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a b s t r a c t 

The energy and activation barrier distributions of Cr atoms in austenitic alloys are investigated over a 

multiplicity of modeling samples across a wide range of chemical ( e.g. solid solutions vs. segregated 

states) and microstructural ( e.g. bulk vs. grain boundaries) environments. Assisted with a physics-based 

machine learning algorithm, it is found that the thermodynamic and kinetic behaviors of Cr atoms can 

be reliably predicted according to the local electronegativity ( χ ) and free volume of local atomic packing 

( V v ). The corresponding predictive maps in the χ −V v parameter space are established, which are in line 

with existing experiments and validated by a parallel modeling with a different interatomic force field. 

The implications of the present study regarding its potential to guide the design of austenitic alloys with 

desired properties are also discussed. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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Superior mechanical properties and strong resistance to corro- 

ion have endowed Cr-Ni austenitic stainless steels with great per- 

ormance potential in many applications [1] across the transport, 

nergy, and manufacturing sectors. The chemical element distribu- 

ions in the alloys are rarely uniform. For example, Cr atoms tend 

o segregate near grain boundaries (GBs) or surfaces [2-6] . It has 

een shown that such a heterogeneous spatial distribution of ele- 

ents plays a significant role in the initiation of oxidations [ 2 , 3 , 7 ],

hich may consequently affect the materials’ mechanical perfor- 

ance [8-11] , such as high-temperature fatigue, creep, stress cor- 

osion cracking, etc . Therefore, a fundamental understanding of Cr 

toms’ energetics and kinetics in Fe-Ni-Cr alloys is of crucial im- 

ortance. 

While the subject has been probed by numerous studies 

 6 , 7 , 12-17 ], a predictive knowledge on the stability and mobility

f Cr in the alloys is still lacking at the atomic level, mainly due to

he system’s chemical heterogeneity and microstructural complex- 

ty ( e.g. the presence of disordered GBs). Machine learning (ML), 

s an emerging powerful technique, has recently been utilized to 

tudy multi-element and disorder-containing alloys [18-21] . How- 

ver, many of the existing ML practices are either (i) focused on 

redicting the average properties of the entire system rather than 

he local details in the presence of chemical and structural hetero- 
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eneities, or (ii) built in the manners of essentially black-box al- 

orithms, therefore lacking an interpretability and obstructing the 

hysical insights one can learn and eventually apply to the design 

f alloys. 

In the present study, we report a physics-based ML study that 

llows one to reliably predict the energy and activation barrier of 

ndividual Cr atoms in Fe-Ni-Cr alloys across a broad range of lo- 

al environments with various compositions ( e.g. from solid solu- 

ions to highly segregated states) and microstructures ( e.g. from 

ulk to GBs at various misorientations). Different from conven- 

ional ML practices, in the present study, the training and predic- 

ion of ML algorithm is built in a parameter space with explicit 

hysical meaning, namely the local electronegativity and atomic 

acking topology ( e.g. Voronoi cell volume). It is found that the 

r atoms’ thermodynamic stability is more sensitive to their local 

lectronegativity, while their kinetic mobility is more responsive 

o the local atomic packing, according to which two correspond- 

ng quantitative contour maps are established. Since the parameter 

pace hereby adopted can be controlled in experiments by com- 

ositional tuning, choice of manufacturing, and mechanical pro- 

essing, the insights obtained in the present study might therefore 

hed light on the design of austenitic alloys with desired proper- 

ies. 

To study the distributions and energetics of Cr atoms over a 

road range of chemical and physical environments, we built a 

ultiplicity of GB-containing Fe-Ni-Cr model samples at various 

https://doi.org/10.1016/j.scriptamat.2021.114177
http://www.ScienceDirect.com
http://www.elsevier.com/locate/scriptamat
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Fig. 1. (a) Energy curve and (b) microstructural evolution of a �25 (710) bi-crystal Fe 70 Ni 10 Cr 20 system during MC metropolis algorithm. (c) The corresponding local chemical 

environment of Cr atoms in ternary plots. (d) Distributions of Cr atoms’ energy in the selected states. 
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ompositions and GB-misorientation angles. In particular, a group 

f symmetric tilt < 100 > GBs are created following the widely 

sed bi-crystal set-up protocol [ 22 , 23 ]. An embedded atom method 

EAM) interatomic potential [24] calibrated to first-principles cal- 

ulations is employed, and to be compatible with the applied pe- 

iodic boundary conditions the primary focus is placed on the co- 

ncident site lattice (CSL) GBs. The initial states of the samples are 

et as solid solutions, by randomly assigning Fe, Cr, and Ni atoms 

o the lattice sites. A Monte Carlo (MC) metropolis algorithm is 

hen applied to explore the thermodynamically favorable states. 

s seen in Figs. 1 -a & b , which correspond to MC simulation of

 Fe 70 Ni 10 Cr 20 system, Cr-segregated states are energetically more 

table than the random solid-solution state, corroborating experi- 

ental evidence [4] and others’ previous calculations [6] . Fig. 1 - 

 shows the distributions of local composition near individual Cr 

toms (within 1st-nearest neighbors) in a few selected states in 

he system, clearly demonstrating the wide fluctuations of local 

hemical environments. The corresponding energy of Cr atoms also 

aries significantly by more than 1 eV , as marked in Fig. 1 -d . These

alculated energies are utilized in the ML training and testing dis- 

ussed below. 

The kinetic mobility of an atom is determined by the activation 

arrier of the collective rearrangements of the atom and its sur- 

ounding particles, which correspond to hopping between neigh- 

oring local minima in the system’s underlying potential energy 

andscape (PEL) [25-27] . In the present study, we employ the ac- 

ivation relaxation technique (ART) [ 28 , 29 ] to probe the PEL and

hus identify the E A distributions of Cr atoms. 

More specifically, given a Cr atom of interest, small random per- 

urbations are introduced to it and its 1st-nearest neighbors to ini- 

iate the ART algorithm [30] which drives the system moving up- 

ill along the PEL. The 1st-nearest neighbor cutoff radius is defined 

ccording to the first dip of the radial distribution function, which 

s about 3 Å both in GBs and in the bulk (see Supplemental Mate- 

ials). The inflection point is reached when the smallest eigenvalue 

f the PEL’s Hessian matrix becomes negative (practically less than 
2 
0.01 eV/ ̊A 2 ), and the system is then relaxed to the saddle point at

he criterion when the net force is smaller than 0.005 eV/ ̊A . The

nergy difference between the identified saddle state and the ini- 

ial state in the PEL is thus the activation barrier. Note that the 

ame atom can be involved in several different hopping events, and 

herefore in the present study each selected Cr atom is exposed to 

any ART searches with different random perturbations to ensure 

ufficient statistics. The hereby calculated E A distributions are then 

tilized in the following ML training and testing. We would like to 

ote that, accompanied with the broad E A spectra there are numer- 

us atomic rearrangement mechanisms, due to both the chemical 

eterogeneity and microstructural complexity. On the other hand, 

he primary focus of this study is to get a predictive and quanti- 

ative assessment on Cr atoms’ kinetic mobility, and therefore in 

he below discussions we are more concentrated in the activation 

arriers instead of the detailed rearrangement mechanisms. 

To obtain interpretable knowledge, the ML algorithm in the 

resent study is built in a parameter space with explicit physi- 

al meaning. In particular, we adopt a parameter space spanned 

y local electronegativity and local free volume, because of 

heir reported correlations [31-33] with the properties of multi- 

omponent and disorder-containing alloys. Specifically, the local 

lectronegativity in the vicinity of a given atom is defined as the 

onvolution of a radial Gaussian weight and the electronegativity 

f its surrounding atoms, 〈 χi 〉 ≡ [ 
∑ 

j 

exp ( − r 2 
i j 

2 σ 2 ) χ j ] / 
∑ 

j 

exp ( − r 2 
i j 

2 σ 2 ) , 

here σ is set as 3.0 Å , corresponding to the first dip of radial

istribution function [32] . The local free volume of a given atom, 

efined as V v , is characterized by the polyhedral volume following 

 Voronoi tessellation. The hereby defined 〈 χi 〉 and V v essentially 
epresent the local chemical environment, and local physical pack- 

ng, respectively. 

In the ML training, either the Cr atom’s energy or E A is used 

s the supervisory signal y i . A standard regularized least squares 

RLS) regression [18] is employed in the present study to identify 
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Fig. 2. The ML prediction of the energy of Cr atoms compared to the real energy in (a) �25 (710) bi-crystal system, (b) �5 (310) bi-crystal system, (c) �13 (510) bi-crystal 

system, and (d) Fe 70 Ni 5 Cr 25 and Fe 70 Ni 15 Cr 15 systems. 
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he weight vector ω that can minimize the L2 regularization loss 

f all the training Cr atoms: 

 
∗ = min 

ω 
| | y − X ω | | 2 2 + λ| | ω | | 2 2 (1) 

here y is the supervisory signal vector, X is a matrix with 

ach row to be the feature vector of i-th atoms in the grand 

−V v space and λ ≥ 0 is the regularization parameter. The opti- 

al weight vector ω 
∗ hereby obtained through the ML algorithm 

s then used for the later testing and prediction. 

We first study the ML prediction of Cr atom energy. The train- 

ng dataset is selected from the �25 (710) GB system shown above 

n Fig. 1 at the composition of Fe 70 Ni 10 Cr 20 . More specifically, 

mong the total 80,160 Cr atoms in the five states selected dur- 

ng the MC simulation, partial data from samples #1 and #5 are 

andomly selected as the training set, consisting of 20% of the to- 

al data. The remaining 80% of the data serves as the testing set. 

ther testing scenarios at various compositions and GB angles are 

lso considered, where no more training is employed and all the 

ata are used for testing. 

Fig. 2 -a1 shows the comparison between ML-predicted Cr 

toms’ energy and the directly calculated result (will be referred 

o as the real value henceforth) in �25 (710) GB system. Note 

hat this panel includes both the training and testing data men- 

ioned above. It can be seen that the ML predictions and real val- 

es present good alignment, and it is worth noting that the Cr 

toms near GBs, where significant disorders exist, are also well 

redicted. Fig. 2 -a2 shows the density plot of all the data points, 

nd it is clear that the vast majority of data are located on the 

iagonal line, indicating the robustness of the ML training. 

Fig. 2 -b & c show the ML predictions of Cr atoms’ energy in

wo other different GBs at �5 (310), and �13 (510), respectively, at 

he same composition as Fig. 2 -a. Fig. 2 -d presents the ML predic-

ions for compositions of Fe 70 Ni 5 Cr 25 , and Fe 70 Ni 15 Cr 15 , while re-

aining the GB structure as �25 (710). Note that all the data points 

n Fig. 2 -b to 2 -d are testing data, and the high Pearson correla-

ion coefficients marked in the plots demonstrate that the hereby 

L-trained model can reliably predict the Cr atoms’ energy over 

 broad range of chemical environments (from solid solutions to 
3 
ighly segregated states at different compositions) and microstruc- 

ures (from bulk to GBs at various misorientations). 

We would like to note that the partition of training vs. testing 

n the present study is much smaller than the 80% : 20% in many 

xisting practices. It is worth emphasizing that there are no spe- 

ific rules on how to partition the training set and testing set. In 

rinciple, maintaining the same level of prediction accuracy while 

sing a smaller amount of training data is a reliable indication of 

he robustness of the model. Therefore, the very high Pearson cor- 

elation coefficient ( ρ> 0.95) by using only 20% of the training data 

uggests that our ML model captures the essence of the underlying 

hysics. 

We then focus on the ML prediction on E A distributions of Cr 

toms. Exploring the PEL and probing the activation barriers are 

omputationally much more expensive than the simple energy cal- 

ulation, and we therefore slightly narrow the scope in this task. 

ore specifically, 70% of data points in sample #5, namely the Cr- 

egregated state of the �25 (710) GB system in Fig. 1 -b , are em-

loyed for the ML training. The trained model is then used to test 

ther samples at different chemistries ( e.g. random solid-solution 

tate) and GB angles. 

Different from the energetics calculations, where a given atom 

as an explicitly defined energy, in kinetics the same atom can par- 

icipate in multiple rearrangement events, and therefore a point- 

o-point correlation plot akin to Fig. 2 is not applicable here. In- 

tead, a more suitable practice [18] is to contrast the E A spectra 

etween the predicted most mobile atoms and most sessile atoms. 

f the real calculated E A spectra can be well separated by the ML 

redictions for the same atoms, then the ML training/prediction is 

egarded as successful and vice versa . 

Fig. 3 -a shows the real E A distributions of those Cr atoms that 

ell into the bottom and top 10% mobility predicted by ML in the 

r-segregated �25 (710) GB sample. Since this panel includes both 

raining and testing data, the good separation between the two 

pectra is not surprising. Fig. 3 -b shows the ML-predicted results 

or the same GB sample but in a random solid-solution state; while 

ig. 3 -c & d show the predictions for a different �5 (310) GB sys-

em at a Cr-segregated state, and a solid-solution state, respec- 
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Fig. 3. The real E A distributions of those Cr atoms with ML-predicted bottom and top 10% mobility in (a) segregated �25 (710) bi-crystal system, (b) random solid solution 

�25 (710) bi-crystal system, (c) segregated �5 (310) bi-crystal system, and (d) random solid solution �5 (310) bi-crystal system. 

Fig. 4. ML-predicted (a) energy and (b) activation barrier of Cr atoms in austenitic Fe-Ni-Cr alloys in the parameter space spanned by local electronegativity and local free 

volume. The ML-trained analytical expressions for the predicted E and E A are provided in Supplementary Materials. 
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ively. Note that there are no further trainings in these 3 panels, 

nd the clear spectra contrasts validated by real ART calculations 

re remarkable, indicating a strong predictive power on the kinetic 

ehavior of Cr atoms in Fe-Ni-Cr alloys. 

It is also worth noting that the selection of top- and bottom- 

0% windows follows the common practice in similar problems 

18] , and there is actually no specific limitation on the window 

izes. We have tested other window sizes at 5% and 20%, respec- 

ively, and no qualitative differences are observed (see Supplemen- 

al Materials). 

Results in Figs. 2-3 suggest that the ML model in the present 

tudy is reliable and robust. In addition, since the ML training 

as been conducted in a physics-based parameter space, we can 

herefore plot the ML-predicted energetics and effective EA in the 

−V v space as seen below in Fig. 4 . Note that Fig. 4 spans a

ery wide range of the parameter space covering all the local en- 
4 
ironments of Cr atoms in the present study, including both solid- 

olution states and segregated states, as well as both GBs and bulk 

e.g. when V v is below about 11.75 Å 
3 ). 

Specifically, Fig. 4 -a reveals that a smaller local Voronoi volume, 

s well as a smaller local electronegativity, can help improve Cr’s 

hermodynamic stability, but χ shows a much larger sensitivity 

han V v does. However, for the kinetic property, Fig. 4 -b shows that 

 v has a larger impact than χ does. Since a sample’s electroneg- 

tivity and atomic volume can be harnessed in experiments by 

omposition tuning, choices of manufacturing, and/or mechanical 

rocessing, the maps in Fig. 4 -a & b , therefore, can be combined

o guide the design of austenitic alloys with desired thermody- 

amic and kinetic properties. For example, in the marked regime 

n Fig. 4 on the one hand, the energy of Cr atoms is relatively

ow, indicating thermodynamically more favorable states; on the 

ther hand, the activation barriers are quite small, suggesting an 
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Fig. 5. Validation of the ML-predicted Cr atom energy using a different DFT- 

calibrated force field developed for Fe-Ni-Cr alloys. 
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nhanced transport or diffusion of Cr atoms. Remarkably, such an 

L-predicted picture is in line with the reported measurements by 

im et al. [2] . To be more specific, given its relatively high- V v and

ow- χ range, the marked regime in Fig. 4 should correspond to the 

r-segregated GBs environment. In Kim et al.’s experiments it has 

een reported that near the GBs a Cr 2 O 3 protective layer is likely 

o present, while a Fe-rich non-protective layer would prevail away 

rom the GBs intersections. The reason has been attributed to the 

nriched Cr distribution at GBs and the rapid diffusion of Cr along 

Bs [2] , which is well consistent with our present results. 

Another way of validating the ML-predicted Fig. 4 is to directly 

mploy first-principles calculations such as density-functional the- 

ry (DFT) to accurately quantify the Cr’s energetics at more com- 

lex local environments. However, the heavy computational cost 

nd the consequently small simulation sizes in DFT make it prac- 

ically very challenging to create a wide variety of local chemical 

nd physical environments to match with the range in Fig. 4 . As 

n alternative, we employ another EAM force field for austenitic 

e-Ni-Cr alloy [34] that has been extensively benchmarked against 

he DFT-calculated cohesive energy for different species. The idea 

s that, if the Cr’s energy variation trend in Fig. 4 -a can with-

tand the new force field system, then the correct physics should 

ave been reflected in the hereby ML-trained model. Specifically, 

 solid-solution state of a �25 (710) bi-crystal Fe 70 Ni 10 Cr 20 is cre- 

ted with the new EAM potential, and the energies of randomly- 

elected Cr atoms from both bulk and GB are ranked according to 

he ML-predicted map in Fig. 4 -a . Then their true ranking orders 

n the new force field are directly calculated and correlated with 

he ML-predicted orders, which shows a consistent trend as seen 

n the inset of Fig. 5 . To further quantify such a correlation, we

ntroduce a C ( X% ) function defined as: 

 ( X % ) ≡ f ( i ∈ { top X % real ener gy } | 
i ∈ { top X % pred icted ener gy } ) · X % (2) 

here the first term estimates that, among those Cr atoms within 

he top X% energy window predicted by ML, what is the fraction 
5 
hat truly belongs to this window in the real calculations; while 

he second term is the corresponding normalization factor. For ex- 

mple, assume there are 10 0 0 Cr atoms in the sample, and we se-

ect the 200 highest-energy atoms predicted by ML ( i.e. x value of 

0% in Fig. 5 ). And after direct energy calculation it is found that, 

ay, only 150 out of those 200 atoms are truly within the top 20% 

nergy window, then the y value in Fig. 5 is 150/10 0 0 = 0.15. 

One can easily prove two features of the above definition: (i) 

nder the ideal scenario where the predicted order of each sin- 

le Cr atom is correct, one should expect a y = x theoretical profile 

dotted black curve) in Fig. 5 ; and, (ii) under the other extreme 

here the ML prediction does not show any correlation with the 

eal calculation, one should then expect a y = x 2 theoretical profile 

dashed red curve). This is because, for example, among those 200 

L-predicted atoms mentioned above, only 20% of those ( i.e. 40 

toms) should actually occupy a position in this window under a 

andom distribution, meaning a y value of 0.04. It is evident in 

ig. 5 that the predictive power remains robust in such a new sys- 

em, suggesting that the correct physics has been effectively cap- 

ured by the ML. 

As a final remark, we have demonstrated that assisted with a 

hysics-based ML study, the energetics and kinetics of Cr atoms in 

ustenitic Fe-Ni-Cr alloys can be reliably predicted according to the 

ocal electronegativity and atomic packing environments. With the 

ereby constructed maps of Cr atom energy ( E ) and activation bar- 

ier ( E A ), one can then in principle define an arbitrary performance 

unction f ( E, E A ) tailored to a specific combination of thermody- 

amic and kinetic properties depending on the specific require- 

ents in the application of interest. For instance, to design alloys 

gainst high-temperature creep it is desired that the system should 

imultaneously possess high thermodynamic stability and low ki- 

etic mobility. Then according to Fig. 4 - a and b one should focus 

n the middle-left region in the χ −V v parameter space, which 

ay be achieved by synergistically tuning the chemical composi- 

ion (to change χ ) and the physical processing (to change V v ). In 

ther words, the non-linear maps would allow one to optimize a 

ystem’s performance under certain constraints. 

It is also worth noting that, while the quantitative patterns in 

ig. 4 might be subject to change for other materials with differ- 

nt interatomic potentials, the methodology of the present study 

s quite general and not limited by the specific force fields. More 

pecifically, the key physics reflected by this study is that the en- 

rgetics and kinetics of alloys containing complex chemistries and 

icrostructures can be reasonably predicted in light of the local 

lectronegativity and atomic packing environments. Such a picture 

s in accordance with recent studies on a number of high-entropy 

lloys, which demonstrate that there are very strong correlations 

etween the strength of the alloys and the electronegativity differ- 

nce among the constituent elements [31] . Therefore, we believe 

he physics discovered in our present study and the methodology 

nabling the discovery are broadly applicable. 
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