.sagepub.com/home/jec
http://crossmark.crossref.org/dialog/?doi=10.1177%2F07356331211004048&domain=pdf&date_stamp=2021-03-24


offers teachers a non-programming unplugged resource to expose students to CT

and enhance CT and CT-integrated lessons, while also personalizing learning based

on CT readiness and interest level.

Keywords

computational thinking, computer science education, children’s literature, elementa-

ry education, unplugged

As the field of computer science education has developed standards for K-12

students (Computer Science Teachers Association [CSTA], 2017; K-12

Computer Science Framework, 2016), states and districts across the United

States have started to adopt plans that include computational thinking (CT)

skills and concepts for elementary-age students (Code.org Advocacy Coalition,

CSTA, & ECEP, 2019). These plans must include opportunities for teachers to

learn how to integrate CT into curricula using familiar tools (Waterman et al.,

2020), because teachers often hold incomplete preconceptions about CT

(Cabrera, 2019). Unplugged activities are more accessible to teachers for inte-

gration into their instruction (Huang & Looi, 2021).
In this paper, we examine children’s literature for representation of the ele-

ments of CT (abstraction, generalization, decomposition, algorithmic thinking,

debugging) using the computational thinking curriculum framework for K-6

outlined by Angeli et al. (2016). We identify the grade-level competencies of

the computational thinking elements featured in the books compared to the age

groups for which the books were written. We present our findings as tables and

figures that teachers can use to select texts to expose students to CT skills and

concepts, enhance their CT and CT-integrated lessons, and personalize instruc-

tion for students based on their reading interest level and CT readiness.

Literature Review

Computational Thinking

In her 2006 article “Computational Thinking”, Jeannette Wing defined compu-

tational thinking as “solving problems, designing systems, and understanding

human behavior, by drawing on the concepts fundamental to computer science”

(p. 33). Wing called on educators to recognize CT as an essential skill for all

students in the 21st century due to the increasingly ubiquitous roles of

2 Journal of Educational Computing Research 0(0)



computing devices in all parts of modern life. Since then, CT has become an
important term in education and has been included in non-computer science
documents like the Next Generation Science Standards (NGSS Lead States,
2013), but definitions continue to vary. In fact, Denning (2017) argues that
vague or inconsistent definitions and models have harmed computer science
education by sowing confusion and diluting or misrepresenting computer sci-
ence practices.

Palts and Pedaste (2020) reviewed papers on CT published since Wing’s orig-
inal 2006 article and grouped works into 6 major clusters, each centered on a key
article that was used to build the model of CT. One of these clusters is based on
a paper by Selby and Woollard (2013) that in turn drew from Barr and
Stephenson (2011) and International Society for Technology in Education and
CSTA (2011), but focused particularly on well-defined skills and de-emphasized
data manipulation terms that were deemed too broad. The purposes of this
model include “to define more narrowly, not more broadly . . . [and] to refine
the definition to facilitate assessment” (Selby & Woollard, 2013, p. 1). The
model distills CT into 5 subskills: abstraction, decomposition, algorithmic
thinking, generalization, and evaluation. This steps-focused model was adopted
by Angeli et al. (2016) to build a curriculum framework aimed at “engaging
children in thinking and problem solving by developing a solution to a problem,
automating the solution through algorithmic thinking, and generalizing this
solution to new problems when common patterns are identified or recognized”
(p. 50). The goal of this framework is “introducing students of a very young age
to the thinking processes of computational thinking so they become competent
to learn more advanced theoretical and practical topics of computer science in
secondary education” (p. 50).

CT Integration

Guided by initiatives from organizations like the Computer Science Teachers
Association (CSTA) and Code.org, the focus in CS education has expanded to
include CS and CT across K-12 education (CSTA, 2017; Code.org Advocacy
Coalition, CSTA, & ECEP, 2019). Schools and districts have turned their atten-
tion to how to address CT in their curriculum. The following sections outline
teachers’ conceptions of CT, teacher preparation and professional development
efforts to develop CT knowledge, uncoupling of CT and programming, and
non-programming approaches to teach, learn, and integrate CT.

Teacher Conceptions of CT and Preparing Teachers to Teach CT. Teacher preparation is
key to CT implementation in curriculum. Cabrera (2019) found that in multiple
studies, teachers, both in-service and pre-service, had unhelpful preconceptions
about CT. Teachers equated technology and programming with CT and defined
CT as general problem solving without naming any CT-specific elements or

Ballard and Haroldson 3



practices. Teachers viewed CT as difficult to learn and unapproachable, partly
because of the association with programming. In line with these findings, Barr
and Stephenson (2011) called for providing teachers the necessary professional
development and resources in order to integrate and embed CT across
disciplines.

Preparation to teach and integrate CT begins with preservice teachers so they
can develop ways of infusing CT in their practice. When elementary and sec-
ondary pre-service teachers were exposed to a CT module in a class on theories
of learning and motivation, it improved their understanding of CT. Specifically,
it strengthened the connection they made between problem solving and compu-
tational thinking as well as their understanding of ways to integrate CT across
disciplines and without using a computer (Yadav et al., 2011).

Barriers to CT integration faced by in-service teachers, particularly elemen-
tary teachers, must be considered. Teachers cite challenges that range from lack
of alignment with district priorities focused on reading and math to lack of
resources in terms of instructional time, funds and practical examples of activ-
ities, and for this reason researchers have focused on an integrated approach to
teaching CT (Israel et al., 2015; Hestness et al., 2018; Ketelhut et al., 2020).
Yadav et al. (2016) recommend that elementary teachers receive support to
develop their CT knowledge to authentically integrate CT tasks in their curric-
ular context for successful implementation. Waterman et al. (2020) propose a
framework for CT integration that exploits the content and CT overlap in core
subjects like science and math to do “double duty.” They propose three levels of
CT integration: exist, enhance, and extend. Integration at the “exist” level high-
lights aspects of CT already in the lesson. Integration at the “enhance” level
involves adding tasks to make the connections between the disciplinary concept
and computing content stronger. Integration at the “extend” level uses the dis-
ciplinary concepts as a way to explore CT applications.

When teachers experience professional development focusing on a CT inte-
grated approach in core subjects (reading, science, mathematics), they are suc-
cessful in implementing CT (Israel et al., 2015; Waterman et al., 2020). When the
CT activities are unplugged they appear more accessible to teachers, which
results in them integrating and using those activities with their students
(Huang & Looi, 2021). Elementary teachers do not have the cognitive load
for additional disciplines or unfamiliar tools, thus they require familiar tools
(Waterman et al., 2020).

Even when elementary teachers come in with some conceptions of CT, pro-
fessional development experiences shift their thinking from general broad def-
initions of CT as problem solving to more specific ideas that include types of
logical thinking (like conditionals) and connections between algorithms to
abstraction and generalization. These clearer understandings allowed teachers
to see, then amplify the “seeds” of computational thinking in their STEM activ-
ities (Yadav et al., 2018).

4 Journal of Educational Computing Research 0(0)



Teaching Non-Programming CT. CT is at the core of computer science, and CT is
often associated with programming. Researchers have shown that students as
young as kindergarten learn CT skills through programming (Bers et al., 2014;
Sullivan & Bers, 2016; Tran, 2019; Yin et al., 2020). Recently, researchers have
proposed disconnecting CT from programming in order to focus on the process
of problem-solving inherent in CT (Lu & Fletcher, 2009; Waterman et al., 2020;
Brackmann et al., 2017; Hooshyar et al., 2020). This shift to an emphasis on CT
skills apart from programming is evidenced by the change at the secondary level
in the AP computer science courses. AP Computer Science A has been offered
since the 1980’s and emphasizes programming, currently in the Java program-
ming language (College Board, 2021a). The big pedagogical shift happened in
2016 when the College Board introduced AP Computer Science Principles, an
introductory course whose framework is guided by CT practices and a concep-
tual approach with the goal of exposing more students to CT in a way that
places less emphasis on programming (College Board, 2021b).

Lu and Fletcher (2009) argue that students need to be exposed to and par-
ticipate in CT separate from programming to develop the necessary CT skills.
They suggest laying the foundation of CT with algorithmic processes, abstrac-
tion, and a common language of vocabulary and symbols, Computational
Thinking Language (CTL), to “permeate the pedagogy.” They cite examples
in mathematics and reading to illustrate the strategic introduction of CT vocab-
ulary. Through repeated encounters of CT integrated across the curriculum
teachers can show the ubiquity and importance of CT. While Caeli and
Yadav (2020) argue for combining programming and non-programming
approaches, they emphasize that non-programming or unplugged approaches
develop deeper understanding of the problem-solving process.

Approaches Using Digital Technology. Non-programming CT activities can use
technology. Hooshyar et al. (2020) introduced elementary students to an adap-
tive educational game (AutoThinking) that improved their CT skills (algorith-
mic thinking; pattern recognition and generalization; debugging; simulation)
and taught CT concepts (sequence, conditional, loop). The adaptivity of the
game personalized the learning for individual students and increased student
interest, satisfaction, flow state, and tech acceptance. Waterman et al. (2020)
integrated CT into the ecological system game Oh! Deer by adapting the existing
activity for digital data collection and processing using spreadsheets. I. Lee et al.
(2014) describe two different activities to integrate CT in the K-8 curriculum to
bolster the practice approaches available to teachers; one using a pre-built com-
puter model and simulation to learn about ecosystems and the other a web-
based mobile tool for storing data to learn about velocity and acceleration.

Unplugged Approaches. Programming and non-programming CT activities can
be “computer-less” or “unplugged,” meaning they do not require a computer or

Ballard and Haroldson 5



device. Unplugged approaches allow teachers to integrate computer science into
their classrooms regardless of the schools’ access to hardware or the internet and
regardless of the students’ home access. Students miss out on opportunities that
impact their grades, test scores, and college/career plans because of the digital
divide, whereby students from different socio-economic backgrounds have differ-
ent access to devices and internet services (Hampton et al., 2020).

Unplugged approaches, as well as the term, originated with 20 activities put
together in Computer Science Unplugged (T. Bell et al., 1998) and evolved into
the CS Unplugged website (CS Unplugged, 2021). These activities involve
games, puzzles, stories, challenges, and sensory-rich experiences. Unplugged
activities are low-cost, low-floor (accessible), and not material-intensive (V. R.
Lee & Recker, 2018). Huang and Looi (2021) discuss how unplugged pedagogies
foster CT development by complementing programming, integrating into other
subjects, and supporting teaching and learning. They suggest that unplugged
activities can serve as a “priming step” before programming with the aim to
have students develop their understanding of algorithmic steps. In one study
paper circuitry activities exposed students to algorithmic thinking, conditional
logic, and debugging, to name a few, while using familiar materials and concepts
to “provide multiple points of entry for students who are less familiar with
computational thinking ideas.” (V. R. Lee & Recker, 2018, p. 198).
Brackmann et al. (2017) used existing unplugged resources (e.g., Hello Ruby)
with upper elementary students that improved their CT skills.

Children’s Literature as CT Resources. Picture books help abstract concepts
become concrete. Massey (2015) suggests that, “In the hands of educators, pic-
ture books serve a much greater function than aesthetic reading; they can be a
vehicle for the construction of knowledge and for solidifying concepts in a
learning environment for older students” (p. 45). Whether as a resource to
expose students to new material or enforce concepts already presented, literature
has the potential to support CT integration. Furthermore, as elementary teach-
ers work to integrate CT into existing curricula, they can take advantage of the
overlap between CS standards and the Common Core State Standards For
English Language Arts (CCSS-ELA) (National Governors Association Center
for Best Practices & Council of Chief State School Officers, 2010).

While research has analyzed content and representation in literature for sub-
jects like science (Kelly, 2018) and computer science (Haroldson & Ballard,
2021), no analysis has been done to look at the representation of computational
thinking and its specific elements in children’s books.

Study Context

As elementary teachers are more likely to integrate CT in their core subjects
using accessible tools, literature has potential for CT integration. Picture books

6 Journal of Educational Computing Research 0(0)



and graphic novels have potential for non-programming CT integration as an
unplugged resource that is low-cost and familiar. While simply reading texts
demonstrating coding or computational thinking is not sufficient for students to
learn CT, texts can be a valuable tool in instruction. The texts can serve as an
important “priming” activity to prepare students to learn and practice CT
(Huang & Looi, 2021). As Waterman et al. (2020) suggest, teachers can use
this sort of non-programming unplugged activity to “enhance” a CT or CT-
integrated lesson. To aid teachers in selecting texts to support their CT and CT-
integrated instruction in this way, there is a need for an analysis reporting on CT
in the children’s literature published in recent years.

To focus on picture books for elementary students, we sought a framework
that emphasizes CT skills for these younger grades. The computational thinking
curriculum framework for K-6 developed by Angeli et al. (2016) distills CT for
these grades into 5 major elements: abstraction, generalization, decomposition,
algorithmic thinking, and debugging. We adopted this framework for our anal-
ysis because it offers clear and concrete competency targets in each element for
grades K-2, 3-4, and 5-6 that are written for compatibility with unplugged CT
learning. Hereafter, the computational thinking curriculum framework for K-6
will be referred to as “the framework.” We distilled the purpose of this analysis
into the guiding questions:

• What elements of computational thinking are represented in the books?
• What grade-level computational thinking competencies are represented in the

books?

While many books about computer science and CT have been published for
grades K-6 students, information about what is in these books needs to be made
available for them to be easily incorporated into the elementary curriculum.
This analysis focuses on reporting the CT elements represented in each book
together with the grade-level interest range of the books and the grade-level CT
competencies demonstrated. Teachers can use this information to select texts
that are interesting and appropriate for their students to prime students for CT
learning or enhance existing curriculum with CT elements. How teachers specif-
ically use these books in their CT or CT-integrated lessons is outside of the
scope of our analysis.

Methods

This analysis employed content analysis, a form of qualitative analysis, of 27
picture books and graphic novels targeting grades K-6 published between 2015
and mid-2020. Content analysis is often used in the fields of media studies, and
children’s literature (P. Bell, 2001; Galda et al., 2000) and focuses on finding
patterns in qualitative material with the data coming from text-based sources.

Ballard and Haroldson 7



This reductive, sense-making effort aims to “identify core consistencies and
meanings” (p. 453) that emerge as patterns or themes with patterns being
more descriptive and themes being more categorical (Patton, 2002). At its
core, content analysis investigates what the text is about (Galda et al., 2000).
P. Bell (2001) also notes that the nature of content analysis is comparative, using
categories from which relevant variables and values emerge. While Cohen et al.
(2000) outline seven different purposes of content analysis, this analysis focuses
on the purposes of examining content against standards and describing trends in
the content.

Book Search and Selection Criteria

By 2015, there was national interest in the computer science education move-
ment in the United States. This interest manifested in a number of high-profile
initiatives, like the early 2016 White House announcement of the CSForAll
initiative (Smith, 2016), and the release of the K-12 Computer Science
Framework the same year (K-12 Computer Science Framework, 2016). Our
analysis focuses on books published in the years from 2015 to 2020, during
which this increased focus on CS education in grades K-12 was being realized.

For a systematic approach in finding relevant texts, subject headings for
children’s books were confirmed in the Library of Congress. After searching
broad terms, like “computer science,” that would encompass computational
thinking in addition to the term, “computational thinking,” using the additional
designator “juvenile literature” three standardized search terms emerged. These
terms included: “computer science,” “computer programming,” and “computer
scientists.” The phrase “computational thinking” was not found among the
subject headers in the Library of Congress. For this reason, we moved forward
in the search process using these three search terms that would include or be
associated with computational thinking. While we cannot speak for certain why
“computational thinking” is not found, we conjecture that the concept of com-
putational thinking is still too new in the realm of children’s literature and as a
result has not found its way into the official subject headers. Searches in the
databases using the aforementioned search terms did indeed produce lists of
books that included computational thinking.

We used two searchable and accessible databases found in the United States.
Because our focus is on books for grades K-6, we used Novelist K-8, a database
of children’s literature. We used WorldCat, a global library catalog, because it
includes non-fiction and biographies. Table 1 shows the number of titles each
database listed for a given search term. The WorldCat database searches are
done within content criteria categories (e.g. “non-fiction,”) so these have also
been listed in the table.

After the initial searches through the databases using the standardized search
terms, we applied another round of criteria to narrow down the number of titles.

8 Journal of Educational Computing Research 0(0)



First, the interest age-range of the books, as provided by the publishers, needed

to be in the K-6 grade band. If any part of the book’s interest age-range was

within grades K-6, the book was considered. Any texts completely outside the

K-6 grade band (i.e., PreK, 7-12) were eliminated. Second, the book had to

follow a narrative format, with characters actively solving a specific problem

or small set of problems, which excluded any reference, how-to, and computer

language specific books (e.g., Ruby, Python).
After these criteria were applied, we gathered together the books that

remained for a first read-through to look for general evidence of computational

thinking. This final step in the selection process ulted in narrowing down the list

to the core 27 picture books and graphic novels (26 fiction and 1 non-fiction)

used in the analysis (see Appendix for the complete list).

Text Analysis

First, we examined the text of 27 picture books and graphic novels against the

elements of CT (abstraction, generalization, decomposition, algorithmic think-

ing, debugging) as laid out by the computational thinking curriculum frame-

work for K-6 (Angeli et al., 2016). The text considered included any narration,

character dialogue, and code or pseudocode represented in the images. Then,

after identifying examples of the criteria present in each book, we looked for and

described trends in the frequency of the elements of CT represented.
Analysis of the texts was based on close adherence to the language in the

framework. The framework is prescriptive, focused on curriculum writing, while

the analysis of the texts is descriptive, reporting the CT elements represented in

each book. Because of this, minor ambiguities occasionally arose during the

analysis. As each ambiguity arose, we each reviewed the framework, then jointly

Table 1. Titles Found in Database by Search Term.

NoveList K-8

Computer science 109

Computer programming 51

Computer scientists 17

WorldCat

Non-fiction Computer science 558

Computer programming 713

Biography Computer science 65

Computer scientists 58

Fiction Computer science 341

Computer programming 219

Ballard and Haroldson 9



developed guidelines that could be applied in the text in question and in the
analysis of other texts (see Table 2).

An example of a minor ambiguity is in the algorithmic thinking section,
where the grades 3–4 competency level specifies that the algorithm represented
must iterate or loop, and the grades 5–6 competency level lists that the algorithm
loops/iterates and includes conditionals, variables for storage and retrieval of
information, and mathematical or logical expressions. After review of the frame-
work, we added the specification that conditionals, variables, or advanced math
or logic would demonstrate grades 5–6 competency even if no looping or iter-
ation was represented. Not all algorithms need loops or iteration, so it would
have harmed the utility of the analysis to insist on this aspect when other
advanced elements of computational thinking were represented. One example
of this is in Power Coders: Day of the Gamer (Vink & Gennari, 2019b), where
there is no significant discussion of loops or iteration, but there is an involved
discussion of conditionals for program flow.

Another ambiguity we encountered was in the abstraction section of the
framework. The grades 3–4 range specifies “create a model/representation to
solve a problem,” and the grades 5–6 range specifies “create a new model/rep-
resentation to solve a problem” (Angeli et al., 2016, p. 50). We interpreted the
key difference, the word “new,” to mean that students are expected to demon-
strate the depth of understanding necessary to recreate the model in an appro-
priate context. If characters selected a model based on a clear description of its
merits or a comparison with an alternative model, they demonstrated this depth
of understanding. This put the CT competency represented in the book in the
grades 5–6 range, whereas characters applying a known model without discus-
sing its application, merits, or preferability compared to another model demon-
strated competency in the grades 3–4 range. An example of this can be found in
Secret Coders (3): Secrets and Sequences (Yang & Holmes, 2017a), in which the
heroes escape imprisonment by using a small robot to lure away a robotic guard.
They apply abstractions introduced earlier in the book, including conditionals
and random numbers, and test multiple models in order to find a pattern of
movement for the small robot that will capture the attention of the robot guard.
They reason with their understanding of the specifics of how each model inter-
acts with the environment (see Table 2).

To ensure consistent application of the analysis, we read each text a minimum
of three times: once to become familiar with the text, once to flag possible
examples of CT elements in the text, and once together to discuss each possible
representation. Examining the text closely alongside the framework, a consensus
was reached on each example of whether it clearly demonstrated the CT ele-
ment, and if so, what grade-level competency was represented.

After cataloging representations of CT elements in the books, we identified
which CT competency targets the book addressed in each element. This allowed
us to highlight the competency grade-level range. If at least 50% of the book’s

10 Journal of Educational Computing Research 0(0)



T
a
b
le

2
.
C
o
m
p
u
ta
ti
o
n
al
T
h
in
k
in
g
C
o
m
p
e
te
n
cy

T
ar
ge
ts

b
y
G
ra
d
e
R
an
ge
.

E
le
m
e
n
t/
Sk
ill

G
ra
d
e
s
K
–
2

G
ra
d
e
s
3
–
4

G
ra
d
e
s
5
–
6

A
b
st
ra
ct
io
n

W
it
h
th
e
u
se

o
f
e
x
te
rn
al
re
fe
r-

e
n
ce

sy
st
e
m
s,
cr
e
at
e
a
m
o
d
e
l/

re
p
re
se
n
ta
ti
o
n
*
to

so
lv
e
a

p
ro
b
le
m

C
re
at
e
a
m
o
d
e
l/
re
p
re
se
n
ta
ti
o
n

to
so
lv
e
a
p
ro
b
le
m

C
re
at
e
a
n
ew

m
o
d
e
l/
re
p
re
se
n
-

ta
ti
o
n
to

so
lv
e
a
p
ro
b
le
m

A
p
p
lic
at
io
n
N
o
te
s

C
h
ar
ac
te
rs

w
e
re

gi
ve
n
a
m
o
d
e
l

o
r
re
p
re
se
n
ta
ti
o
n
to

u
se

an
d

th
ey

u
se
d
it

C
h
ar
ac
te
rs

in
d
e
p
e
n
d
e
n
tl
y
d
e
ci
d
-

e
d
to

u
se

a
m
o
d
e
l
o
r

re
p
re
se
n
ta
ti
o
n

C
h
ar
ac
te
rs

in
ve
n
te
d
th
e
ir
o
w
n

ab
st
ra
ct
io
n
o
r
d
e
m
o
n
st
ra
te
d

th
e
sa
m
e
d
e
p
th

o
f
u
n
d
e
r-

st
an
d
in
g
th
at

w
o
u
ld

b
e

re
q
u
ir
e
d
to

cr
e
at
e
th
e

ab
st
ra
ct
io
n
b
y
d
e
co
n
st
ru
ct
in
g

an
d
d
is
cu
ss
in
g
th
e
m
e
ri
ts

o
f

th
e
ab
st
ra
ct
io
n

G
e
n
e
ra
liz
at
io
n

Id
e
n
ti
fy

co
m
m
o
n
p
at
te
rn
s

b
e
tw

e
e
n
o
ld
e
r
an
d
n
ew

e
r

p
ro
b
le
m
-s
o
lv
in
g
ta
sk
s,
an
d
u
se

se
q
u
e
n
ce
s
o
f
in
st
ru
ct
io
n
s

p
re
vi
o
u
sl
y
e
m
p
lo
ye
d
,
to

so
lv
e

a
n
ew

p
ro
b
le
m

R
e
m
ix
an
d
re
u
se

(b
y
e
x
te
n
d
in
g
if
n
e
e
d
e
d
)
re
so
u
rc
e
s
th
at

w
e
re

p
re
vi
o
u
sl
y

cr
e
at
e
d
.

A
p
p
lic
at
io
n
N
o
te
s

C
h
ar
ac
te
rs

re
la
te
d
a
n
ew

p
ro
b
-

le
m

to
an

o
ld

o
n
e

C
h
ar
ac
te
rs

w
e
n
t
o
n
to

ac
tu
al
ly
re
u
se
,
re
m
ix
,
o
r
re
p
u
rp
o
se

e
x
is
ti
n
g
co
d
e

o
r
co
m
p
u
ta
ti
o
n
al
ar
ti
fa
ct
s

D
e
co
m
p
o
si
ti
o
n

B
re
ak

a
co
m
p
le
x
ta
sk

in
to

a

se
ri
e
s
o
f
si
m
p
le
r
su
b
ta
sk
s

B
re
ak

a
co
m
p
le
x
ta
sk

in
to

si
m
p
le
r
su
b
ta
sk
s.

D
ev
e
lo
p
a
so
lu
ti
o
n
b
y
as
se
m
b
lin
g
to
ge
th
e
r
co
lle
ct
io
n
s
o
f
sm

al
le
r
p
ar
ts
.

A
p
p
lic
at
io
n
N
o
te
s

C
h
ar
ac
te
rs

b
ro
ke

a
p
ro
b
le
m

d
o
w
n
in
to

sm
al
le
r
p
ro
b
le
m
s

o
r
ta
sk
s

C
h
ar
ac
te
rs

b
ro
ke

ta
sk
s
d
o
w
n
,t
h
e
n
as
se
m
b
le
d
th
e
p
ie
ce
s
in
to

a
fu
n
ct
io
n
al

w
h
o
le

(c
o
n
ti
n
u
e
d
)

11



T
a
b
le

2
.
C
o
n
ti
n
u
e
d
.

E
le
m
e
n
t/
Sk
ill

G
ra
d
e
s
K
–
2

G
ra
d
e
s
3
–
4

G
ra
d
e
s
5
–
6

A
lg
o
ri
th
m
ic
th
in
k
in
g

D
e
fin
e
a
se
ri
e
s
o
f
st
e
p
s
fo
r
a

so
lu
ti
o
n
.

P
u
t
in
st
ru
ct
io
n
s
in

th
e
co
rr
e
ct

se
q
u
e
n
ce
.

D
e
fin
e
a
se
ri
e
s
o
f
st
e
p
s
fo
r
a

so
lu
ti
o
n
.

P
u
t
in
st
ru
ct
io
n
s
in

th
e
co
rr
e
ct

se
q
u
e
n
ce
.

R
e
p
e
at

th
e
se
q
u
e
n
ce

se
ve
ra
l

ti
m
e
s
(i
te
ra
ti
o
n
).

D
e
fin
e
a
se
ri
e
s
o
f
st
e
p
s
fo
r
a

so
lu
ti
o
n
.

P
u
t
in
st
ru
ct
io
n
s
in

th
e
co
rr
e
ct

se
q
u
e
n
ce
.

R
e
p
e
at

th
e
se
q
u
e
n
ce

se
ve
ra
l

ti
m
e
s
(i
te
ra
ti
o
n
).

M
ak
e
d
e
ci
si
o
n
s
b
as
e
d
o
n
co
n
d
i-

ti
o
n
s.

St
o
re
,
re
tr
ie
ve
,
an
d
u
p
d
at
e
va
ri
-

ab
le
s.

Fo
rm

u
la
te

m
at
h
e
m
at
ic
al
an
d

lo
gi
ca
l
e
x
p
re
ss
io
n
s.

A
p
p
lic
at
io
n
N
o
te
s

C
h
ar
ac
te
rs

d
e
fin
e
d
st
e
p
s
an
d
p
u
t

th
e
m

in
to

an
o
rd
e
re
d

se
q
u
e
n
ce

C
h
ar
ac
te
rs

sh
o
w
e
d
cl
e
ar

e
x
am

-

p
le
s
o
f
re
p
e
ti
ti
o
n
,
lo
o
p
in
g,
o
r

it
e
ra
ti
n
g
th
ro
u
gh

a
se
t

C
h
ar
ac
te
rs

ad
d
e
d
co
n
d
it
io
n
al
s,

va
ri
ab
le
s,
o
r
lo
gi
ca
l
e
x
p
re
s-

si
o
n
s
to

th
e
ir
se
q
u
e
n
ce

o
f

st
e
p
s
(w

it
h
o
r
w
it
h
o
u
t

re
p
e
ti
ti
o
n
)

D
e
b
u
gg
in
g

R
e
co
gn
iz
e
w
h
e
n
in
st
ru
ct
io
n
s
d
o
n
o
t
co
rr
e
sp
o
n
d
to

ac
ti
o
n
s.

R
e
m
o
ve

an
d
fix

e
rr
o
rs
.

A
p
p
lic
at
io
n
N
o
te
s

C
h
ar
ac
te
rs

e
n
ga
ge
d
in

tr
o
u
b
le
sh
o
o
ti
n
g
o
r
d
e
b
u
gg
in
g
u
n
e
x
p
e
ct
e
d
b
e
h
av
io
r

N
o
te
.
*m

o
d
el
/r
e
p
re
se
n
ta
ti
o
n
¼
ca
n
b
e
co
n
ce
p
tu
al
,
m
at
h
e
m
at
ic
al
,
m
e
ch
an
ic
al
,
te
x
tu
al
,
gr
ap
h
ic
al
,
e
tc
.

A
d
ap
te
d
fr
o
m

A
n
ge
li
e
t
al
.
(2
0
1
6
).

12



interest grade-range was within its CT competency grade-range, then the aver-
age student who reads the book is likely to be within the grade-range in the
framework, so we considered the text “on-target.” If there was not 50% overlap

and an element presented itself at a grade band lower than that grade level
interest band of the book, then the competence was considered “foundational.”
If there was not 50% overlap and an element presented itself at a grade band

higher than the grade level interest band of the book, then the competence was
considered “advanced.”

Results

Figure 1 shows the number of books demonstrating each number of elements.
Only one book demonstrated only one element, and 19 of the 27 books (70%)
demonstrated 3 or more distinct elements. Six books demonstrated all 5 ele-

ments: Hello Ruby: Adventures in Coding (Liukas, 2015), How to Code a
Sandcastle (Funk & Palacios, 2018), Rox’s Secret Code (Lecocq et al., 2018),
Secret Coders: Paths & Portals (Yang & Holmes, 2016), Secret Coders: Secrets

and Sequences (Yang & Holmes, 2017a), and Secret Coders: Robots and Repeats
(Yang & Holmes, 2017b).

Figure 2 shows the frequency with which each CT element appeared in the
books. Abstraction appeared the most frequently (23 books), and generalization
appeared the least (10 books). The distribution among “foundational,” “target,”

and “advanced” was most even in abstraction and algorithmic thinking because

Figure 1. Number of Books Demonstrating a Given Number of Elements.

Ballard and Haroldson 13



these have the most granularity in the framework, having separate competency

targets for grades K-2, 3-4, and 5-6. Generalization and decomposition are

dominated by “on target” examples because the wide grades 3-6 competency

band in each made it less likely that any particular group of students would be

outside the CT competency grade-range. The framework includes only one set of

competency targets for debugging, applying to grades K-6, so all examples are

considered “on target.”
Figures 3 and 4 show the title of each book with its interest grade-range (the

black bar) and the CT competency ranges (other-colored bars) represented in

the book. The vertical gridlines separate grade levels. The books are arranged by

increasing interest grade-range. A given color of bar will only appear if the

corresponding CT element was represented in the book, and will stretch between

the lowest grade-level and highest grade-level from the range specified in the

framework (Angeli et al., 2016) as outlined in Table 2. Figure 3 shows the books

with interest ranges beginning in grades K-2, and Figure 4 shows the books with

interest ranges beginning in grades 3-6.

Abstraction

We found demonstrated examples of abstraction in 23 of our 27 books,

more than any other element. Of those, 10 were foundational for the interest

Figure 2. Number of Books Including Each Element.

14 Journal of Educational Computing Research 0(0)



grade-range, 8 aligned with grade-range targets, and 5 were advanced for the
interest grade-range.

How to Code a Rollercoaster (Funk & Palacios, 2019) is an excellent example
of a book that presents abstraction to younger readers. It carefully explains

multiple models used in computer science, including variables, booleans, and
conditionals, by demonstration. The main characters Pearl and Pascal make

decisions based on conditions and track their progress as they enjoy a theme

park, updating the reader at every step in terms of these abstractions. The book

Figure 3. Interest and CT Competency Ranges (Interest Grade Range K-3).

Ballard and Haroldson 15



meets targets in the grades 3-4 band, as it not only demonstrates abstractions
but discusses their use in detail.

Ava in Code Land (Hitchman et al., 2020) does something similar, showing a
fantastic land of objects with attributes that can be read and edited (alongside

Figure 4. Interest and CT Competency Ranges (Interest Grade Range 3–6).

16 Journal of Educational Computing Research 0(0)



snippets of real Javascript code). This book meets targets in the grades K-2

band, with a concrete and limited demonstration of simple abstraction.
Secret Coders (Yang & Holmes, 2015), the first volume in the series, provides

a strong example of abstraction at a foundational level; the book is written for

grades 3-7 and the abstraction is in the 3-4 CT competency band. Eni realizes the

strange birds around school have eyes that display binary numbers, a system

made of only two numbers, 0 and 1. Eni teaches Hopper about binary using

pennies to model when the eyes on the robot birds are open (column full of

pennies) or closed (column empty).

Generalization

We found demonstrated examples of generalization in 10 of our 27 books,

making it the least-represented element in our books. Of those, 2 were founda-

tional for the interest grade-range, 6 aligned with grade-range targets, and 2

were advanced for the interest grade-range. The inclusion of a broader band for

this CT practice in the framework (a 3-6 band) made it more likely for the CT

grade-range target to overlap with the interest grade-range. This effect accounts

for the large proportion of examples which were considered aligned with grade-

range targets. For younger readers in grades K-3, How to Code a Sandcastle

(Funk & Palacios, 2018) provides a straightforward advanced example of gen-

eralization at the 3-6 grade band when Pearl re-uses the code for her sandcastle

to solve a new problem. She adds on steps for building a moat to create a

sandcastle kingdom.
One clear example of generalization for older readers (grades 3-7) happens in

Secret Coders: Paths and Portals (Yang & Holmes, 2016). Hopper and Eni reuse

the OpenSesame program that has the turtle walk a hexagon to develop a pro-

gram (now called HopperRocks) that has the turtle walk a hexagon with lines

coming out of the corners. This text then demonstrates how algorithmic think-

ing and debugging work together, building on the generalized solution. They

forget to have the turtle turn around at the end of the line and have to fix the

program to include a 180 turn.
In Secret Coders: Robots and Repeats (Yang & Holmes, 2017b), Mr. Bee asks

the Coders to rework the programs for DrawTriangle and DrawSquare to draw

a pentagon. Josh realizes they need to adjust the number of sides in the Repeat

line. Hopper and Eni determine how to calculate the change in angle for the

turns in a pentagon. Mr. Bee then pushes them to “write a program that can

draw a regular polygon with any number of sides” (Yang & Holmes, 2017b, p.

77). This demonstrates one of many examples of two elements interwoven

together: the students apply generalization and abstraction to develop a pro-

gram that accepts a parameter.

Ballard and Haroldson 17



Decomposition

We found demonstrated examples of decomposition in 21 of our 27 books, tying

for second most represented element with algorithmic thinking. Of those, 6 were

foundational for the interest grade-range, 12 aligned with grade-range targets,

and 3 were advanced for the interest grade-range. Like with generalization, a

broader band of grades 3-6 made overlap with the interest grade-range more

likely. This leads to a large proportion of examples aligning with grade-range

targets. A good example of decomposition is presented in Ara the Star Engineer

(Singh & Konak, 2018), in which Ara decides to count the stars in the universe

and consults with several professional engineers to break the problem into

smaller tasks, then assemble the smaller solutions they develop into a complete

program for her robot. This places the book clearly in the grades 3-6 band for

decomposition as outlined in the K-6 Framework.
Another example, in a book targeted at older students, is in Power Coders:

Robotriot! (Roza & Gennari, 2020). In this book, the Power Coders assist anoth-

er student who is building a battle robot for a competition. They examine each

robot task in terms of individual commands to robot parts, then discuss the

effects of the basic functions on the overall robot behavior (assembling the

smaller pieces into a complete, functional program for the robot). Like in Ara

the Star Engineer, the detailed breaking down of tasks and then assembly of

simpler parts into a whole meets the requirements for the grade 3-6 band for

decomposition.
In Hello Ruby: Adventures in Coding (Liukas, 2015), Ruby demonstrates

decomposition in the grade 3-6 band several times in the book, notably when

she plans her adventure in parts at the beginning of the day and when she helps a

group of foxes develop a plan for gardening by starting with basic tasks.

Algorithmic Thinking

We found demonstrated examples of algorithmic thinking in 20 of our 27 books,

tying for second most represented element with decomposition. Of those, four

were foundational for the interest grade-range, nine aligned with grade-range

targets, and seven were advanced for the interest grade-range. For example, in

Gabi’s Fabulous Functions (Karanja & Whitehouse, 2019c), Adi and Gabi apply

the steps of recipes to understand functions. They have to define and order the

steps to gather the ingredients, berries, yogurt, and granola (input) and assemble

them together (function) to produce the finished parfait (output). Then in Adi’s

Perfect Patterns and Loops (Karanja & Whitehouse, 2019b), Adi and Gabi learn

about the repeating routes the mail carrier and bus driver follow. After they put

together the sequence of steps, they apply the concept of loops to their train’s

route (move to station, drop off, pick up, repeat).

18 Journal of Educational Computing Research 0(0)



The Power Coders, in Power Coders: A Peculiar Sequence of Events (Vink &
Gennari, 2019a), realize the time loop they are in that involves one of their

classmates getting bullied at the end of class is just like a coding “while”

loop. They demonstrate algorithmic thinking by ordering the events leading
up to the bullying, and they then figure out the exit condition of the loop in

order to stop both the loop and the bullying.
In Power Coders: The Missing Programmer (Bowen & Gennari, 2019b), the

Power Coders and Ms. Jones use a flowchart to assist them with the mystery.
The flowchart is a logical expression that helps them understand the data inputs,

variables, and decisions for the program the missing programmer left them. The

flowchart also helps the group determine where the error is (a line of code is
missing), a clear example of the interaction connection of the elements of algo-

rithmic thinking and debugging.

Debugging

We found demonstrated examples of debugging in 15 of our 27 books, making it

the second least-frequently occurring element in the books. As the framework
defines only one broad (K-6) band for debugging, all examples overlapped with

interest grade-ranges enough to be considered aligned with grade-range targets.

Because of the wide competency band for this element, debugging bands cover
the entire range in Figures 3 and 4.

An example of debugging comes from Power Coders: Huey’s GUI (Bowen &

Gennari, 2019a). Grace looks at the code for ordering cupcakes and finds a

problem with the code; rather than getting the cupcake flavors they ordered,
everyone gets carrot cake.

For younger readers, Rox’s Secret Code (Lecocq et al., 2018) shows the

debugging process when Rox’s chore robot goes berserk and begins destroying
the city in an effort to organize everything in its path, including cars, buildings,

and people. Rox discusses the root of the behavior with a friend and formulates

a plan, first devising a way to distract the robot (based on her knowledge of its

behavior) and then patching its code with the code from another robot. Rox
demonstrates the thought process of debugging and the attitude of perseverance

that students need to fix problems in their own programs.
Hello Ruby: Journey Inside the Computer (Liukas, 2017) uses basic debugging

as its entire premise, following Ruby as she explores the interior of her computer

and rules out reasons her mouse is not working.

Discussion

In this analysis, 27 children’s books and graphic novels were analyzed for ele-

ments of CT as outlined in the curriculum framework for K-6 (Angeli et al.,
2016). We sought to answer the guiding questions: “What elements of CT are

Ballard and Haroldson 19



represented in the books?” and “what grade-level CT competencies are repre-

sented in the books?” From this analysis it became apparent that the books

represented CT at three different levels relative to the interest grade-ranges of

the books (foundational, on-target, advanced). We found a variety of CT ele-

ments and competency grade-ranges for books at every interest level. We argue

these books provide opportunities for priming students for learning CT and

enhancing curriculum with CT elements, as well as opportunities for differenti-

ated learning based on student interests and readiness in CT. Table 3 shows our

findings of which CT elements are included at what competency level in each

text (the table is arranged by interest level for easy selection of appropriate texts

for a given group of students).

CT Integration With Literature: Non-Programming Unplugged Resource

The results of this analysis show that children’s literature demonstrates elements

of CT at varying competency levels. Books present students with a non-

programming unplugged resource to expose them to the ideas, vocabulary,

symbols, and skills of CT as they build that foundation (Lu & Fletcher,

2009). Teachers can choose how to integrate instruction with elements of CT

according to the three levels of integration: exist, enhance, and extend

(Waterman et al., 2020). Whether teachers work within the disciplines they

are already teaching to make existing lessons more CT-infused lessons or devel-

op new CT lessons, children’s books offer examples, scenarios, and problems

related to CT for use in the classroom.
Teachers are more likely to integrate CT activities if they are accessible and

use familiar tools, thus lessening the cognitive load (Huang & Looi, 2021;

Waterman et al., 2020). Given the priority of reading as a core subject in the

elementary grades, teachers are used to weaving books into their lessons.

Teachers do not have to take on more cognitive load with books because they

represent a familiar tool. In this way teachers can instead focus on whether to

integrate books with an existing lesson to highlight an aspect of CT or enhance a

lesson by adding in books as another way to show connections. In addition,

some of the book series like Secret Coders, Hello Ruby, and Adi/Gabi (see

Appendix) offer additional activities at the end of the story that teachers can

integrate to enhance or extend their lessons. If students want to take the books

home, they can do these unplugged exercises with their families without the need

for a computer.

Personalizing CT Learning

Accommodating the different ways students learn is referred to as differentia-

tion (Tomlinson & Allan, 2000). Teachers personalize the learning for students

by differentiating the content students will learn (instruction), the activities

20 Journal of Educational Computing Research 0(0)



T
a
b
le

3
.
C
o
m
p
u
ta
ti
o
n
al
T
h
in
k
in
g
C
o
m
p
e
te
n
ci
e
s
b
y
B
o
o
k
.

B
o
o
k
T
it
le

In
te
re
st

G
ra
d
e

R
an
ge

A
b
st
ra
ct
io
n

G
e
n
e
ra
liz
at
io
n

D
e
co
m
p
o
si
ti
o
n

A
lg
o
ri
th
m
ic

T
h
in
k
in
g

D
e
b
u
gg
in
g

A
d
a
B
yr
o
n
L
o
ve
la
ce

an
d
th
e
T
h
in
k
in
g
M
ac
h
in
e

(W
al
lm
ar
k
&
C
h
u
,
2
0
1
5
)

0
–
3

T
gt

�
T
gt

�

A
va

in
C
o
d
e
L
an
d

(H
it
ch
m
an
,
C
u
lle
n
,
&
M
ar
ti
n
,
2
0
2
0
)

0
–
3

T
gt

�
T
gt

�
T
gt

�

H
e
llo

R
u
b
y:
A
d
ve
n
tu
re
s
in

C
o
d
in
g
(1
)

(L
iu
k
as
,
2
0
1
5
)

0
–
3

A
d
v
*

T
gt

�
A
d
v
*

A
d
v
*

T
gt

�

H
e
llo

R
u
b
y:
Jo
u
rn
ey

In
si
d
e
th
e
C
o
m
p
u
te
r
(2
)

(L
iu
k
as
,
2
0
1
7
)

0
–
3

T
gt

�
T
gt

�

H
o
w

to
C
o
d
e
a
R
o
lle
rc
o
as
te
r

(F
u
n
k
&
P
al
ac
io
s,
2
0
1
9
)

0
–
3

A
d
v
*

A
d
v
*

H
o
w

to
C
o
d
e
a
Sa
n
d
ca
st
le

(F
u
n
k
&
P
al
ac
io
s,
2
0
1
8
)

0
–
3

A
d
v
*

A
d
v
*

A
d
v
*

A
d
v
*

T
gt

�

R
o
x
’s
Se
cr
e
t
C
o
d
e
(L
e
co
cq
,
A
rc
h
am

b
au
lt
,

vo
n
In
n
e
re
b
n
e
r,
&
D
e
n
go
,
2
0
1
8
)

0
–
3

T
gt

�
A
d
v
*

T
gt

�
T
gt

�
T
gt

�

A
ra

th
e
St
ar

E
n
gi
n
e
e
r

(S
in
gh

&
K
o
n
ak
,
2
0
1
8
)

0
–
4

A
d
v
*

A
d
v
*

T
gt

�

A
d
i
So

rt
s
w
it
h
V
ar
ia
b
le
s

(K
ar
an
ja
&
W

h
it
e
h
o
u
se
,
2
0
1
9
a)

1
–
3

T
gt

�
T
gt

�

A
d
i’s

P
e
rf
e
ct

P
at
te
rn
s
an
d
L
o
o
p
s

(K
ar
an
ja
&
W

h
it
e
h
o
u
se
,
2
0
1
9
b
)

1
–
3

T
gt

�
T
gt

�

G
ab
i’s

Fa
b
u
lo
u
s
Fu
n
ct
io
n
s

(K
ar
an
ja
&
W

h
it
e
h
o
u
se
,
2
0
1
9
c)

1
–
3

A
d
v
*

T
gt

�
T
gt

�

G
ab
i’s

If
/T
h
e
n
G
ar
d
e
n

(K
ar
an
ja
&
W

h
it
e
h
o
u
se
,
2
0
1
9
d
)

1
–
3

T
gt

�
T
gt

�
T
gt

�

A
C
o
d
in
g
M
is
si
o
n
(A
d
ve
n
tu
re
s
in

M
ak
e
rs
p
ac
e
)

(M
ill
e
r,
H
o
e
n
a,
&
B
ro
w
n
,
2
0
1
9
)

3
–
5

Fn
d
+

Fn
d
+

Fn
d
+

Se
cr
e
t
C
o
d
e
rs

(1
)
(Y
an
g
&
H
o
lm
e
s,
2
0
1
5
)

3
–
7

Fn
d
+

Fn
d
+

T
gt

�
Fn
d
+

3
–
7

Fn
d
+

T
gt

�
T
gt

�
A
d
v
*

T
gt

�

(c
o
n
ti
n
u
e
d
)

21



T
a
b
le

3
.
C
o
n
ti
n
u
e
d
.

B
o
o
k
T
it
le

In
te
re
st

G
ra
d
e

R
an
ge

A
b
st
ra
ct
io
n

G
e
n
e
ra
liz
at
io
n

D
e
co
m
p
o
si
ti
o
n

A
lg
o
ri
th
m
ic

T
h
in
k
in
g

D
e
b
u
gg
in
g

Se
cr
e
t
C
o
d
e
rs

(2
):
P
at
h
s
&
P
o
rt
al
s

(Y
an
g
&
H
o
lm
e
s,
2
0
1
6
)

Se
cr
e
t
C
o
d
e
rs

(3
):
Se
cr
e
ts

&
Se
q
u
e
n
ce
s

(Y
an
g
&
H
o
lm
e
s,
2
0
1
7
a)

3
–
7

A
d
v
*

T
gt

�
T
gt

�
A
d
v
*

T
gt

�

Se
cr
e
t
C
o
d
e
rs

(4
):
R
o
b
o
ts

&
R
e
p
e
at
s

(Y
an
g
&
H
o
lm
e
s,
2
0
1
7
b
)

3
–
7

Fn
d
+

T
gt

�
T
gt

�
Fn
d
+

T
gt

�

Se
cr
e
t
C
o
d
e
rs

(5
):
P
o
ti
o
n
s
&
P
ar
am

e
te
rs

(Y
an
g
&
H
o
lm
e
s,
2
0
1
8
a)

3
–
7

Fn
d
+

T
gt

�
T
gt

�
A
d
v
*

Se
cr
e
t
C
o
d
e
rs

(6
):
M
o
n
st
e
rs

&
M
o
d
u
le
s

(Y
an
g
&
H
o
lm
e
s,
2
0
1
8
b
)

3
–
6

T
gt

�
T
gt

�
T
gt

�
T
gt

�

P
o
w
e
r
C
o
d
e
rs
:
A

P
e
cu
lia
r
Se
q
u
e
n
ce

o
f
E
ve
n
ts

(V
in
k
&
G
e
n
n
ar
i,
2
0
1
9
a)

4
–
6

Fn
d
+

Fn
d
+

T
gt

�
T
gt

�

P
o
w
e
r
C
o
d
e
rs
:
H
u
ey
’s
G
U
I

(B
o
w
e
n
&
G
e
n
n
ar
i,
2
0
1
9
a)

4
–
6

Fn
d
+

Fn
d
+

T
gt

�

P
o
w
e
r
C
o
d
e
rs
:
T
h
e
C
h
at
b
o
t
M
ys
te
ry

(B
o
w
e
n
&
G
e
n
n
ar
i,
2
0
1
9
a)

4
–
6

Fn
d
+

P
o
w
e
r
C
o
d
e
rs
:
T
h
e
Se
cr
e
t
o
f
th
e
Fi
ve

B
u
gs

(M
cK

ay
&
G
e
n
n
ar
i,
2
0
1
9
b
)

4
–
6

Fn
d
+

T
gt

�

P
o
w
e
r
C
o
d
e
rs
:
T
h
e
M
is
si
n
g
P
ro
gr
am

m
e
r

(B
o
w
e
n
&
G
e
n
n
ar
i,
2
0
1
9
b
)

4
–
6

Fn
d
+

Fn
d
+

T
gt

�
T
gt

�

P
o
w
e
r
C
o
d
e
rs
:
T
h
e
Si
m
u
la
te
d
Fr
ie
n
d

(V
in
k
&
G
e
n
n
ar
i,
2
0
1
9
c)

4
–
6

T
gt

�
T
gt

�

P
o
w
e
r
C
o
d
e
rs
:
D
ay

o
f
th
e
G
am

e
r

(V
in
k
&
G
e
n
n
ar
i,
2
0
1
9
b
)

5
–
8

Fn
d
+

Fn
d
+

T
gt

�

P
o
w
e
r
C
o
d
e
rs
:
R
o
b
o
tr
io
t!

(R
o
za

&
G
e
n
n
ar
i,
2
0
2
0
)

5
–
8

Fn
d
+

T
gt

�
T
gt

�

Fn
d
¼
Fo

u
n
d
at
io
n
al
,
T
gt
¼
T
ar
ge
t,
A
d
v
¼
A
d
va
n
ce
d
.

22



students will engage in (curriculum), or the products they produce to show what
they know (assessment) (Sousa & Tomlinson, 2018). Personalization of the
learning for students has shown to be effective in improving the CT skills of
students in non-programming approaches (Hooshyar et al., 2020) and is a factor
attributed to student success with computing experiences (Israel et al., 2015).
Viewing literature as another non-programming approach to exposing students
to CT, with its varying reading levels and representation of CT competencies,
offers support for different learners.

Differentiation happens according to readiness and student interest (Doubet
& Hockett, 2018). We argue that because the books in this analysis have a range
of interest levels and CT competencies, teachers can differentiate the books to
meet the needs of their students based on reading level and CT competency.
They can personalize the books to students’ interests and capture their motiva-
tion using the interest ranges for the books and their overall storylines and
characters. Books like Rox’s Secret Code (Lecocq et al., 2018) and Hello
Ruby: Adventures in Coding (Liukas, 2015) will draw emerging readers into
their stories with their colorful images and persistent, problem solving
characters.

Teachers can personalize the books based on the students’ incoming CT
knowledge using the information about whether the grade level competencies
are foundational, on target, or advanced. For younger readers who may have
had less exposure to CT, using books with evidence of CT competencies that are
foundational will help to prime students’ understanding as well as increase their
knowledge of key vocabulary, both considered strategies for building CT skills
before programming (Huang & Looi, 2021; Lu & Fletcher, 2009). For students
who are more confident in their CT skills, teachers can direct them towards a
series like Secret Coders (see Appendix) which represents CT competencies on
target with a sprinkle of advanced competencies.

Teachers can engage in tiering, a strategy for differentiation, that involves
creating different levels within a task based on students’ readiness. Doubet and
Hockett (2018) explain that teachers “can differentiate content by pulling
resources that vary in complexity” (p. 209). With literature covering elements
of CT at varying levels of competency, this is certainly possible. Students can
read books based on their CT readiness in addition to their reading interest.
Engaging in this level of personalization meets the needs of the learners.
Knowing that readiness and interest change over time, teachers can use the
books fluidly, adjusting as needed.

As an example, an emerging reader in 1st grade who has been exposed to
computers and Scratch Jr. would do well with the How to Code books (see
Appendix). They are targeted for the interests of K-3 and full of advanced
examples in all elements of CT. Additionally, they use models that students
can relate to: building sandcastles and using maps. A 5th grader with a passion
for graphic novels and a very recent exposure to computer science would do well

Ballard and Haroldson 23



to start with the Power Coders series (see Appendix). The books are often on
target with the CT elements and incorporate clear examples with accompanying
pictures and diagrams to support deeper learning. Teachers of younger students
looking to read out loud and incorporate whole class discussions to develop
skills about predicting what happens next and identifying the process of problem
solving should look to Ava in Code Land (Hitchman et al. 2020) and Ara the Star
Engineer (Singh & Konak, 2018).

For teachers looking to provide a more extensive coverage of CT, Rox’s
Secret Code (Lecocq et al., 2018), Hello Ruby: Adventures in Coding (Liukas,
2015), and How to Code a Sandcastle (Funk & Palacios, 2018) include examples
of all five elements of CT at target and advanced levels. For older readers, books
2, 3, and 4 from the Secret Coders series provide full coverage of all areas of CT.
In this way, teachers can select which elements they want to highlight with
options to highlight all of them. Teachers can use one book to teach many
elements or use multiple books to focus on one element.

Limitations

This analysis made use of the computational thinking curriculum framework for
K-6 developed by Angeli et al. (2016), and so the scope of the analysis is limited
by the scope of the framework itself. The framework uses varied granularity in
its treatment of the CT elements (for example, it lists the same debugging bench-
marks for grades K-6), and in adopting the framework this analysis included the
same variance in the width of age-ranges. In addition, the framework is focused
on curriculum writing and so is prescriptive, but the analysis of existing texts is
necessarily descriptive, so a small amount of interpretation and adaptation of
the framework was necessary, as detailed in Table 2.

This analysis examined how the available children’s literature represents CT
elements and competencies as outlined in the framework. The scope of the
guiding questions does not extend to specific instructional design or integration
of these texts into lessons. The books by themselves cannot be expected to teach
CT to students, but they can be used to help “prime” students (Huang & Looi,
2021) and help teachers enhance their CT or CT-integrated instruction
(Waterman et al., 2020).

The framework lists competencies for grades K-6. To expand this research to
the entire K-12 range, a framework that includes grades 7-12 would be required.
In addition, a survey of books for middle and high school students would
require more work in categorizing and characterizing these texts. Books written
for grades 7-12 students are very different from the short-form picture books for
grades K-6 in length, density and presentation of content, and narrative style. At
the very least, the study would need to adapt to the fact that substantially
greater length and density imply that these books would often incorporate
many or all of the CT elements.

24 Journal of Educational Computing Research 0(0)



To list texts’ interest grade-ranges, we relied on published recommendations
from the publishers. When raw age instead of grade-range was used, we con-
verted using the standard United States age-ranges. While some databases of
books publish age-range recommendations, we found that they were inconsis-
tent (sometimes recommending books from the same series to widely different
audiences), whereas publishers showed general consistency. However, we must
acknowledge that there are certainly at least minor differences between publish-
ers in how they determine age-range recommendations.

Conclusion

Teaching CT is foundational to computer science education and a key compo-
nent in CS standards and non-CS standards across the United States. More and
more teachers are being asked to teach CT with universities integrating CT in
their teacher preparation programs. Successful implementation of CT involves
strategies that support teachers, weaving CT into their existing curricula to
enhance what they are already teaching, preferably using non-programming
unplugged approaches as those are perceived as accessible and familiar. The
books from this analysis offer a non-programming unplugged resource, and
one that is familiar for elementary teachers. In addition, children’s literature
affords opportunities for teachers to personalize the learning for students based
on CT readiness and reading level.

Appendix

References for Children’s Books

Bowen, L. A., & Gennari, J. (2019a). Power coders: Huey’s GUI. PowerKids
Press.

Bowen, L. A., & Gennari, J. (2019b). Power coders: The missing programmer.
PowerKids Press.

Funk, J., & Palacios, S. (2018). How to code a sandcastle. Viking.
Funk, J., & Palacios, S. (2019). How to code a rollercoaster. Viking.
Hitchman, J., Cullen, G., & Martin, L. (2020). Ava in code land. Feiwel and

Friends.
Karanja, C., & Whitehouse, B. (2019a). Adi sorts with variables. Picture

Window Books.
Karanja, C., & Whitehouse, B. (2019b). Adi’s perfect patterns and loops.

Picture Window Books.
Karanja, C., & Whitehouse, B. (2019c). Gabi’s fabulous functions. Picture

Window Books.
Karanja, C., & Whitehouse, B. (2019d). Gabi’s if/then garden. Picture

Window Books.

Ballard and Haroldson 25



Lecocq, M., Archambault, N., von Innerebner, J., & Dengo, R. (2018). Rox’s
secret code. POW!.

Liukas, L. (2015). Hello Ruby: Adventures in coding. Feiwel and Friends.
Liukas, L. (2017). Hello Ruby: Journey inside the computer. Feiwel and

Friends.
McKay, C. R., & Gennari, J. (2019a). Power coders: The chatbot mystery.

PowerKids Press.
McKay, C. R., & Gennari, J. (2019b). Power coders: The secret of the five

bugs. PowerKids Press.
Miller, S. M., Hoena, B., & Brown, A. (2019). A coding mission (Adventures

in Makerspace). Stone Arch Books
Roza, G., & Gennari, J. (2020). Power coders: Robotriot! PowerKids Press.
Singh, K., & Konak, I. (2018). Ara the star engineer. Page Two Books.
Vink, A., & Gennari, J. (2019a). Power coders: A peculiar sequence of events.

PowerKids Press.
Vink, A., & Gennari, J. (2019b). Power coders: Day of the gamer. PowerKids

Press.
Vink, A., & Gennari, J. (2019c). Power coders: The simulated friend.

PowerKids Press.
Wallmark, L., & Chu, A. (2015). Ada Byron Lovelace and the thinking

machine. Creston Books.
Yang, G. L., & Holmes, M. (2015). Secret coders. First Second.
Yang, G. L., & Holmes, M. (2016). Secret coders: Paths & portals. First

Second.
Yang, G. L., & Holmes, M. (2017a). Secret coders: Secrets & sequences. First

Second.
Yang, G. L., & Holmes, M. (2017b). Secret coders: Robots & repeats. First

Second.
Yang, G. L., & Holmes, M. (2018a). Secret coders: Potions & parameters.

First Second.
Yang, G. L., & Holmes, M. (2018b). Secret coders: Monsters & modules. First

Second.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research,

authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support for the research, author-

ship, and/or publication of this article: This work was supported by the National Science

Foundation under Award #1660135 and the National Science Foundation under Award

#1439768. Special thanks to Dr. Jaime Ballard and Dr. Earl Blodgett, who provided

feedback on earlier drafts.

26 Journal of Educational Computing Research 0(0)



ORCID iDs

Evan David Ballard https://orcid.org/0000-0002-5554-8626
Rachelle Haroldson https://orcid.org/0000-0002-5375-846X

References

Code.org Advocacy Coalition, CSTA, & ECEP. (2019). 2019 State of Computer Science

Education. https://advocacy.code.org/2019_state_of_cs.pdf
Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J.

(2016). A K-6 computational thinking curriculum framework: Implications for teach-
er knowledge. Educational Technology & Society, 19(3), 47–57.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is
involved and what is the role of the computer science education community? ACM

Inroads, 2(1), 48–54.
Bell, P. (2001). Content analysis of visual images. In T. V. Leeuwen, & C. Jewitt (Eds.),

Handbook of visual analysis (pp. 10–34). SAGE Publications.
Bell, T., Witten, I., & Fellows, M. (1998). Computer science unplugged: Off-line activities

and games for all ages. Computer Science Unplugged. http://jmvidal.cse.sc.edu/
library/bell98a.pdf

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational think-
ing and tinkering: Exploration of an early childhood robotics curriculum. Computers

& Education, 72, 145–157.
Brackmann, C. P., Román-González, M., Robles, G., Moreno-L�eon, J., Casali, A.,

Barone, D. (2017). Development of computational thinking skills through unplugged
activities in primary school. In Proceedings of 12th Workshop in Primary and Secondary

Computing Education (pp. 65–72). ACM. https://doi.org/10.1145/3137065.3137069
Cabrera, L. (2019). Teacher preconceptions of computational thinking: A systematic

literature review. Journal of Technology and Teacher Education, 27(3), 305–333.
Caeli, E. N., & Yadav, A. (2020). Unplugged approaches to computational thinking: A

historical perspective. TechTrends, 64(1), 29–36. https://doi.org/10.1007/s11528-019-
00410-5

Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education. 5th ed.
RoutledgeFalmer.

College Board. (2021a, February 21). AP central: AP computer science A. https://apcen
tral.collegeboard.org/courses/ap-computer-science-a/course

College Board. (2021b, January 5). AP central: AP computer science principles. https://
apcentral.collegeboard.org/courses/ap-computer-science-principles?course=ap-com

puter-science-principles
Computer Science Teachers Association. (2017). CSTA K-12 Computer Science

Standards, Revised 2017. http://www.csteachers.org/standards.
CS Unplugged. (2021). Computer science without a computer. https://csunplugged.org/en/
Denning, P. J. (2017). Remaining trouble spots with computational thinking.

Communications of the ACM, 60(6), 33–39.
Doubet, K. J., & Hockett, J. A. (2018). Differentiation in the elementary grades: Strategies

to engage and equip all learners. ASCD.

Ballard and Haroldson 27

https://orcid.org/0000-0002-5554-8626
https://orcid.org/0000-0002-5554-8626
https://orcid.org/0000-0002-5375-846X
https://orcid.org/0000-0002-5375-846X
https://advocacy.code.org/2019_state_of_cs.pdf
http://jmvidal.cse.sc.edu/library/bell98a.pdf
http://jmvidal.cse.sc.edu/library/bell98a.pdf
https://doi.org/10.1145/3137065.3137069
https://doi.org/10.1007/s11528-019-00410-5
https://doi.org/10.1007/s11528-019-00410-5
https://apcentral.collegeboard.org/courses/ap-computer-science-a/course
https://apcentral.collegeboard.org/courses/ap-computer-science-a/course
https://apcentral.collegeboard.org/courses/ap-computer-science-principles?course=ap-computer-science-principles
https://apcentral.collegeboard.org/courses/ap-computer-science-principles?course=ap-computer-science-principles
https://apcentral.collegeboard.org/courses/ap-computer-science-principles?course=ap-computer-science-principles
http://www.csteachers.org/standards
https://csunplugged.org/en/


Galda, L., Ash, G. E., & Cullinan, B. E. (2000). Research on children’s literature. In M.
L. Kamil, P. B. Mosenthal, P. D. Pearson, & R. Barr (Eds.), Handbook of reading

research: Volume III (pp. 351–381). Erlbaum.
Hampton, K. N., Fernandez, L., Robertson, C. T., & Bauer, J. M. (2020). Broadband and

student performance gaps. In H. James, & B. Mary (Eds.), Quello Center, Michigan
State University. https://doi.org/10.25335/BZGY-3V91

Haroldson, R. & Ballard, D. (2021). Alignment and representation in computer science:
an analysis of picture books and graphic novels for K-8 students. Computer Science

Education, 31(1), 4–29. https://doi.org/10.1080/08993408.2020.1779520.
Hestness, E., Ketelhut, J. D., McGinnis, R., & Plane, J. (2018). Professional knowledge

building within an elementary teacher professional development experience on com-
putational thinking in science education. Journal of Technology and Teacher

Education, 26(3), 411–435.
Hooshyar, D., Pedaste, M., Yang, Y., Malva, L., Hwang, G., Wang, M., Lim, H., &

Delev, D. (2020). From gaming to computational thinking: An adaptive educational
computer game-based learning approach. Journal of Educational Computing Research,
1–27. https://doi.org/10.1177/0735633120965919

Huang, W., & Looi, C. K. (2021). A critical review of literature on “unplugged” ped-
agogies in K-12 computer science and computational thinking education. Computer

Science Education, 31(1), 83–111. https://doi.org/10.1080/08993408.2020.1789411
International Society for Technology in Education & Computer Science Teachers

Association. (2011). Operational definition of computational thinking for K–12 educa-

tion. National Science Foundation.
Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all

learners in school-wide computational thinking: A cross-case qualitative analysis.
Computers & Education, 82, 263–279.

K-12 Computer Science Framework. (2016). K-12 Computer Science Framework. http://
www.k12cs.org

Kelly, L. B. (2018). An analysis of award-winning science trade books for children: Who
are the scientists, and what is science? Journal of Research in Science Teaching, 55(8),
1188–1210. https://doi.org/10.1002/tea.21447

Ketelhut, D. J., Mills, K., Hestness, E., Cabrera, L., Plane, J., & McGinnis, J. R. (2020).
Teacher change following a professional development experience in integrating com-
putational thinking into elementary science. Journal of Science Education and

Technology, 29(1), 174–187. https://doi.org/10.1007/s10956-019-09798-4
Lee, I., Martin, F., & Apone, K. (2014). Integrating computational thinking across the

K-8 curriculum. ACM Inroads, 5(4), 64–71.

Lee, V. R., & Recker, M. (2018). Paper circuits: A tangible, low threshold, low cost entry
to computational thinking. TechTrends, 62(2), 197–203. https://doi.org/10.1007/
s11528-017-0248-3

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational thinking. In
Proceedings of the 40th ACM technical symposium on computer science education

(pp. 260–264). ACM.
Massey, S. R. (2015). The multidimensionality of children’s picture books for upper

grades. English Journal, 104(5), 45–58.

28 Journal of Educational Computing Research 0(0)

https://doi.org/10.25335/BZGY-3V91
https://doi.org/10.1080/08993408.2020.1779520
https://doi.org/10.1177/0735633120965919
https://doi.org/10.1080/08993408.2020.1789411
http://www.k12cs.org
http://www.k12cs.org
https://doi.org/10.1002/tea.21447
https://doi.org/
https://doi.org/10.1007/s11528-017-0248-3
https://doi.org/10.1007/s11528-017-0248-3


National Governors Association Center for Best Practices, Council of Chief State School
Officers. (2010). Common core state standards English language arts. National
Governors Association Center for Best Practices, Council of Chief State School
Officers.

NGSS Lead States. (2013). Next generation science standards: For states, by states. The
National Academies Press.

Palts, T., & Pedaste, M. (2020). A model for developing computational thinking skills.
Informatics in Education, 19(1), 113–128.

Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). SAGE
Publications.

Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition.
https://eprints.soton.ac.uk/356481/

Smith, M. (2016, January 30). Computer science for all. The White House Blog. https://
obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all

Sousa, D. A., & Tomlinson, C. A. (2018). Differentiation and the brain: How neuroscience

supports the learner-friendly classroom (2nd ed.). Solution Tree Press.
Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood classroom: Learning

outcomes from an 8-week robotics curriculum in pre-kindergarten through second
grade. International Journal of Technology and Design Education, 26(1), 3–20. https://
doi.org/10.1007/s10798-015-9304-5

Tomlinson, C. A., & Allan, S. D. (2000). Leadership for differentiating schools and class-

rooms. ASCD.
Tran, Y. (2019). Computational thinking equity in elementary classrooms: What third-grade

students know and can do. Journal of Educational Computing Research, 57(1), 3–31.
Waterman, K. P., Goldsmith, L., & Pasquale, M. (2020). Integrating computational

thinking into elementary science curriculum: An examination of activities that support
students’ computational thinking in the service of disciplinary learning. Journal of
Science Education and Technology, 29(1), 53–64. https://doi.org/10.1007/s10956-019-
09801-y

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all:

Pedagogical approaches to embedding 21st century problem solving in K-12 class-
rooms. TechTrends, 60(6), 565–568.

Yadav, A., Krist, C., Good, J., & Caeli, E. N. (2018). Computational thinking in ele-
mentary classrooms: Measuring teacher understanding of computational ideas for
teaching science. Computer Science Education, 28(4), 371–400. https://doi.org/10.
1080/08993408.2018.1560550

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011). Introducing
computational thinking in education courses [Paper presentation]. The 42nd ACM
Technical Symposium on computer science education (pp. 465–470). ACM.

Yin, Y., Hadad, R., Tang, X., & Lin, Q. (2020). Improving and assessing computational
thinking in maker activities: The integration with physics and engineering learning.
Journal of Science Education and Technology, 29(2), 189–214. https://doi.org/10.1007/
s10956-019-09794-8

Ballard and Haroldson 29

https://eprints.soton.ac.uk/356481/
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://doi.org/10.1007/s10798-015-9304-5
https://doi.org/10.1007/s10798-015-9304-5
https://doi.org/
https://doi.org/10.1080/08993408.2018.1560550
https://doi.org/10.1080/08993408.2018.1560550
https://doi.org/10.1007/s10956-019-09794-8
https://doi.org/10.1007/s10956-019-09794-8


Author Biographies

Evan Dave Ballard is a software developer specializing in data science and a
physics and computer science teacher. He has taught courses in Java and Python
and a summer course in general computer science. He is currently working on
his Master of Science in Education at the University of Wisconsin-River Falls.
He has previously published on computer science practices in children’s litera-
ture with Dr. Rachelle Haroldson. He read many of the books discussed with his
two young children.

Rachelle Haroldson is a clinical associate professor at the University of
Wisconsin at River Falls and the Master Teacher of the STEMteach program.
For the past five and a half years, she has taught, supervised, mentored, and
advised six cohorts of graduates studying to become STEM secondary teachers.
She actively integrates computer science into the one-year program with her
teacher candidates, pushing all of them, regardless of content area, to see them-
selves as CS teachers and advocates. She has completed the Bootstrap
Workshop, the College Board–endorsed UTeach Computer Science Principles
Institute, and the Computer Science Education Certificate through the College
of St. Scholastica. In the last four years she has presented or co-presented with
graduate students on computer science–related topics at eleven difference con-
ferences across the Midwest and nationally.

30 Journal of Educational Computing Research 0(0)


	table-fn1-07356331211004048
	table-fn2-07356331211004048
	table-fn3-07356331211004048

