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The energy and activation barrier distributions of Cr atoms in austenitic alloys are investigated over a
multiplicity of modeling samples across a wide range of chemical (e.g. solid solutions vs. segregated
states) and microstructural (e.g. bulk vs. grain boundaries) environments. Assisted with a physics-based
machine learning algorithm, it is found that the thermodynamic and kinetic behaviors of Cr atoms can

be reliably predicted according to the local electronegativity (x ) and free volume of local atomic packing
(V). The corresponding predictive maps in the y —V,, parameter space are established, which are in line
with existing experiments and validated by a parallel modeling with a different interatomic force field.
The implications of the present study regarding its potential to guide the design of austenitic alloys with
desired properties are also discussed.

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Superior mechanical properties and strong resistance to corro-
sion have endowed Cr-Ni austenitic stainless steels with great per-
formance potential in many applications [1] across the transport,
energy, and manufacturing sectors. The chemical element distribu-
tions in the alloys are rarely uniform. For example, Cr atoms tend
to segregate near grain boundaries (GBs) or surfaces [2-6]. It has
been shown that such a heterogeneous spatial distribution of ele-
ments plays a significant role in the initiation of oxidations [2,3,7],
which may consequently affect the materials’ mechanical perfor-
mance [8-11], such as high-temperature fatigue, creep, stress cor-
rosion cracking, etc. Therefore, a fundamental understanding of Cr
atoms’ energetics and kinetics in Fe-Ni-Cr alloys is of crucial im-
portance.

While the subject has been probed by numerous studies
[6,7,12-17], a predictive knowledge on the stability and mobility
of Cr in the alloys is still lacking at the atomic level, mainly due to
the system’s chemical heterogeneity and microstructural complex-
ity (e.g. the presence of disordered GBs). Machine learning (ML),
as an emerging powerful technique, has recently been utilized to
study multi-element and disorder-containing alloys [18-21]. How-
ever, many of the existing ML practices are either (i) focused on
predicting the average properties of the entire system rather than
the local details in the presence of chemical and structural hetero-
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geneities, or (ii) built in the manners of essentially black-box al-
gorithms, therefore lacking an interpretability and obstructing the
physical insights one can learn and eventually apply to the design
of alloys.

In the present study, we report a physics-based ML study that
allows one to reliably predict the energy and activation barrier of
individual Cr atoms in Fe-Ni-Cr alloys across a broad range of lo-
cal environments with various compositions (e.g. from solid solu-
tions to highly segregated states) and microstructures (e.g. from
bulk to GBs at various misorientations). Different from conven-
tional ML practices, in the present study, the training and predic-
tion of ML algorithm is built in a parameter space with explicit
physical meaning, namely the local electronegativity and atomic
packing topology (e.g. Voronoi cell volume). It is found that the
Cr atoms’ thermodynamic stability is more sensitive to their local
electronegativity, while their kinetic mobility is more responsive
to the local atomic packing, according to which two correspond-
ing quantitative contour maps are established. Since the parameter
space hereby adopted can be controlled in experiments by com-
positional tuning, choice of manufacturing, and mechanical pro-
cessing, the insights obtained in the present study might therefore
shed light on the design of austenitic alloys with desired proper-
ties.

To study the distributions and energetics of Cr atoms over a
broad range of chemical and physical environments, we built a
multiplicity of GB-containing Fe-Ni-Cr model samples at various
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Fig. 1. (a) Energy curve and (b) microstructural evolution of a ¥25 (710) bi-crystal Fe;oNijoCryo system during MC metropolis algorithm. (c) The corresponding local chemical
environment of Cr atoms in ternary plots. (d) Distributions of Cr atoms’ energy in the selected states.

compositions and GB-misorientation angles. In particular, a group
of symmetric tilt <100> GBs are created following the widely
used bi-crystal set-up protocol [22,23]. An embedded atom method
(EAM) interatomic potential [24] calibrated to first-principles cal-
culations is employed, and to be compatible with the applied pe-
riodic boundary conditions the primary focus is placed on the co-
incident site lattice (CSL) GBs. The initial states of the samples are
set as solid solutions, by randomly assigning Fe, Cr, and Ni atoms
to the lattice sites. A Monte Carlo (MC) metropolis algorithm is
then applied to explore the thermodynamically favorable states.
As seen in Figs. 1-a & b, which correspond to MC simulation of
a Fe;gNioCry system, Cr-segregated states are energetically more
stable than the random solid-solution state, corroborating experi-
mental evidence [4] and others’ previous calculations [6]. Fig. 1-
¢ shows the distributions of local composition near individual Cr
atoms (within 1st-nearest neighbors) in a few selected states in
the system, clearly demonstrating the wide fluctuations of local
chemical environments. The corresponding energy of Cr atoms also
varies significantly by more than 1 eV, as marked in Fig. 1-d. These
calculated energies are utilized in the ML training and testing dis-
cussed below.

The kinetic mobility of an atom is determined by the activation
barrier of the collective rearrangements of the atom and its sur-
rounding particles, which correspond to hopping between neigh-
boring local minima in the system’s underlying potential energy
landscape (PEL) [25-27]. In the present study, we employ the ac-
tivation relaxation technique (ART) [28,29] to probe the PEL and
thus identify the E, distributions of Cr atoms.

More specifically, given a Cr atom of interest, small random per-
turbations are introduced to it and its 1st-nearest neighbors to ini-
tiate the ART algorithm [30] which drives the system moving up-
hill along the PEL. The 1st-nearest neighbor cutoff radius is defined
according to the first dip of the radial distribution function, which
is about 3 A both in GBs and in the bulk (see Supplemental Mate-
rials). The inflection point is reached when the smallest eigenvalue
of the PEL’s Hessian matrix becomes negative (practically less than

-0.01 eV/A?), and the system is then relaxed to the saddle point at
the criterion when the net force is smaller than 0.005 eV/A. The
energy difference between the identified saddle state and the ini-
tial state in the PEL is thus the activation barrier. Note that the
same atom can be involved in several different hopping events, and
therefore in the present study each selected Cr atom is exposed to
many ART searches with different random perturbations to ensure
sufficient statistics. The hereby calculated E4 distributions are then
utilized in the following ML training and testing. We would like to
note that, accompanied with the broad E4 spectra there are numer-
ous atomic rearrangement mechanisms, due to both the chemical
heterogeneity and microstructural complexity. On the other hand,
the primary focus of this study is to get a predictive and quanti-
tative assessment on Cr atoms’ kinetic mobility, and therefore in
the below discussions we are more concentrated in the activation
barriers instead of the detailed rearrangement mechanisms.

To obtain interpretable knowledge, the ML algorithm in the
present study is built in a parameter space with explicit physi-
cal meaning. In particular, we adopt a parameter space spanned
by local electronegativity and local free volume, because of
their reported correlations [31-33] with the properties of multi-
component and disorder-containing alloys. Specifically, the local
electronegativity in the vicinity of a given atom is defined as the
convolution of a radial Gaussian weight andzthe electronegati\zlity

re re

of its surrounding atoms, (x;) = [?exp(—#)xﬂ/?exp(—#),
where o is set as 3.0 A, corresponding to the first dip of radial
distribution function [32]. The local free volume of a given atom,
defined as Vj, is characterized by the polyhedral volume following
a Voronoi tessellation. The hereby defined (;) and V, essentially
represent the local chemical environment, and local physical pack-
ing, respectively.

In the ML training, either the Cr atom’s energy or E4 is used
as the supervisory signal y;. A standard regularized least squares
(RLS) regression [18] is employed in the present study to identify
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Fig. 2. The ML prediction of the energy of Cr atoms compared to the real energy in (a) 25 (710) bi-crystal system, (b) X5 (310) bi-crystal system, (c) 13 (510) bi-crystal

system, and (d) Fe;oNisCrys and Fe;oNijsCrys systems.

the weight vector w that can minimize the L2 regularization loss
of all the training Cr atoms:

" =min ||y - Xol[; + Allo|l3 (1)
where y is the supervisory signal vector, X is a matrix with
each row to be the feature vector of i-th atoms in the grand
X —Vy space and A > 0 is the regularization parameter. The opti-
mal weight vector w* hereby obtained through the ML algorithm
is then used for the later testing and prediction.

We first study the ML prediction of Cr atom energy. The train-
ing dataset is selected from the X25 (710) GB system shown above
in Fig. 1 at the composition of Fe;gNijgCryg. More specifically,
among the total 80,160 Cr atoms in the five states selected dur-
ing the MC simulation, partial data from samples #1 and #5 are
randomly selected as the training set, consisting of 20% of the to-
tal data. The remaining 80% of the data serves as the testing set.
Other testing scenarios at various compositions and GB angles are
also considered, where no more training is employed and all the
data are used for testing.

Fig. 2-al1 shows the comparison between ML-predicted Cr
atoms’ energy and the directly calculated result (will be referred
to as the real value henceforth) in X£25 (710) GB system. Note
that this panel includes both the training and testing data men-
tioned above. It can be seen that the ML predictions and real val-
ues present good alignment, and it is worth noting that the Cr
atoms near GBs, where significant disorders exist, are also well
predicted. Fig. 2-a2 shows the density plot of all the data points,
and it is clear that the vast majority of data are located on the
diagonal line, indicating the robustness of the ML training.

Fig. 2-b & ¢ show the ML predictions of Cr atoms’ energy in
two other different GBs at 35 (310), and 13 (510), respectively, at
the same composition as Fig. 2-a. Fig. 2-d presents the ML predic-
tions for compositions of Fe;oNisCrys, and Fe;gNi5Crys, while re-
taining the GB structure as X25 (710). Note that all the data points
in Fig. 2-b to 2-d are testing data, and the high Pearson correla-
tion coefficients marked in the plots demonstrate that the hereby
ML-trained model can reliably predict the Cr atoms’ energy over
a broad range of chemical environments (from solid solutions to

highly segregated states at different compositions) and microstruc-
tures (from bulk to GBs at various misorientations).

We would like to note that the partition of training vs. testing
in the present study is much smaller than the 80% : 20% in many
existing practices. It is worth emphasizing that there are no spe-
cific rules on how to partition the training set and testing set. In
principle, maintaining the same level of prediction accuracy while
using a smaller amount of training data is a reliable indication of
the robustness of the model. Therefore, the very high Pearson cor-
relation coefficient (0>0.95) by using only 20% of the training data
suggests that our ML model captures the essence of the underlying
physics.

We then focus on the ML prediction on E, distributions of Cr
atoms. Exploring the PEL and probing the activation barriers are
computationally much more expensive than the simple energy cal-
culation, and we therefore slightly narrow the scope in this task.
More specifically, 70% of data points in sample #5, namely the Cr-
segregated state of the X25 (710) GB system in Fig. 1-b, are em-
ployed for the ML training. The trained model is then used to test
other samples at different chemistries (e.g. random solid-solution
state) and GB angles.

Different from the energetics calculations, where a given atom
has an explicitly defined energy, in kinetics the same atom can par-
ticipate in multiple rearrangement events, and therefore a point-
to-point correlation plot akin to Fig. 2 is not applicable here. In-
stead, a more suitable practice [18] is to contrast the E, spectra
between the predicted most mobile atoms and most sessile atoms.
If the real calculated E4 spectra can be well separated by the ML
predictions for the same atoms, then the ML training/prediction is
regarded as successful and vice versa.

Fig. 3-a shows the real E, distributions of those Cr atoms that
fell into the bottom and top 10% mobility predicted by ML in the
Cr-segregated X25 (710) GB sample. Since this panel includes both
training and testing data, the good separation between the two
spectra is not surprising. Fig. 3-b shows the ML-predicted results
for the same GB sample but in a random solid-solution state; while
Fig. 3-c¢ & d show the predictions for a different X5 (310) GB sys-
tem at a Cr-segregated state, and a solid-solution state, respec-
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Fig. 3. The real E4 distributions of those Cr atoms with ML-predicted bottom and top 10% mobility in (a) segregated X25 (710) bi-crystal system, (b) random solid solution
325 (710) bi-crystal system, (c) segregated X5 (310) bi-crystal system, and (d) random solid solution X5 (310) bi-crystal system.
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Fig. 4. ML-predicted (a) energy and (b) activation barrier of Cr atoms in austenitic Fe-Ni-Cr alloys in the parameter space spanned by local electronegativity and local free
volume. The ML-trained analytical expressions for the predicted E and E4 are provided in Supplementary Materials.

tively. Note that there are no further trainings in these 3 panels,
and the clear spectra contrasts validated by real ART calculations
are remarkable, indicating a strong predictive power on the kinetic
behavior of Cr atoms in Fe-Ni-Cr alloys.

It is also worth noting that the selection of top- and bottom-
10% windows follows the common practice in similar problems
[18], and there is actually no specific limitation on the window
sizes. We have tested other window sizes at 5% and 20%, respec-
tively, and no qualitative differences are observed (see Supplemen-
tal Materials).

Results in Figs. 2-3 suggest that the ML model in the present
study is reliable and robust. In addition, since the ML training
has been conducted in a physics-based parameter space, we can
therefore plot the ML-predicted energetics and effective EA in the
X —Vy space as seen below in Fig. 4. Note that Fig. 4 spans a
very wide range of the parameter space covering all the local en-

vironments of Cr atoms in the present study, including both solid-
solution states and segregated states, as well as both GBs and bulk
(e.g. when Vj, is below about 11.75 A3).

Specifically, Fig. 4-a reveals that a smaller local Voronoi volume,
as well as a smaller local electronegativity, can help improve Cr’s
thermodynamic stability, but x shows a much larger sensitivity
than Vj, does. However, for the kinetic property, Fig. 4-b shows that
Vy has a larger impact than x does. Since a sample’s electroneg-
ativity and atomic volume can be harnessed in experiments by
composition tuning, choices of manufacturing, and/or mechanical
processing, the maps in Fig. 4-a & b, therefore, can be combined
to guide the design of austenitic alloys with desired thermody-
namic and kinetic properties. For example, in the marked regime
in Fig. 4 on the one hand, the energy of Cr atoms is relatively
low, indicating thermodynamically more favorable states; on the
other hand, the activation barriers are quite small, suggesting an



Y. Wang, B. Ghaffari, C. Taylor et al.

T T T T T T T T T
1 1 |- New force-field data e l
1F---Randomorder (y=x3)|  _..p i I
J pesees Ideal order (y=x) | .. ” i m |’
_ e
RS U ||| ‘
E B | i“Z‘v‘i T T (T
0] i S IHETT
= K )
8 L .. 'I
o "
[0) i
'E K '1
o 0.1 —_ :'. "
g 1 . " - 35%
= 1 J | 100%
~ 1 ll 3.0% E’
;\-0~ : s l‘l g 80% p 25%;%
X 1idd e ,"
© 1: BN = <o o |
: " C_J § 4 0% &
J: ; 2 20% “ 5
. " 0% los -
: i 0% 20% 40% 60% 80% 100%
1 H ) ML-Predicted Order
0.0 —_— e e —
0% 20% 40% 60% 80% 100%

Predicted Top X% of Cr's Energy
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calibrated force field developed for Fe-Ni-Cr alloys.

enhanced transport or diffusion of Cr atoms. Remarkably, such an
ML-predicted picture is in line with the reported measurements by
Kim et al. [2]. To be more specific, given its relatively high-V;, and
low-x range, the marked regime in Fig. 4 should correspond to the
Cr-segregated GBs environment. In Kim et al’s experiments it has
been reported that near the GBs a Cr,03 protective layer is likely
to present, while a Fe-rich non-protective layer would prevail away
from the GBs intersections. The reason has been attributed to the
enriched Cr distribution at GBs and the rapid diffusion of Cr along
GBs [2], which is well consistent with our present results.

Another way of validating the ML-predicted Fig. 4 is to directly
employ first-principles calculations such as density-functional the-
ory (DFT) to accurately quantify the Cr’s energetics at more com-
plex local environments. However, the heavy computational cost
and the consequently small simulation sizes in DFT make it prac-
tically very challenging to create a wide variety of local chemical
and physical environments to match with the range in Fig. 4. As
an alternative, we employ another EAM force field for austenitic
Fe-Ni-Cr alloy [34] that has been extensively benchmarked against
the DFT-calculated cohesive energy for different species. The idea
is that, if the Cr's energy variation trend in Fig. 4-a can with-
stand the new force field system, then the correct physics should
have been reflected in the hereby ML-trained model. Specifically,
a solid-solution state of a 25 (710) bi-crystal Fe;gNijgCryq is cre-
ated with the new EAM potential, and the energies of randomly-
selected Cr atoms from both bulk and GB are ranked according to
the ML-predicted map in Fig. 4-a. Then their true ranking orders
in the new force field are directly calculated and correlated with
the ML-predicted orders, which shows a consistent trend as seen
in the inset of Fig. 5. To further quantify such a correlation, we
introduce a C(X%) function defined as:

C(X%) = f(i e {top X% real energy}|
i € {top X% predicted energy}) - X% (2)

where the first term estimates that, among those Cr atoms within
the top X% energy window predicted by ML, what is the fraction
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that truly belongs to this window in the real calculations; while
the second term is the corresponding normalization factor. For ex-
ample, assume there are 1000 Cr atoms in the sample, and we se-
lect the 200 highest-energy atoms predicted by ML (i.e. x value of
20% in Fig. 5). And after direct energy calculation it is found that,
say, only 150 out of those 200 atoms are truly within the top 20%
energy window, then the y value in Fig. 5 is 150/1000=0.15.

One can easily prove two features of the above definition: (i)
under the ideal scenario where the predicted order of each sin-
gle Cr atom is correct, one should expect a y=x theoretical profile
(dotted black curve) in Fig. 5; and, (ii) under the other extreme
where the ML prediction does not show any correlation with the
real calculation, one should then expect a y=x? theoretical profile
(dashed red curve). This is because, for example, among those 200
ML-predicted atoms mentioned above, only 20% of those (i.e. 40
atoms) should actually occupy a position in this window under a
random distribution, meaning a y value of 0.04. It is evident in
Fig. 5 that the predictive power remains robust in such a new sys-
tem, suggesting that the correct physics has been effectively cap-
tured by the ML.

As a final remark, we have demonstrated that assisted with a
physics-based ML study, the energetics and kinetics of Cr atoms in
austenitic Fe-Ni-Cr alloys can be reliably predicted according to the
local electronegativity and atomic packing environments. With the
hereby constructed maps of Cr atom energy (E) and activation bar-
rier (E4), one can then in principle define an arbitrary performance
function f(E,E,) tailored to a specific combination of thermody-
namic and kinetic properties depending on the specific require-
ments in the application of interest. For instance, to design alloys
against high-temperature creep it is desired that the system should
simultaneously possess high thermodynamic stability and low ki-
netic mobility. Then according to Fig. 4-a and b one should focus
on the middle-left region in the x — V), parameter space, which
may be achieved by synergistically tuning the chemical composi-
tion (to change x) and the physical processing (to change V;). In
other words, the non-linear maps would allow one to optimize a
system’s performance under certain constraints.

It is also worth noting that, while the quantitative patterns in
Fig. 4 might be subject to change for other materials with differ-
ent interatomic potentials, the methodology of the present study
is quite general and not limited by the specific force fields. More
specifically, the key physics reflected by this study is that the en-
ergetics and kinetics of alloys containing complex chemistries and
microstructures can be reasonably predicted in light of the local
electronegativity and atomic packing environments. Such a picture
is in accordance with recent studies on a number of high-entropy
alloys, which demonstrate that there are very strong correlations
between the strength of the alloys and the electronegativity differ-
ence among the constituent elements [31]. Therefore, we believe
the physics discovered in our present study and the methodology
enabling the discovery are broadly applicable.
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