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Abstract: This paper presents a novel, scalable, character-based
phylogeny algorithm for dense viral sequencing data called SPHERE
(Scalable PHylogEny with REcurrent mutations). The algorithm
is based on an evolutionary model where recurrent mutations are
allowed, but backward mutations are prohibited. The algorithm
creates rooted character-based phylogeny trees, wherein all leaves
and internal nodes are labeled by observed taxa. We show that
SPHERE phylogeny is more stable than Nextstrain’s, and that it
accurately infers known transmission links from the early pandemic.
SPHERE is a fast algorithm that can process more than 200,000
sequences in less then 2 hours, which offers a compact phylogenetic

visualization of GISAID data.

Introduction

Equipped with the Next Generation Sequencing tools which are much more
productive than ever before, the scientific community have collected an un-
precedented amount of SARS-CoV-2 genomic data, enabling tracking the entire
history of SARS-CoV-2 evolution with high precision [2]. This tracking requires
advanced phylogeny reconstruction software. However, the current state-of-the-
art phylogeny algorithms were created to handle significantly sparser genomic
data than what is available for SARS-CoV-2. The majority of the popular phy-
logenetic tools assume that only the final product of evolution is available, while
all intermediate evolutionary taxa are unknown. Also, these tools usually re-
quire significant computational resources, taking hours and sometimes days to
reconstruct the SARS-CoV-2 phylogeny even for a small subset of the available

genomes.



The SARS-CoV-2 sequencing data are similar to single cell sequencing data
in cancer studies, where sequenced mutations from thousands of cancer cells offer
a much closer look at cancer evolution. For such densely sequenced samples,
perfect phylogeny models are more insightful than maximum likelihood models
[6]. The perfect phylogeny model requires each mutation to occur only once and
never disappear. More realistic cancer evolution models allow widespread loss

and recurrence of mutations [8, 11, 1].

In contrast to cancer evolution, in viral evolution backward mutations are
rarer than recurrent mutations [12]. In the evolution of the SARS-CoV-2 virus,
recurrent mutations are mostly induced by the host’s non-specific immune re-
sponse. As they tend to be selectivity neutral, these mutations appear with

higher frequency [13].

These properties of the SARS-CoV-2 genomic data, its density and a rela-
tively high frequency of recurrent mutations, motivate the need for a parsimony-
based phylogeny algorithm that is scalable to the entire collection of SARS-CoV-
2 sequences available on GISAID (which numbers about 2.3 million sequences

at the time of writing).

In this work, we follow the approach proposed in [7], which uses mutation
trees [5] associated with character-based phylogenies that keep track of the ac-
cumulation of mutations in viral populations. We choose to employ parsimony-
based phylogenetic analysis, because it explains evolutionary history with the
fewest number of mutations to reproduce the variations in the genomic data.
Targeting both accuracy and resolution as aspects of information contained in
a phylogenetic tree, the maximum parsimony approach yields the results that

are at least as good or better than probabilistic approaches [9].

We propose SPHERE, Scalable PHylogEny with REcurrent mutations, as

an efficient phylogeny reconstruction method that incorporates this model. Us-



ing this tool, we analyzed the available GISAID data with over 300,000 genome
sequences. We compared the trees produced by SPHERE with those produced
by Nextstrain, and demonstrated that SPHERE trees are more stable with
respect to extending datasets. Finally, we validated that the phylogeny trees
produced by SPHERE more reliably discover valid transmission links than other

state-of-the-art algorithms.

Methods

Most Parsimonious Phylogeny Problem

Given a set of aligned sequences, possibly containing missing positions, and a
reference sequence with no missing positions, find a character-based phyloge-
netic tree that is rooted at the reference sequence, that has the minimum total

edge length, and that does not admit backward mutations.

An algorithm to meet these criteria should infer the phylogeny tree from a set
S of size n of aligned SARS-CoV-2 genome sequences. All of these sequences are
built on the nucleotide alphabet (A,C,T,G) and may contain missing positions
(N). The reference sequence is required to have no missing positions, i.e., no
occurrences of N. Under the assumption of allowing recurrent mutations but
not allowing backward mutations, our algorithm creates a maximum parsimony

phylogeny tree for the given dataset rooted at the reference sequence.

Nodes in the phylogeny tree represent sequence haplotypes that match one
or more sequences in the data. Edges in the tree are directed, and represent
the ancestor/descendant relationship between two sequences. The length of an

edge is the Hamming distance between the sequences that label its endpoints.



Algorithm Overview

For a given set S of aligned sequences and a reference sequence, the proposed
Algorithm 1 finds a maximum parsimony phylogenetic tree on the haplotypes
in S, rooted at the reference sequence, with no backward mutations allowed.
A tree rooted at the reference sequence is initialized, and all sequences in S
are inserted into a queue. Each sequence is then assigned a set of positions at
which the sequence contains a different nucleotide (i.e., a mutation) from the
reference sequence. Each sequence’s priority in the queue is determined by the
size of its set of reference mutations, i.e., by its Hamming distance from the
root. Finally, each sequence’s parent is initialized to be the root by default.
Sequences are removed from the queue and added to the tree in increasing
order of Hamming distance from the root. To achieve the minimal total edge
length, the parent of a node must be on the shortest path from the root, and it
must be the lowest such parent in the tree. By default, the parent of a sequence
is the root, and we look for a better parent as we add the sequence to the tree.
Once the parent is determined and the sequence is inserted into the tree, we fill
any missing positions in the sequence from its parent. If a sequence’s Hamming
distance to its parent is 0, the sequence is collapsed to the parent node and a

new node is not created.

Parent Selection

When adding a sequence to the tree, the process of choosing its parent looks
similar to a Dijkstra’s shortest-path algorithm comparison. A sequence u is a

parent of a sequence v if and only if (see Figure 1):

e distance(root, u) + distance(u, v) = distance(root, v);

e u is the lowest such node in the tree.



Algorithm 1 Character-Based Phylogeny

Input: Set S of aligned sequences (with possible missing positions), refer-
ence sequence (with no missing positions);

Output: Character-based phylogenetic tree on aligned sequences, rooted
at the reference sequence. Backward mutations are not allowed, recurrent mu-
tations are allowed.

1: Initialize a tree rooted at reference, and a queue of all sequences
2: For each sequence, assign set of positions where the sequence differs from
reference

3: Set root as initial parent of all sequences

4: while the queue is not empty do

5: Dequeue minimum priority sequence x

6: for each node v in reversed order of vertex set do
7 Check if v is a parent of x

8: Break when a parent is found.

9: end for

10: if Hamming distance to x’s parent is 0 then
11: collapse x to its parent

12: else add x to the tree:

13: Connect x to its parent

14: Fill missing positions in x from the parent
15: end if

16: end while

Together, these two conditions imply that u is on the shortest path from
root to v, that u immediately precedes v, and that the total length of the tree
after inserting v is the minimal possible.

In the original implementation, see Algorithm 2, we updated the parents of
all nodes in the queue on each insertion, as shown in Figure 2. Whenever we
would pop a new sequence from the queue to add to the tree, we iterate through

all nodes in the queue and check if the popped sequence is a better parent.

Algorithm 2 Parent Selection

: Pop node x from queue and add it to the tree
: Add edge from x’s parent to x
: for each node v in the queue do

Update parent of v with x, if necessary
end for

With this approach, the parent selection procedure checks every possible
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Figure 1: A visual representation of the parent selection constraint

Figure 2: Choosing parents, original implementation. On each node insertion, for
a better parent of v.

each sequence v remaining in the queue, check if the most recently inserted node x is

edge between nodes throughout the execution of the algorithm, and thus gives

us a quadratic run time of O(Size of queue) comparisons for each of the O(n)
node insertions, where n is the number of sequences.

With this implementation, the performance of our algorithm exceeded quadratic

runtime (Figure 3). This is too slow for our goal of designing a scalable tool ca-
of time.

pable of processing available SARS-CoV-2 genomic data in a reasonable amount
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Figure 3: Runtime of our phylogeny algorithm in comparison to O(n?) and O(n?®)
runtimes. The blue curve represents the runtime of our algorithm, the orange curve
represents O(n?) complexity, and the green curve O(n®) complexity. This version of
parent selection admits a runtime that is slightly greater than O(n?).

Performance Improvements

Speeding Up Parent Selection Originally, after each node insertion, we
iterated through the queue updating parents as needed. This mode of parent
selection results in a quadratic runtime complexity, as each node is compared
to each other node throughout execution of the algorithm. Instead, as shown
in Figure 4, we decided to iterate through the tree vertices when looking for
parents, rather than updating parents in the queue. In the worst case, this still
has a quadratic runtime; however, this mode of operation allows us to escape
the parent selection procedure early when a parent is found.

On each node insertion, our algorithm now iterates through the tree vertices
in reverse order of insertion, looking for the parent that satisfies the triangle
equality parent selection constraint shown in Figure 1. We can break this iter-
ation through the tree early as soon as a parent better than the root is found,
saving on the number of comparisons we need to make, see Algorithm 3.

We reduced the average complexity of our algorithm to below O(n?). Fur-
thermore, the hidden complexity coefficient also dropped. In Figure 3, which

illustrates the original runtime, we see that processing 1,000 sequences required
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Figure 4: When adding node x to the tree, we search the nodes in the tree in reverse
order of insertion (starting with the most recently inserted node) looking for parents
that satisfy the triangle equality condition. We can stop iteration early every time we
find a parent.

Algorithm 3 Faster Parent Selection

: Pop node x from queue and add it to the tree

: for each node v in reversed order of vertex set do
Check if v is a parent of x
Break when a parent is found

end for

: Add edge from v to x

almost 1,000 minutes of runtime. As is evident in Figure 5, this change to the
parent selection algorithm increased our speed, so that we could now process
1,000 sequences in just a couple of minutes. However, 8,000 sequences still

required almost 6 hours of runtime.

Speeding up Hamming distance The length of SARS-CoV-2 genome is
30,000 nucleotides, and mutations have already been observed in more than
20,000 of them. However, any two available SARS-CoV-2 genome sequences
differ by no more than 300 mutations.

We assigned each sequence a set of positions where it has mutated from
the reference sequence. Then we compute the Hamming distance between two

sequences as follows:
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Figure 5: Performance after implementing the change to parent selection. This change
has brought our algorithm’s runtime down to below O(n?) in the average case. The
hidden complexity coefficient has also decreased slightly, allowing us to process notably
larger datasets in the same amount of time.

e The size of the symmetric difference between the two sets is added to the

Hamming distance immediately.

e For each position in the intersection of the two sets, check if the sequences

differ at those positions.

Results

Datasets

For comparison and evaluation purposes, we use the following five datasets:

e C2C: The Coast—to—Coast dataset consists of 168 global SARS-CoV-2 se-
quences, including 9 sequences from COVID-19 patients identified in Con-

necticut [3].

e F22C: This dataset consists of 1,293 global SARS-CoV-2 sequences, which
are all GISAID sequences recorded up until February 22", 2020, as well
as the sequences in the C2C dataset. all GISAID sequences recorded up

until February 22th, 2020, as well as the sequences in the C2C dataset.
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e M14: This dataset consists of 9,286 global SARS-CoV-2 sequences, which

are all GISAID sequences recorded up until March 14", 2020.

e M22: This dataset consists of 21,473 global SARS-CoV-2 sequences, which
are all GISAID sequences recorded up until March 22", 2020.

e ETL: The Early Transmission Links dataset consists of 294 global SARS-
CoV-2 sequences collected before March 9*", 2020. This dataset was con-
structed to match the 25 known transmission links. These transmission
links were collected from news articles detailing transmissions prior to the

pandemic declaration, in the MIDAS 2019 Novel Coronavirus Repository.

Since all sequences in the C2C and ETL datasets were recorded before March

14", 2020, both are entirely contained in the M14 and M22 datasets.

Validation Metrics

Comparing Phylogenetic Trees One of the standard tools for comparing
phylogenetic trees is the Robinson-Foulds (RF) distance, which is the size of
the symmetric difference of the sets of bipartitions in two trees on the same
set of taxa. Since the number of bipartitions in a SPHERE tree is significantly
less than in the Nextstrain tree for the same taxa, we separately report two
differences, each representing the number of bipartitions in one tree that are
not present in the other tree.

However, the RF metric suffers from the several drawbacks including small
range, over-sensitivity to minor differences, and assigning higher distances to
more balanced trees [9]. Therefore, we also report the triplet and quartet dis-
tances that provide more precise measures of dissimilarity that don’t suffer from
the same shortcomings as bipartions [9].

We use Dendropy [10] and tgDist [6] to calculate the RF distance and the
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triplet and quartet distances, respectively. Both tools require input trees in the
Newick format with only leaves labeled by taxa. We convert a SPHERE tree to
the Newick format as follows: each internal node labeled by a taxon is replaced
by an unlabeled node with a child labeled by the same taxon; if a node is labeled

by several taxa, we replace it with a new internal node, which is the parent of

the new leaf nodes, each labeled by a single taxon (Figure 6).

(a) An example of a tree produced by the SHERE tool. (b} The result of converting the SPHERE tree from (a)

Figure 6: Example of converting a SPHERE tree into the Newick format. Three
new internal nodes X, Y, and Z are introduced. The node X becomes the parent of S1,
S2, and S3. The node Y becomes the parent of S4. The node Z becomes the parent
of S6 and S7.

Transmission Network Comparison When geographical metadata for
SARS-CoV-2 sequences is available, the phylogeny trees produced by our method
imply a SARS-CoV-2 transmission network. We analyze the predictive value of
the transmission network by computing a phylogeny tree on the ETL dataset,
extracting its implied network, and comparing it to the known transmission

links that accompany the dataset.

In a SPHERE phylogeny, a directed transmission link between two locations
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is defined by a parent/child relationship in the tree between two sequences
sampled at those locations. For matching sequences collapsed into a single node
in the tree, we resolve the direction of their transmission link as earlier date
— later date. We calculate precision and recall of the transmission network as

follows:

Number of true links predicted by the tool

Precision —
recision Total number of predicted links

Number of true links predicted by the tool
Recall =

Total number of given true links

Phylogenetic trees for C2C data

The SPHERE phylogeny tree has all internal nodes annotated (Figure 7) in
comparison to the Nextstrain tree (Figure 8). Nodes in both trees are colored
by the locations they represent, where multi-color nodes in the SPHERE tree
have assigned sequences from different locations. The sizes of the nodes in
the SPHERE tree are proportional to the number of sequences they represent.
Edges in the SPHERE tree are labeled by the number of mutations from parent
to child haplotype. Some edges in the Nextstrain tree are labeled by codes of

mutations.

Comparing Phylogenetic Trees

We compare eight trees created by applying the two phylogeny tools, SPHERE
and Nextstrain, to the four datasets: C2C, F22C, M14, and M22 (see Table 1).
Nextstrain prunes highly divergent sequences, leading to a slight reduction of
the number of sequences for F22C and M14. The number of edges in SPHERE
trees is much smaller than in Nextstrain trees since SPHERE does not introduce

internal nodes and collapses taxa that agree with each other in the sequenced
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Figure 7: The phylogeny tree on the C2C dataset produced by SPHERE. Each
edge is annotated by the number of mutations between the parent and the child.
The sizes of the nodes represent the number of sequences assigned to the node.
Multi-color nodes have assigned sequences from different locations.

positions.

Tree C2C_S | C2CN | F22C_S | F22C_N | M14.S | M14.N | M22.S | M22.N
# Taxa 168 168 1,293 1,283 | 9,286 | 9,265 | 21,473 | 21,473
# Edges | 110 277 694 2,265 | 3,843 | 17,108 | 9,010 | 39,722

Table 1: Eight phylogeny trees are created by applying SPHERE (“_8”) and
Nextstrain (“_N”) to the four datasets C2C, F22C, M14, and M22.

For each pair of trees, we report the directional Robinson-Foulds distance
(see Table 2), the triplet distance (see Table 3), and the quartet distance (see
Table 4). All distances are with respect to the common taxa between the trees
being compared, normalized by the total number of bipartitions, triplets, or
quartets, respectively.

Our results show that SPHERE is more stable than Nextstrain. Indeed,
consider the chain of datasets C2C C F22C C M14 C M22. A more stable phy-

logeny reconstruction method has lesser distances between trees for consecutive
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Figure 8: The phylogeny tree on the C2C dataset produced by Nextstrain.

datasets. The corresponding normalized directed RF distances for SPHERE
are 6.45%, 12.89%, and 18.28%, respectively; while for the trees produced by
Nextstrain the distances are much larger 57.41%,63.37%, and 69.17%, respec-
tively. Similarly, the normalized triplet distances for SPHERE are 9.41%, 0.26%,
and 16.12%, respectively; while for Nextstrain, they are 8.36%, 25.33%, and
22.48%, respectively. Finally, the normalized quartet distances for SPHERE
are 10.18%, 0.55%, and 23.55%, respectively; while for Nextstrain, the quartet
distances are 17.76%, 26.83%, and 12.05%, respectively. We can see that in

most cases SPHERE method is more stable than Nextstrain.

Inferring Transmission Links

We have compared precision and recall of transmission networks inferred with

SPHERE, the ILP-based character state phylogeny (CS-phylogeny) [7] and the
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C2C.S | C2C.N | F22C_S | F22C_N | M14_.S | M14.N | M22_S | M22_N
Cc2C._s 0 48.39 6.45 45.16 | 16.13 | 45.16 | 16.13 | 45.16
C2CN | 85.19 0 83.33 57.41 | 80.56 | 56.48 | 79.63 | 55.56
F22C.s | 21.62 | 51.35 0 50.26 | 12.89 | 52.11 | 18.04 | 52.58
F22CN | 87.12 | 65.15 | 90.32 0 89.49 | 63.37 | 89.29 | 63.88
M14_S 38.1 50.0 19.14 49.76 0 49.68 | 18.28 | 51.43
M14 N | 85.22 | 59.13 | 91.03 64.63 | 93.08 0 92.02 | 69.17
M22_.S | 43.48 | 52.17 25.7 50.0 26.19 | 47.48 0 50.68
M22.N | 86.29 | 61.29 | 91.25 66.16 | 93.28 | 69.14 | 93.0 0

Table 2: The normalized directional RF distances between trees, given as per-
centages. Fach entry represents the number of bipartitions in the row tree that
are not present in the column tree, normalized by the total number of biparti-
tions in the row tree.

C2C_S | C2C.N | F22C_S | F22C.N | M14_S | M14 N | M22_S | M22.N
C2C_s 0 30.44 9.41 31.19 | 11.13 | 36.23 | 10.18 | 314
C2CN | 30.44 0 22.53 8.36 21.38 | 18.0 | 22.38 | 7.59
F22C.Ss | 9.41 | 22.53 0 49.98 0.26 | 57.37 0.6 52.07
F22C.N | 31.19 | 8.36 49.98 0 49.92 | 25.33 | 50.18 | 18.98
M14.s | 11.13 | 21.38 0.26 49.92 0 37.95 | 16.12 | 23.95
M14 N | 36.23 | 18.0 57.37 25.33 | 37.95 0 44.59 | 22.48
M22_S | 10.18 | 22.38 0.6 50.18 | 16.12 | 44.59 0 29.54
M22_N 31.4 7.59 52.07 18.98 | 23.95 | 22.48 | 29.54 0

Table 3: Triplets comparisons. Values represent the normalized triplet distance
between each pair of trees, given as percentages.

C2CS | C2C.N | F22C_S | F22C_N | M14.S | M14 N | M22.S | M22.N
Cc2C_s 0 30.96 | 10.18 33.84 | 13.28 | 35.89 | 12.58 | 32.82
C2CN | 30.96 0 23.93 17.76 | 22.48 | 15.48 | 23.38 | 15.15
F22C_s | 10.18 | 23.93 0 45.97 0.55 | 50.31 | 1.22 | 47.25
F22CN | 33.84 | 17.76 | 45.97 0 45.83 | 26.83 | 46.28 | 24.43
M14.s | 13.28 | 22.48 0.55 45.83 0 33.84 | 23.55 | 31.68
M14.N | 35.89 | 15.48 | 50.31 26.83 | 33.84 0 38.84 | 12.05
M22.S | 12.58 | 23.38 1.22 46.28 | 23.55 | 38.84 0 374

M22.N | 32.82 | 15.15 | 47.25 24.43 | 31.68 | 12.05 | 374 0

Table 4: Quartets comparisons. Values represent the normalized quartet dis-
tance between each pair of trees, given as percentages.
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character-based phylogeny NETWORK5011CS [4]. SPHERE has the best recall
over existing methods (Table 5). Note that all methods have small precision
because the ETL dataset contains only verified transmission links. The number
or such links is only 25 for 294 nodes. There should be other transmission links,
however they are not validated. SPHERE has comparable precision to other
methods that indicates that all methods output similar number of predicted

transmission links.

Tool Recall %| Precision %
SPHERE 88 4.3
CS-phylogeny 80 4.76
NETWORKS5011CS| 72 4.99
SPHERE-directed | 84 4.3

Table 5: Comparison of SPHERE with CS-phylogeny and NETWORK5011CS tools
without taking in account the transmission direction. SPHERE-directed also takes in
account the transmission direction.

Runtime

We ran SPHERE on the cluster hardware consisting of 128 cores Intel(R)
Xeon(R) CPU E7-4850 v4 CPU @ 2.10GHz, with 3 TB of RAM, running Ubuntu
16.04.7 LTS.

Figure 9 shows that SPHERE is indeed a scalable method with a sub-
quadratic runtime. For example, it is able to process 200,000 sequences in
two hours, while Nextstrain requires 2 days to process 21,000 sequences on the

same hardware, with 32 cores dedicated to the process.

Conclusion and Future Work

It is shown that the development of a character-based shortest-path phylogenetic
tree is viable. First, a shortest-path phylogeny is fast and scalable. Second, the

resulting maximum parsimony trees produced by our method are more stable
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Figure 9: A graph of input size vs runtime. Units are in seconds. This figure
highlights the significant performance improvements observed after optimizing the
parent selection and Hamming distance methods.

than the Nextstrain’s maximum likelihood tree. Third, the inferred transmission
network quality is higher or comparable with existing tools. We plan to incor-
porate sparse backward mutations into the algorithm and add Steiner points

corresponding to internal vertices.
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