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quences

Abstract: This paper presents a novel, scalable, character-based

phylogeny algorithm for dense viral sequencing data called SPHERE

(Scalable PHylogEny with REcurrent mutations). The algorithm

is based on an evolutionary model where recurrent mutations are

allowed, but backward mutations are prohibited. The algorithm

creates rooted character-based phylogeny trees, wherein all leaves

and internal nodes are labeled by observed taxa. We show that

SPHERE phylogeny is more stable than Nextstrain’s, and that it

accurately infers known transmission links from the early pandemic.

SPHERE is a fast algorithm that can process more than 200,000

sequences in less then 2 hours, which offers a compact phylogenetic

visualization of GISAID data.

Introduction

Equipped with the Next Generation Sequencing tools which are much more

productive than ever before, the scientific community have collected an un-

precedented amount of SARS-CoV-2 genomic data, enabling tracking the entire

history of SARS-CoV-2 evolution with high precision [2]. This tracking requires

advanced phylogeny reconstruction software. However, the current state-of-the-

art phylogeny algorithms were created to handle significantly sparser genomic

data than what is available for SARS-CoV-2. The majority of the popular phy-

logenetic tools assume that only the final product of evolution is available, while

all intermediate evolutionary taxa are unknown. Also, these tools usually re-

quire significant computational resources, taking hours and sometimes days to

reconstruct the SARS-CoV-2 phylogeny even for a small subset of the available

genomes.
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The SARS-CoV-2 sequencing data are similar to single cell sequencing data

in cancer studies, where sequenced mutations from thousands of cancer cells offer

a much closer look at cancer evolution. For such densely sequenced samples,

perfect phylogeny models are more insightful than maximum likelihood models

[5]. The perfect phylogeny model requires each mutation to occur only once and

never disappear. More realistic cancer evolution models allow widespread loss

and recurrence of mutations [8, 11, 1].

In contrast to cancer evolution, in viral evolution backward mutations are

rarer than recurrent mutations [12]. In the evolution of the SARS-CoV-2 virus,

recurrent mutations are mostly induced by the host’s non-specific immune re-

sponse. As they tend to be selectivity neutral, these mutations appear with

higher frequency [13].

These properties of the SARS-CoV-2 genomic data, its density and a rela-

tively high frequency of recurrent mutations, motivate the need for a parsimony-

based phylogeny algorithm that is scalable to the entire collection of SARS-CoV-

2 sequences available on GISAID (which numbers about 2.3 million sequences

at the time of writing).

In this work, we follow the approach proposed in [7], which uses mutation

trees [5] associated with character-based phylogenies that keep track of the ac-

cumulation of mutations in viral populations. We choose to employ parsimony-

based phylogenetic analysis, because it explains evolutionary history with the

fewest number of mutations to reproduce the variations in the genomic data.

Targeting both accuracy and resolution as aspects of information contained in

a phylogenetic tree, the maximum parsimony approach yields the results that

are at least as good or better than probabilistic approaches [9].

We propose SPHERE, Scalable PHylogEny with REcurrent mutations, as

an efficient phylogeny reconstruction method that incorporates this model. Us-
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ing this tool, we analyzed the available GISAID data with over 300,000 genome

sequences. We compared the trees produced by SPHERE with those produced

by Nextstrain, and demonstrated that SPHERE trees are more stable with

respect to extending datasets. Finally, we validated that the phylogeny trees

produced by SPHERE more reliably discover valid transmission links than other

state-of-the-art algorithms.

Methods

Most Parsimonious Phylogeny Problem

Given a set of aligned sequences, possibly containing missing positions, and a

reference sequence with no missing positions, find a character-based phyloge-

netic tree that is rooted at the reference sequence, that has the minimum total

edge length, and that does not admit backward mutations.

An algorithm to meet these criteria should infer the phylogeny tree from a set

S of size n of aligned SARS-CoV-2 genome sequences. All of these sequences are

built on the nucleotide alphabet (A,C,T,G) and may contain missing positions

(N). The reference sequence is required to have no missing positions, i.e., no

occurrences of N. Under the assumption of allowing recurrent mutations but

not allowing backward mutations, our algorithm creates a maximum parsimony

phylogeny tree for the given dataset rooted at the reference sequence.

Nodes in the phylogeny tree represent sequence haplotypes that match one

or more sequences in the data. Edges in the tree are directed, and represent

the ancestor/descendant relationship between two sequences. The length of an

edge is the Hamming distance between the sequences that label its endpoints.
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Algorithm Overview

For a given set S of aligned sequences and a reference sequence, the proposed

Algorithm 1 finds a maximum parsimony phylogenetic tree on the haplotypes

in S, rooted at the reference sequence, with no backward mutations allowed.

A tree rooted at the reference sequence is initialized, and all sequences in S

are inserted into a queue. Each sequence is then assigned a set of positions at

which the sequence contains a different nucleotide (i.e., a mutation) from the

reference sequence. Each sequence’s priority in the queue is determined by the

size of its set of reference mutations, i.e., by its Hamming distance from the

root. Finally, each sequence’s parent is initialized to be the root by default.

Sequences are removed from the queue and added to the tree in increasing

order of Hamming distance from the root. To achieve the minimal total edge

length, the parent of a node must be on the shortest path from the root, and it

must be the lowest such parent in the tree. By default, the parent of a sequence

is the root, and we look for a better parent as we add the sequence to the tree.

Once the parent is determined and the sequence is inserted into the tree, we fill

any missing positions in the sequence from its parent. If a sequence’s Hamming

distance to its parent is 0, the sequence is collapsed to the parent node and a

new node is not created.

Parent Selection

When adding a sequence to the tree, the process of choosing its parent looks

similar to a Dijkstra’s shortest-path algorithm comparison. A sequence u is a

parent of a sequence v if and only if (see Figure 1):

• distance(root,u) + distance(u,v) = distance(root,v);

• u is the lowest such node in the tree.
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Algorithm 1 Character-Based Phylogeny

Input: Set S of aligned sequences (with possible missing positions), refer-
ence sequence (with no missing positions);

Output: Character-based phylogenetic tree on aligned sequences, rooted
at the reference sequence. Backward mutations are not allowed, recurrent mu-
tations are allowed.

1: Initialize a tree rooted at reference, and a queue of all sequences
2: For each sequence, assign set of positions where the sequence differs from

reference
3: Set root as initial parent of all sequences
4: while the queue is not empty do
5: Dequeue minimum priority sequence x
6: for each node v in reversed order of vertex set do
7: Check if v is a parent of x
8: Break when a parent is found.
9: end for

10: if Hamming distance to x’s parent is 0 then
11: collapse x to its parent
12: else add x to the tree:
13: Connect x to its parent
14: Fill missing positions in x from the parent
15: end if
16: end while

Together, these two conditions imply that u is on the shortest path from

root to v, that u immediately precedes v, and that the total length of the tree

after inserting v is the minimal possible.

In the original implementation, see Algorithm 2, we updated the parents of

all nodes in the queue on each insertion, as shown in Figure 2. Whenever we

would pop a new sequence from the queue to add to the tree, we iterate through

all nodes in the queue and check if the popped sequence is a better parent.

Algorithm 2 Parent Selection

1: Pop node x from queue and add it to the tree
2: Add edge from x’s parent to x
3: for each node v in the queue do
4: Update parent of v with x, if necessary
5: end for

With this approach, the parent selection procedure checks every possible
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Figure 1: A visual representation of the parent selection constraint.

Figure 2: Choosing parents, original implementation. On each node insertion, for
each sequence v remaining in the queue, check if the most recently inserted node x is
a better parent of v.

edge between nodes throughout the execution of the algorithm, and thus gives

us a quadratic run time of O(Size of queue) comparisons for each of the O(n)

node insertions, where n is the number of sequences.

With this implementation, the performance of our algorithm exceeded quadratic

runtime (Figure 3). This is too slow for our goal of designing a scalable tool ca-

pable of processing available SARS-CoV-2 genomic data in a reasonable amount

of time.
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Figure 3: Runtime of our phylogeny algorithm in comparison to O(n2) and O(n3)
runtimes. The blue curve represents the runtime of our algorithm, the orange curve
represents O(n2) complexity, and the green curve O(n3) complexity. This version of
parent selection admits a runtime that is slightly greater than O(n2).

Performance Improvements

Speeding Up Parent Selection Originally, after each node insertion, we

iterated through the queue updating parents as needed. This mode of parent

selection results in a quadratic runtime complexity, as each node is compared

to each other node throughout execution of the algorithm. Instead, as shown

in Figure 4, we decided to iterate through the tree vertices when looking for

parents, rather than updating parents in the queue. In the worst case, this still

has a quadratic runtime; however, this mode of operation allows us to escape

the parent selection procedure early when a parent is found.

On each node insertion, our algorithm now iterates through the tree vertices

in reverse order of insertion, looking for the parent that satisfies the triangle

equality parent selection constraint shown in Figure 1. We can break this iter-

ation through the tree early as soon as a parent better than the root is found,

saving on the number of comparisons we need to make, see Algorithm 3.

We reduced the average complexity of our algorithm to below O(n2). Fur-

thermore, the hidden complexity coefficient also dropped. In Figure 3, which

illustrates the original runtime, we see that processing 1,000 sequences required
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Figure 4: When adding node x to the tree, we search the nodes in the tree in reverse
order of insertion (starting with the most recently inserted node) looking for parents
that satisfy the triangle equality condition. We can stop iteration early every time we
find a parent.

Algorithm 3 Faster Parent Selection

1: Pop node x from queue and add it to the tree
2: for each node v in reversed order of vertex set do
3: Check if v is a parent of x
4: Break when a parent is found
5: end for
6: Add edge from v to x

almost 1,000 minutes of runtime. As is evident in Figure 5, this change to the

parent selection algorithm increased our speed, so that we could now process

1,000 sequences in just a couple of minutes. However, 8,000 sequences still

required almost 6 hours of runtime.

Speeding up Hamming distance The length of SARS-CoV-2 genome is

30,000 nucleotides, and mutations have already been observed in more than

20,000 of them. However, any two available SARS-CoV-2 genome sequences

differ by no more than 300 mutations.

We assigned each sequence a set of positions where it has mutated from

the reference sequence. Then we compute the Hamming distance between two

sequences as follows:
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Figure 5: Performance after implementing the change to parent selection. This change
has brought our algorithm’s runtime down to below O(n2) in the average case. The
hidden complexity coefficient has also decreased slightly, allowing us to process notably
larger datasets in the same amount of time.

• The size of the symmetric difference between the two sets is added to the

Hamming distance immediately.

• For each position in the intersection of the two sets, check if the sequences

differ at those positions.

Results

Datasets

For comparison and evaluation purposes, we use the following five datasets:

• C2C: The Coast–to–Coast dataset consists of 168 global SARS-CoV-2 se-

quences, including 9 sequences from COVID-19 patients identified in Con-

necticut [3].

• F22C: This dataset consists of 1,293 global SARS-CoV-2 sequences, which

are all GISAID sequences recorded up until February 22th, 2020, as well

as the sequences in the C2C dataset. all GISAID sequences recorded up

until February 22th, 2020, as well as the sequences in the C2C dataset.
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• M14: This dataset consists of 9,286 global SARS-CoV-2 sequences, which

are all GISAID sequences recorded up until March 14th, 2020.

• M22: This dataset consists of 21,473 global SARS-CoV-2 sequences, which

are all GISAID sequences recorded up until March 22th, 2020.

• ETL: The Early Transmission Links dataset consists of 294 global SARS-

CoV-2 sequences collected before March 9th, 2020. This dataset was con-

structed to match the 25 known transmission links. These transmission

links were collected from news articles detailing transmissions prior to the

pandemic declaration, in the MIDAS 2019 Novel Coronavirus Repository.

Since all sequences in the C2C and ETL datasets were recorded before March

14th, 2020, both are entirely contained in the M14 and M22 datasets.

Validation Metrics

Comparing Phylogenetic Trees One of the standard tools for comparing

phylogenetic trees is the Robinson-Foulds (RF) distance, which is the size of

the symmetric difference of the sets of bipartitions in two trees on the same

set of taxa. Since the number of bipartitions in a SPHERE tree is significantly

less than in the Nextstrain tree for the same taxa, we separately report two

differences, each representing the number of bipartitions in one tree that are

not present in the other tree.

However, the RF metric suffers from the several drawbacks including small

range, over-sensitivity to minor differences, and assigning higher distances to

more balanced trees [9]. Therefore, we also report the triplet and quartet dis-

tances that provide more precise measures of dissimilarity that don’t suffer from

the same shortcomings as bipartions [9].

We use Dendropy [10] and tqDist [6] to calculate the RF distance and the
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triplet and quartet distances, respectively. Both tools require input trees in the

Newick format with only leaves labeled by taxa. We convert a SPHERE tree to

the Newick format as follows: each internal node labeled by a taxon is replaced

by an unlabeled node with a child labeled by the same taxon; if a node is labeled

by several taxa, we replace it with a new internal node, which is the parent of

the new leaf nodes, each labeled by a single taxon (Figure 6).

Figure 6: Example of converting a SPHERE tree into the Newick format. Three
new internal nodes X, Y, and Z are introduced. The node X becomes the parent of S1,
S2, and S3. The node Y becomes the parent of S4. The node Z becomes the parent
of S6 and S7.

Transmission Network Comparison When geographical metadata for

SARS-CoV-2 sequences is available, the phylogeny trees produced by our method

imply a SARS-CoV-2 transmission network. We analyze the predictive value of

the transmission network by computing a phylogeny tree on the ETL dataset,

extracting its implied network, and comparing it to the known transmission

links that accompany the dataset.

In a SPHERE phylogeny, a directed transmission link between two locations
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is defined by a parent/child relationship in the tree between two sequences

sampled at those locations. For matching sequences collapsed into a single node

in the tree, we resolve the direction of their transmission link as earlier date

→ later date. We calculate precision and recall of the transmission network as

follows:

Precision =
Number of true links predicted by the tool

Total number of predicted links

Recall =
Number of true links predicted by the tool

Total number of given true links

Phylogenetic trees for C2C data

The SPHERE phylogeny tree has all internal nodes annotated (Figure 7) in

comparison to the Nextstrain tree (Figure 8). Nodes in both trees are colored

by the locations they represent, where multi-color nodes in the SPHERE tree

have assigned sequences from different locations. The sizes of the nodes in

the SPHERE tree are proportional to the number of sequences they represent.

Edges in the SPHERE tree are labeled by the number of mutations from parent

to child haplotype. Some edges in the Nextstrain tree are labeled by codes of

mutations.

Comparing Phylogenetic Trees

We compare eight trees created by applying the two phylogeny tools, SPHERE

and Nextstrain, to the four datasets: C2C, F22C, M14, and M22 (see Table 1).

Nextstrain prunes highly divergent sequences, leading to a slight reduction of

the number of sequences for F22C and M14. The number of edges in SPHERE

trees is much smaller than in Nextstrain trees since SPHERE does not introduce

internal nodes and collapses taxa that agree with each other in the sequenced
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Figure 7: The phylogeny tree on the C2C dataset produced by SPHERE. Each
edge is annotated by the number of mutations between the parent and the child.
The sizes of the nodes represent the number of sequences assigned to the node.
Multi-color nodes have assigned sequences from different locations.

positions.

Tree C2C S C2C N F22C S F22C N M14 S M14 N M22 S M22 N

# Taxa 168 168 1,293 1,283 9,286 9,265 21,473 21,473
# Edges 110 277 694 2,265 3,843 17,108 9,010 39,722

Table 1: Eight phylogeny trees are created by applying SPHERE (“ S”) and
Nextstrain (“ N”) to the four datasets C2C, F22C, M14, and M22.

For each pair of trees, we report the directional Robinson-Foulds distance

(see Table 2), the triplet distance (see Table 3), and the quartet distance (see

Table 4). All distances are with respect to the common taxa between the trees

being compared, normalized by the total number of bipartitions, triplets, or

quartets, respectively.

Our results show that SPHERE is more stable than Nextstrain. Indeed,

consider the chain of datasets C2C ⊂ F22C ⊂ M14 ⊂ M22. A more stable phy-

logeny reconstruction method has lesser distances between trees for consecutive
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Figure 8: The phylogeny tree on the C2C dataset produced by Nextstrain.

datasets. The corresponding normalized directed RF distances for SPHERE

are 6.45%, 12.89%, and 18.28%, respectively; while for the trees produced by

Nextstrain the distances are much larger 57.41%,63.37%, and 69.17%, respec-

tively. Similarly, the normalized triplet distances for SPHERE are 9.41%, 0.26%,

and 16.12%, respectively; while for Nextstrain, they are 8.36%, 25.33%, and

22.48%, respectively. Finally, the normalized quartet distances for SPHERE

are 10.18%, 0.55%, and 23.55%, respectively; while for Nextstrain, the quartet

distances are 17.76%, 26.83%, and 12.05%, respectively. We can see that in

most cases SPHERE method is more stable than Nextstrain.

Inferring Transmission Links

We have compared precision and recall of transmission networks inferred with

SPHERE, the ILP-based character state phylogeny (CS-phylogeny) [7] and the
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C2C S C2C N F22C S F22C N M14 S M14 N M22 S M22 N

C2C S 0 48.39 6.45 45.16 16.13 45.16 16.13 45.16
C2C N 85.19 0 83.33 57.41 80.56 56.48 79.63 55.56
F22C S 21.62 51.35 0 50.26 12.89 52.11 18.04 52.58
F22C N 87.12 65.15 90.32 0 89.49 63.37 89.29 63.88
M14 S 38.1 50.0 19.14 49.76 0 49.68 18.28 51.43
M14 N 85.22 59.13 91.03 64.63 93.08 0 92.02 69.17
M22 S 43.48 52.17 25.7 50.0 26.19 47.48 0 50.68
M22 N 86.29 61.29 91.25 66.16 93.28 69.14 93.0 0

Table 2: The normalized directional RF distances between trees, given as per-
centages. Each entry represents the number of bipartitions in the row tree that
are not present in the column tree, normalized by the total number of biparti-
tions in the row tree.

C2C S C2C N F22C S F22C N M14 S M14 N M22 S M22 N

C2C S 0 30.44 9.41 31.19 11.13 36.23 10.18 31.4
C2C N 30.44 0 22.53 8.36 21.38 18.0 22.38 7.59
F22C S 9.41 22.53 0 49.98 0.26 57.37 0.6 52.07
F22C N 31.19 8.36 49.98 0 49.92 25.33 50.18 18.98
M14 S 11.13 21.38 0.26 49.92 0 37.95 16.12 23.95
M14 N 36.23 18.0 57.37 25.33 37.95 0 44.59 22.48
M22 S 10.18 22.38 0.6 50.18 16.12 44.59 0 29.54
M22 N 31.4 7.59 52.07 18.98 23.95 22.48 29.54 0

Table 3: Triplets comparisons. Values represent the normalized triplet distance
between each pair of trees, given as percentages.

C2C S C2C N F22C S F22C N M14 S M14 N M22 S M22 N

C2C S 0 30.96 10.18 33.84 13.28 35.89 12.58 32.82
C2C N 30.96 0 23.93 17.76 22.48 15.48 23.38 15.15
F22C S 10.18 23.93 0 45.97 0.55 50.31 1.22 47.25
F22C N 33.84 17.76 45.97 0 45.83 26.83 46.28 24.43
M14 S 13.28 22.48 0.55 45.83 0 33.84 23.55 31.68
M14 N 35.89 15.48 50.31 26.83 33.84 0 38.84 12.05
M22 S 12.58 23.38 1.22 46.28 23.55 38.84 0 37.4
M22 N 32.82 15.15 47.25 24.43 31.68 12.05 37.4 0

Table 4: Quartets comparisons. Values represent the normalized quartet dis-
tance between each pair of trees, given as percentages.
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character-based phylogeny NETWORK5011CS [4]. SPHERE has the best recall

over existing methods (Table 5). Note that all methods have small precision

because the ETL dataset contains only verified transmission links. The number

or such links is only 25 for 294 nodes. There should be other transmission links,

however they are not validated. SPHERE has comparable precision to other

methods that indicates that all methods output similar number of predicted

transmission links.

Tool Recall % Precision %
SPHERE 88 4.3
CS-phylogeny 80 4.76
NETWORK5011CS 72 4.99
SPHERE-directed 84 4.3

Table 5: Comparison of SPHERE with CS-phylogeny and NETWORK5011CS tools
without taking in account the transmission direction. SPHERE-directed also takes in
account the transmission direction.

Runtime

We ran SPHERE on the cluster hardware consisting of 128 cores Intel(R)

Xeon(R) CPU E7-4850 v4 CPU @ 2.10GHz, with 3 TB of RAM, running Ubuntu

16.04.7 LTS.

Figure 9 shows that SPHERE is indeed a scalable method with a sub-

quadratic runtime. For example, it is able to process 200,000 sequences in

two hours, while Nextstrain requires 2 days to process 21,000 sequences on the

same hardware, with 32 cores dedicated to the process.

Conclusion and Future Work

It is shown that the development of a character-based shortest-path phylogenetic

tree is viable. First, a shortest-path phylogeny is fast and scalable. Second, the

resulting maximum parsimony trees produced by our method are more stable
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Figure 9: A graph of input size vs runtime. Units are in seconds. This figure
highlights the significant performance improvements observed after optimizing the
parent selection and Hamming distance methods.

than the Nextstrain’s maximum likelihood tree. Third, the inferred transmission

network quality is higher or comparable with existing tools. We plan to incor-

porate sparse backward mutations into the algorithm and add Steiner points

corresponding to internal vertices.
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