
1

DCCA Enhanced Forced Oscillation Frequency
Detection Using Real-world PMU Data

Abraham Canafe∗, Yunchuan Liu†, Lei Yang†, and Hanif Livani‡
∗ Department of Electrical and Electronics Engineering, California State University, Sacramento, CA 95819

† Department of Computer Science and Engineering, University of Nevada, Reno, NV 89557
‡ Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV 89557

Abstract—This paper studies forced oscillation frequency de-
tection using real-world Phasor Measurement Unit (PMU) data.
The accurate identification of forced oscillations can help op-
erators prevent power system failures and take appropriate
remedial actions. To detect forced oscillation frequencies, we first
decompose the PMU data into a series of intrinsic mode functions
(IMFs) using the Improved Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (ICEEMDAN) technique,
which can effectively de-noise the raw PMU data. Then, we
choose the optimal mode for frequency detection by selecting the
IMF most strongly correlated with the original signal based on
detrended cross correlation analysis (DCCA), as real-world PMU
data obtained from oscillation events are often non-stationary.
Compared with the cross-correlation coefficient used in the
existing studies, the DCCA coefficient can better analyze non-
stationary data and thus find a better mode for frequency
detection. Using the real-world PMU datasets for oscillation
events from the ISO-NE grid, experimental results show that the
proposed DCCA enhanced forced oscillation frequency detection
can accurately detect the oscillation frequency.

Index Terms—PMU, Oscillation Frequency Detection, Im-
proved Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (ICEEMDAN), Detrended Cross-Correlation
Analysis (DCCA).

I. INTRODUCTION

The increased deployment of Phasor Measurement Units
(PMUs) in power systems has enabled the detection of pres-
ence of natural oscillations (NOs) and forced oscillations
(FOs) in the power grid. Sustained oscillations can negatively
affect the power grid. For example, NOs and FOs can lower
the lifespan of equipment, cause power losses, and result in
blackouts [1]. Compared to NOs, FOs occur due to external
perturbations driving generation sources and can severely af-
fect the safety and reliability of power system operations. Such
undesirable effects have motivated the development of various
FO detection methods, for a reliable means of detecting forced
oscillations enables power grid operators to quickly isolate and
remove oscillation sources.

Numerous methods have been proposed for the detection
of oscillations using the PMU data, such as Empirical Mode
Decomposition (EMD) [2], Variational Mode Decomposition
(VMD) [3], Local Mean Decomposition (LMD) [4], Empirical
Wavelet Transform (EWT) [5], and Segmented Empirical
Wavelet Transform (SEWT) [6], which are shown useful for
the detection of sustained oscillations in the power grid.

However, the EMD algorithm and certain EMD variants may
face the problem of mode mixing [7] (i.e., multiple frequency
components will be contained in the intrinsic mode functions
(IMFs)). The problem of mode mixing stems in part from the
noisiness of real-world PMU data. To address this challenge, a
recent work [1] utilizes Improved Complete Ensemble Empiri-
cal Mode Decomposition with Adaptive Noise (ICEEMDAN),
which adds a pair of positive and negative noise components
to the actual signal to overcome the problem of mode mixing.

Although the FO detection method proposed in [1] is able
to decompose PMU data into IMFs more suitable for analysis,
the method relies on the standard cross-correlation coefficient
for the IMF selection process and thus assumes the presence of
a linear relationship [8] between a given IMF and its original
signal. Yet, such an assumption may not always hold, as
real-world PMU data is often non-stationary [9], a term that
characterizes a random process whose statistical properties
(such as mean and variance) change over time. Hence, the
non-stationary features that may be present in PMU data can
lead to the erroneous detection of a FO frequency, which is
observed in our case studies in Section III.

To deal with the non-stationarity of PMU data, we propose
a FO frequency detection method that leverages the detrended
cross-correlation analysis (DCCA) coefficient, which utilizes
detrended fluctuation analysis [10] and detrended cross cor-
relation analysis [11]. The use of the DCCA coefficient can
improve the IMF selection process described in [1], as it can
better characterize the correlation between non-stationary time
series [9]. Specifically, we first decompose the PMU data into
a series of IMFs using the ICEEMDAN technique, which can
effectively de-noise the raw PMU data. Then, we choose the
optimal mode for frequency detection by selecting the IMF
most strongly correlated with the original signal based on
the DCCA coefficient. Compared with the standard cross-
correlation techniques used in the existing studies, DCCA
can better analyze the non-stationary data and thus find a
better mode for frequency detection. Using the real-world
PMU datasets for oscillation events from the ISO-NE grid,
experimental results show that the proposed DCCA enhanced
FO frequency detection can accurately detect the oscillation
frequency.

The rest of this paper is structured as follows. Section
II introduces the proposed DCCA enhanced FO frequency
detection method. Section III presents four case studies of the
proposed method using real-world PMU datasets, and Section978-1-6654-7902-8/22/$31.00 ©2022 IEEE
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Fig. 1: Workflow of DCCA enhanced FO frequency detection.

IV concludes the paper.

II. DCCA ENHANCED FORCED OSCILLATION
FREQUENCY DETECTION

A. Proposed Methodology for FO Frequency Detection Using
ICEEMDAN and DCCA

The workflow of the proposed FO frequency detection
method is illustrated in Fig. 1. The proposed method first
decomposes the input PMU voltage magnitude data into a
series of intrinsic mode functions (IMFs) using ICEEMDAN
[12] and then chooses the optimal mode for frequency detec-
tion by selecting the IMF most strongly correlated with the
original signal based on the DCCA coefficient. Similar to [1],
the proposed method leverages ICEEMDAN to address the
problem of mode mixing [7] (i.e., multiple frequency com-
ponents will be contained in the IMFs if traditional EMD is
used). In contrast with [1], we leverage the DCCA coefficient
(instead of the standard cross-correlation coefficient) to select
the optimal mode for frequency detection, as the real-world
PMU data are non-stationary and the DCCA coefficient can
better analyze the non-stationary data (see the case studies
using real-world PMU data in Section III).

Specifically, let Y be a K × L matrix of PMU voltage
magnitude measurements, where K denotes the number of

measurements from each PMU and L denotes the number of
PMUs. For ease of presentation, we can write Y as

Y =
[
y1, y2, . . . , yL

]
(1)

where yl for l = 1, 2, . . . , L denotes a column vector repre-
senting the measurements from PMU l.

The proposed method first decomposes each yl into a series
of IMFs using ICEEMDAN. The set of extracted modes for
each yl can be denoted by

{
d
(q)
yl

}
, where q = 1, 2, . . . , Q.

Then, correlation coefficients ρ
(d

(q)
yl ,yl)

are computed between
each IMF and its associated yl using DCCA. The collection
of correlation coefficients can be used to build the following
Q× L coefficient matrix,

Yρ =


ρ
(d

(1)
y1 ,y1)

ρ
(d

(1)
y2 ,y2)

. . . ρ
(d

(1)
yL ,yL)

ρ
(d

(2)
y1 ,y1)

ρ
(d

(2)
y2 ,y2)

. . . ρ
(d

(2)
yL ,yL)

...
...

. . .
...

ρ
(d

(Q)
y1 ,y1)

ρ
(d

(Q)
y2 ,y2)

. . . ρ
(d

(Q)
yL ,yL)

 . (2)

Using the coefficient matrix Yρ, the optimal IMF is selected
by choosing the largest coefficient in Yρ,

ρ
(d

(q∗)
yl∗ ,yl∗ )

= max
q,l

Yρ, (3)

where q∗ and l∗ correspond to the q∗th IMF associated with
the l∗th PMU.

Using the q∗th IMF associated with the l∗th PMU, the power
spectral density (PSD) of the IMF is computed using Welch’s
periodogram method [13]. The frequency associated with the
highest PSD of the IMF is determined to be frequency of the
sustained oscillation.

In the following, we give detailed descriptions of ICEEM-
DAN and DCCA algorithms used in the proposed FO detection
method.

B. ICEEMDAN

The proposed method first decomposes the input PMU
voltage magnitude data into a series of IMFs using ICEEM-
DAN [12]. To de-noise the raw PMU data, controlled noise
β
(q)
yl Γq

(
w

(p)
yl

)
is added to enhance the decomposition of

IMFs, where Γq(·) serves as an operator that that uses the
EMD algorithm to extract the qth IMF of its input, and
the variable w

(p)
yl denotes the pth realization of zero-mean,

unit-variance Gaussian noise for p = 1, 2, . . . , P (where P
is a user-selected constant). The scalar β

(q)
yl defined in (4)

represents a noise level applied to Γq(w
(p)
yl ), i.e.,

β
(q)
yl =

ϵ0
std(yl)

std(Γ1(w
(p)
yl ))

, if q = 1,

ϵ0std(r
(q−1)
yl ), if q = 2, 3, . . . , Q

(4)

In the above equation, ϵ0 is a user-defined constant, std(·)
represents the standard deviation operator, and r

(q−1)
yl denotes

the (q− 1)th residue of the original voltage magnitude signal
yl.

For each voltage magnitude signal yl, a new signal y(p)l is
first constructed using (5), where β

(1)
yl Γ1

(
w

(p)
yl

)
is added into
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yl, i.e.,
y(p)
l = yl + β

(1)
yl Γ1

(
w

(p)
yl

)
. (5)

Using (5), we can compute the first residue of the original
voltage magnitude signal yl, i.e.,

r
(1)
yl =

1

P

P∑
p=1

Ω
(

y(p)
l

)
, (6)

where Ω(·) returns the local mean of the upper and lower
envelopes of y(p)

l , as determined by classical EMD. After the
first residue is calculated, (7) can be used to compute the first
mode, i.e.,

d
(1)
yl = yl − r

(1)
yl . (7)

Once the first IMF is computed, (8) and (9) can be used to
determine the second mode, i.e.,

r
(2)
yl =

1

P

P∑
p=1

Ω
(
r
(1)
yl + β

(2)
yl Γ2

(
w

(p)
yl

))
, (8)

d
(2)
yl = r

(1)
yl − r

(2)
yl . (9)

The remaining residues and modes for q = 3, . . . , Q can then
be computed by repeatedly using (10) and (11) until the Qth
mode is achieved, i.e.,

r
(q)
yl =

1

P

P∑
p=1

Ω
(
r
(q−1)
yl + β

(q)
yl Γq

(
w

(p)
yl

))
, (10)

d
(q)
yl = r

(q−1)
yl − r

(q)
yl . (11)

C. DCCA Coefficient

Due to the non-stationarity of the signals (see the stationary
analysis in Section III), we leverage DCCA to compute the
correlation coefficients in (2), which is motivated by the study
in [14], showing that DCCA, compared with standard cross-
correlation, can better analyze non-stationary data.

To compute the DCCA coefficient between d
(q)
yl and its

respective yl, we first compute the partial sums Yl(k) and
D

(q)
yl (k) for k = 1, 2, ...,K using (12) and (13),

Yl(k) =

K∑
k=1

(yl(k)− E(yl)), (12)

D
(q)
yl (k) =

K∑
k=1

(d
(q)
yl (k)− E(d(q)yl )). (13)

Starting from k = 1, the cumulative sums can then be
partitioned into Kn non-overlapping boxes of size n, where
Kn = K/n given that K/n is an integer.

For each time window of length n in each integrated series,
a polynomial regression is used to compute the local trends
Ỹl(k, i) and D̃

(q)
yl (k, i) in each ith non-overlapping closed

interval defined on k ∈ [(i−1)n+1, ni] where i = 1, . . . ,Kn

[15]. The computed profiles and local trends are then used
to create the sample variance functions (14) and (15) and the

sample covariance function (16) i.e.,1

fDFAyl
(n, i) =

1

n

n∑
k=i

(
Yl((i− 1)n+ k)− Ỹl(k, i)

)2

, (14)

fDFA
d
(q)
yl

(n, i) =

1

n

n∑
k=i

(
D

(q)
yl ((i− 1)n+ k)− D̃

(q)
yl (k, i)

)2

, (15)

fDCCAl,q
(n, i) =

1

n

n∑
k=i

(
Yl((i− 1)n+ k)− Ỹl(k, i)

)
×

(
D

(q)
yl ((i− 1)n+ k)− D̃

(q)
yl (k, i)

)
. (16)

Averaging the sample variance functions produces the de-
trended variance functions (17) and (18),

FDFAyl
(n) =

1

Kn

Kn∑
i=1

fDFAyl
(n, i) , (17)

FDFA
d
(q)
yl

(n) =
1

Kn

Kn∑
i=1

fDFA
d
(q)
yl

(n, i) . (18)

Similarly, the average of the sample covariances (16) yields
the detrended covariance function (19),

FDCCAl,q
(n) =

1

Kn

Kn∑
i=1

fDCCAl,q
(n, i) . (19)

Using (17), (18), and (19), we compute the DCCA coeffi-
cient:

ρDCCAl,q
(n) =

FDCCAl,q
(n)√

FDFAyl
(n)FDFA

d
(q)
yl

(n)
, (20)

where −1 ≤ ρDCCAl,q
(n) ≤ 1. As described in

[9], ρDCCAl,q
(n) = 1 indicates perfect correlation and

ρDCCAl,q
(n) = −1 indicates perfect anti-cross correlation,

whereas a coefficient of ρDCCAl,q
(n) = 0 indicates the

absence of cross correlation. Thus for the IMF selection
procedure described in Section II-A, the IMFs most suitable
for analysis in the frequency domain have associated with
them DCCA coefficients whose magnitudes

∣∣ρDCCAl,q
(n)

∣∣ are
closest to 1.

For each element of Yρ, multiple DCCA coefficients can be
computed using pre-selected window sizes n = α1, · · · , αγ .
The largest absolute value of each set of coefficients is then
inserted into the coefficient matrix described in (2):

ρ
(d

(q)
yl ,yl)

= max
n

∣∣ρDCCAl,q
(n)

∣∣ . (21)

Since the DCCA coefficient is designed to detect cross-

1If K/n is not an integer, additional non-overlapping boxes that begin at
k = K can be created for Yl(k) and D

(q)
yl (k), and the partial sums used in

(14)−(16) can be replaced with Yl(K− (i−Kn)n+k) and D
(q)
yl (K− (i−

Kn)n + k) for i = Kn + 1, . . . , 2Kn. For the sake of clarity, this paper
treats K as an integer multiple of n, but more details regarding Kn can be
found in [14], [16].
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correlations from non-stationary data [9] [14], it can be utilized
to identify modes that best correlate with a raw, non-stationary
PMU voltage magnitude signal. The DCCA coefficient with
the largest magnitude indicates the presence of a strong
correlation between an IMF and its respective voltage signal.

III. CASE STUDIES

A. Experimental Setup

1) Datasets: Historical PMU datasets for oscillation events
from the ISO-NE grid (Fig. 2) [17] are used to compare
the effectiveness of the cross-correlation and DCCA coeffi-
cients for mode selection and FO frequency detection. Voltage
magnitude signals are specifically chosen to compare the
proposed DCCA-based frequency detection algorithm to the
cross correlation-based frequency detection method described
in [1]. A brief summary of each oscillation event [17] used in
our experiments is provided below:

• Case 1–June 17, 2016: The oscillation event occurred in
the ISO-NE system on June 17, 2016, originated from
a large generator in the Southern part of the Eastern
Interconnection and had an oscillation frequency of 0.27
Hz.

• Case 2–October 3, 2017: The multi-frequency oscillation
event occurred in the ISO-NE system on October 3, 2017.
The oscillations came from a generator in Area 3 (Fig.
2) and had dominant mode frequencies of 0.08 Hz, 0.15
Hz, and 0.31 Hz.

• Case 3–July 20, 2017: The oscillation event occurred in
the ISO-NE system on July 20, 2017. The oscillation
originated from a generator in Area 1 (Fig. 2) and had a
frequency of 1.13 Hz.

• Case 4–January 29, 2018: The oscillation event occurred
in the ISO-NE grid on January 29, 2018. The oscillation
originated from the generator at substation 7 (Fig. 2) and
had an oscillation frequency of 1.57 Hz.

2) Implementation: As a preprocessing procedure, missing
values from the PMU datasets for each case were dropped,
and linear interpolation was applied to replace missing PMU
data. It should be noted that no bandpass filters were used.
The DCCA-based frequency detection method proposed in
this paper and the frequency detection method described in
[1] were then applied to each set of PMU voltage magnitude
signals. A matrix of PMU measurements was constructed
using (1), and after the ICEEMDAN algorithm was applied
to each voltage magnitude signal, coefficient matrices for the
cross-correlation coefficient and the DCCA coefficient were
created using (2). Since the ICEEMDAN algorithm extracted
varying numbers of IMFs from each yl, NaN values were
added to ensure that each Yρ was an Q×L rectangular matrix.
Once the optimal IMFs were selected using (3), the power
spectral density of the decomposed signal was computed using
a 50% overlap, and the FO frequencies associated with the
cross-correlation and DCCA coefficients were estimated.

The PyEMD Python package was used to carry out the
ICEEMDAN algorithm [18]. In this paper, P = 20 realizations
were produced during the computation of each IMF, and
a scaling factor of ϵ0 = 0.005 was used. Similarly, the

TABLE I: Stationary analysis of ISO-NE PMU time series
selected by the cross-correlation and DCCA coefficients.

Case # Cross-correlation DCCA
1 Stationary Stationary
2 Non-stationary Non-stationary
3 Non-stationary Non-stationary
4 Non-stationary Non-stationary

TABLE II: Frequency detection results of ISO-NE oscillation
events using cross-correlation (Xcorr) and DCCA.
Case # Coefficient Bus Location IMF # ρ fdetected factual

1 Xcorr Sub:1:Ln:1.1 4 0.910 0.264 Hz 0.27 HzDCCA Sub:9:Ln:21.1 4 0.984 0.264 Hz

2 Xcorr Sub:1:Ln:1.1 10 0.661 0.0293 Hz 0.31 HzDCCA Sub:1:Ln:1.1 4 0.894 0.352 Hz

3 Xcorr Sub:6:Gen:Gen1.1 2 0.880 1.143 Hz 1.13 HzDCCA Sub:2:Ln:4.1 1 0.986 1.143 Hz

4 Xcorr Sub:3:Ln:6.1 10 0.781 0.0293 Hz 1.57 HzDCCA Sub:7:Ln:15.1 3 0.851 1.582 Hz

fathon Python package [16] was used to create the coefficient
matrix of DCCA coefficients (2). Each ρ

(d
(q)
yl ,yl)

was calculated
using first-order polynomial regressions with window sizes
n = 20, 21, . . . , 100.

B. Stationarity Analysis

We analyze the stationarity of PMU signals during oscilla-
tion events. Specifically, we leverage the Augmented Dickey
Fuller (ADF) test [19] and the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test [20] to analyze the stationarity of the raw
voltage magnitude signals that are selected based on the
cross-correlation and DCCA coefficients. From Table I, we
observe that the signals selected based on the cross-correlation
and DCCA coefficients are not stationary in all the cases
except Case 1. Since it has been demonstrated that the DCCA
coefficient can perform well when used for the analysis of
non-stationary time series [14], it is reasonable to expect that
the DCCA coefficient would outperform the cross-correlation
coefficient in terms of selecting an IMF characterized by a
dominant FO frequency. This is confirmed by the experimental
results in the next section.

C. Frequency Detection: Cross-correlation v.s. DCCA

Table II shows the FO frequencies detected using the cross-
correlation and DCCA coefficients under different cases. It
can be observed that the cross-correlation based frequency
detection can perform well for stationary signals (Case 1),
but may fail for non-stationary signals (Case 2 and Case
4), whereas the proposed DCCA based frequency detection
method can accurately detect a dominant FO frequency from
both stationary and non-stationary signals.

Due to the non-stationarity of PMU data in Case 2 and Case
4, using the standard cross-correlation coefficient may not find
the best IMF for frequency detection:

• In Case 2, the standard cross-correlation coefficient se-
lects an IMF clearly unsuitable for analysis (Fig. 3),
whereas the DCCA coefficient selects an IMF whose
oscillation frequency more closely resembles the actual
oscillation frequency of 0.31 Hz (Fig. 4). The power spec-
tral density of the IMF selected by the cross-correlation
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Fig. 2: Topology for ISO-NE system [17].

coefficient, depicted in Fig. 3(c), fails to preserve the
expected FO frequency. On the other hand, the power
spectral density generated from the optimal mode selected
by the DCCA coefficient, shown in Fig. 4(c), returns a
distribution that retains the FO frequency component.

• In Case 4, the DCCA coefficient indisputably outperforms
the cross-correlation coefficient, for IMF 7, which is
extracted from substation 7 (Fig. 2), yields a dominant
mode frequency close in approximation to the expected
frequency of 1.57 Hz. The mode selected by the DCCA
coefficient for Case 4 contains frequency components
intuitively usable for analysis (Fig. 6), an observation ev-
idenced by the maximum power spectral density of 1.582
Hz shown in Fig. 6(c). However, the cross-correlation co-
efficient selects an IMF that does not keep the frequency
components of its original voltage magnitude signal, as
shown by the power spectral density of the IMF depicted
in Fig. 5(c).

Since the stationarity tests from Table I show that the cross-
correlation and DCCA coefficients attempt to select optimal
IMFs from raw, non-stationary voltage magnitude data for
the Case 2 and Case 4 datasets, it can be observed that the
DCCA coefficient demonstrates an ability to detect correct FO
frequencies from non-stationary PMU data, a capability that
the standard cross-correlation coefficient fails to show.

IV. CONCLUSIONS

In this paper, we propose a FO frequency detection method
that leverages the detrended cross-correlation analysis (DCCA)

coefficient, which utilizes detrended fluctuation analysis and
detrended cross correlation analysis. The use of the DCCA
coefficient can improve the IMF selection process by better
characterizing the correlation between non-stationary time
series. Specifically, we first decompose the PMU data into
a series of IMFs using the ICEEMDAN technique, which can
effectively de-noise the raw PMU data. Then, we choose the
optimal mode for frequency detection by selecting the IMF
most strongly correlated with the original signal based on
DCCA. Compared with the standard cross-correlation coef-
ficient used in the existing studies, the DCCA coefficient can
better analyze the non-stationary data and thus find a better
mode for frequency detection. Using real-world PMU datasets
for oscillation events from the ISO-NE grid, experimental
results show that the proposed DCCA enhanced FO frequency
detection can accurately detect the oscillation frequency.
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