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Abstract: The availability of millions of SARS-CoV-2 sequences

in public databases such as GISAID and EMBL-EBI (UK) allows a

detailed study of the evolution, genomic diversity and dynamics of

a virus like never before. Here we identify novel variants and sub-

types of SARS-CoV-2 by clustering sequences in adapting methods
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originally designed for haplotyping intra-host viral populations. We

asses our results using clustering entropy — the first time it has been

used in this context.

Our clustering approach reaches lower entropies compared to other

methods, and we are able to boost this even further through gap

filling and Monte Carlo based entropy minimization. Moreover, our

method clearly identifies the well-known Alpha variant in the UK

and GISAID datasets, but is also able to detect the much less repre-

sented (< 1% of the sequences) Beta (South Africa), Epsilon (Cali-

fornia), Gamma and Zeta (Brazil) variants in the GISAID dataset.

Finally, we show that each variant identified has high selective fit-

ness, based on the growth rate of its cluster over time. This demon-

strates that our clustering approach is a viable alternative for de-

tecting even rare subtypes in very large datasets.

1 Background

The novel coronavirus SARS-CoV-2, which is responsible for the Covid-19 dis-

ease, was first detected in Wuhan, China at the end of 2019 Wu et al. (2020);

Zhou et al. (2020). Covid-19 was declared a global pandemic in March 2020

by the World Health Organization (WHO). According to recent data from the

WHO (WHO), there have been almost 4 million deaths due to Covid-19, and

there have been hundreds of millions of confirmed cases so far, while over 3

billion vaccine doses have been administered. As the virus continues to spread

throughout countries and regions across the globe, it continues to mutate, as

seen in the genomic variation among the millions of sequences which are avail-

able in public databases such as GISAID Elbe and Buckland-Merrett (2017).

This mutational variability can be used to understand the evolution, genomic
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diversity and dynamics of SARS-CoV-2, and to generate hypotheses on how the

virus has evolved and spread since it first originated.

An important part of these dynamics are the subsets of sequences (or sub-

types) that vary more than others in terms of genomic content, which continue

to emerge. In some cases, these subtypes appear in an atypically large num-

ber or are associated with an extremely high growth rate, indicating a possible

fitness advantage (transmissibility, evasion from therapies or vaccines, etc.) of

this genomic variation. The best example of this is the Alpha (or B.1.1.7 Ram-

baut et al. (2020)) variant, which differs from the typical sequence by about

30 mutations, and comprises hundreds of thousands of the currently available

sequences. The Alpha variant was first detected in the UK at the end of summer

2020, where it grew to more than a third of the infected population in the UK

by mid December 2020, as seen in the EMBL-EBI (UK) database EMBL-EBI

(2020). One of the first variants of concern (VoCs), the Alpha variant has un-

dergone much investigation, some studies Volz et al. (2021b) showing it to be

between 40–80% more transmissible. This variant is now found in countries all

over the world, some for which it is the dominant variant (e.g., The USA). De-

spite this, the origins of the Alpha variant are still contested, popular hypotheses

including immunocompromised patients, the loss of records, or even minks as

an intermediary host. There are now roughly a dozen variants identified around

the globe (see Table 1) — an interesting question is whether they have or could

potentially have the same degree of divergence as the Alpha variant.

The typical approach that is used to recover such knowledge from viral

sequences is to construct a phylogenetic tree Hadfield et al. (2018); du Plessis

et al. (2021) of evolution. However, with the high computational complexity of

building a tree, more than a million sequences poses a scalability challenge for

such methods Hadfield et al. (2018); du Plessis et al. (2021); Vrbik et al. (2015).
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An orthogonal approach to trees is to build transmission networks of infection

— the structure of the network revealing general trends. In Skums et al. (2020),

the authors show that such a network is scale-free, i.e., that few genomic variants

are responsible for the majority of possible transmissions. A third alternative

to studying the mutational variability of SARS-CoV-2 that we employ here is

to cluster sets of sequences. While individual sequences are often unique, the

sheer number of sequences available is expected to unveil meaningful groups and

trends. Moreover, since most clustering techniques are much faster than, e.g.,

tree building Hadfield et al. (2018); du Plessis et al. (2021), such an approach

can easily scale to the full size of the current datasets in order to leverage this

information. The idea is that clusters of similar sequences should correspond to

variants and subtypes, such as the Alpha variant mentioned above.

In this work, we cluster sequences by adapting methods which were originally

designed for finding viral haplotypes from intra-host viral populations. The idea

is that we use, e.g., CliqueSNV Knyazev et al. (2020), to find haplotypes in the

massively inter-host viral population, using them as cluster centers in categorical

clustering algorithms such as k-modes Huang (1997) in order to find subtypes.

A measure we use to asses the clustering approaches, in the absence of a ground

truth, is clustering entropy. This notion was introduced in Li et al. (2004), where

the authors show that minimizing clustering entropy is equivalent to maximizing

the likelihood that the set of sequences are generated from a set of subtypes,

which closely models this setting of viral sequence evolution. Moreover, the

authors of Li et al. (2004) show that clustering entropy is a convex function,

allowing us to apply general optimization techniques such as the Monte Carlo

method to minimizing entropy directly, as the objective. Finally, we use the

subtypes found from our clustering techniques to patch gaps in the sequences,

as an alternative to filling in the missing data with the reference genome, for
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example. This applies in particular to sequences collected before March, when

SARS-CoV-2 sequencing and alignment were still being refined.

To validate our approaches, we use data from both GISAID and EMBL-

EBI (UK) databases mentioned above (see Table 2). In a general comparison

of methods and parameter settings on data from GISAID, we show that our

CliqueSNV-based approach can achieve the lowest clustering entropy. What is

interesting is that our gap filling approach allowed each method to lower its

entropy even more. We then tested out a Monte Carlo based entropy mini-

mization technique to show that it gives our method an even further edge on

lowering the entropy. We compared various methods on their ability to find sub-

types in the UK dataset, verifying this with the “ground truth” clusters which

arise from metadata which tags each sequence with its lineage (e.g., B.1.1.7, the

Alpha variant). Our CliqueSNV-based approach identified the Alpha variant

with significantly higher precision and specificity compared to other methods,

based on these metadata. This reinforces the notion that clustering entropy is

an appropriate measure of the quality of clustering in this context. We then

used our CliqueSNV-based clustering approach to identify subtypes in the GI-

SAID dataset, again verifying this from metadata. While our method clearly

identified the Alpha variant, it was also able to detect the lesser represented

Beta (South Africa), Epsilon (California), Gamma and Zeta (Brazil) variants

with specificities around 50%. What is particularly interesting about this is that

these lesser represented variants comprise less than 1% of the GISAID dataset

(which contains more than one million sequences), yet our method was able to

detect them with a much higher specificity. Finally, we validate our approaches

to finding subtypes using the fitness coefficient, a third measure of clustering

quality which is orthogonal to both entropy and specificity mentioned above.

The fitness coefficient, introduced in Skums et al. (2012), is an assessment
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of the selective fitness of a subtype, based on the number of sequences in the

corresponding cluster, and the rate at which this grows over time. Our results

show that fitness tends to corroborate with these other two measures, further

strengthening our results. This demonstrates that we can use clustering for the

identification and surveillance of new variants, which have the potential to grow

quickly, or become a threat to public health.

This paper is structured as follows. In Sec. 2, we detail the various ap-

proaches to clustering, gap filling and entropy minimization that we use in this

work. In Sec. 3, we specify the measures that we used to assess the clustering

approaches — clustering entropy and the fitness coefficient. In Sec. 4, we give

details on the datasets that we use in this study, as well as some of the known

variants which we can expect to find in their metadata. In Sec. 5, we report

the results of the experiments we performed to assess the various clustering ap-

proaches, gap filling, entropy minimization, and the identification of subtypes.

Sec. 6 then concludes the paper with a discussion of the contributions of our

approach, in light of these results.

2 Methods used in clustering

We outline in this section all of the methods that were used in clustering nu-

cleotide sequences of the SARS-CoV-2 virus.

2.1 CliqueSNV

Since we are clustering viral sequences in order to identify subtypes, we pro-

pose to use currently existing tools that were developed to identify subtypes in

intra-host viral populations from NGS data reviewed in Knyazev et al. (2021),

such as Savage Baaijens et al. (2017), PredictHaplo Prabhakaran et al. (2014),

aBayesQR Ahn and Vikalo (2018), etc. However, our setting is slightly dif-



2.2 k-modes 7

ferent, where the data consists of large collections of inter-host consensus se-

quences gathered from different regions and countries around the world Elbe

and Buckland-Merrett (2017); EMBL-EBI (2020). We expect, however, that

such tools are appropriate at this scale: now the “host” is an entire region

or country, and we reconstruct the subtypes, or variants, and their dynamics

within these regions or countries. The SARS-CoV-2 sequences in GISAID are

consensus sequences of approximate length 30K. Such sequences by quality and

length have similar properties as PacBio reads. We choose CliqueSNV since it

performed very well on PacBio reads Knyazev et al. (2020).

2.2 k-modes

Since nucleotide sequences can be viewed as objects on categorical attributes

— the attributes are the genomic sites, and the categories are A, C, G, T (and

–, a gap) — we use k-modes Huang (1997, 1998) for clustering. The k-modes

approach is almost identical to k-means Anderberg (1973); MacQueen et al.

(1967), but it is based on the notion of mode (rather than Euclidean mean),

making it appropriate for clustering categorical data. Indeed, the Euclidean

mean of three nucleotides has little meaning in this context, and may not even

be well-defined, e.g., in cases where the “distance” from A to G is different than

from G to A. Similar observations were made in the context cancer mutation

profiles Ciccolella et al. (2020), in the form of absence/presence information.

Treating these as categories, in using k-modes (rather than as 0’s and 1’s, in

using k-means) resulted in a clustering approach Ciccolella et al. (2021a) that,

when used as a preprocessing step, allowed cancer phylogeny building methods

to attain a higher accuracy Ciccolella et al. (2021b), and in some cases with much

lower runtimes Jahn et al. (2016). We briefly describe the k-modes approach in

the context of clustering nucleotide sequences as follows.
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The mode q of a cluster C of sequences on categorical attributes A =

{A, C, G, T, –} is another “sequence” on A which minimizes

D(C, q) =
∑
s∈C

d(s, q) , (1)

where d is some categorical dissimilarity measure (e.g., Hamming distance) be-

tween the sequences we are considering. Note that q is not necessarily an element

of C. For a set S of sequences on attributes A, we are given some initial set

Q = {q1, . . . , qk} of k cluster “centers” (each on A). The k-modes approach

(similarly to k-means) then operates according to the iteration:

• compute the dissimilarity d(s, q) between each sequence s ∈ S and each

center q ∈ Q;

• assign each sequence s ∈ S to the closest center based on the first step,

resulting in a clustering with k clusters; and

• compute the mode of each cluster from the second step, resulting in a new

set Q′ of k centers;

until convergence, i.e., the clustering does not change after an iteration.

In this paper we cluster sequences of SARS-CoV-2 with k-modes using three

different ways to compute the initial set Q of cluster centers, and using two

different dissimilarity measures d. The three ways to compute the initial set of

cluster centers are:

1. choose k random sequences from the dataset;

2. choose k centers that are maximally pairwise distant from each other; and

3. use the centers (the subtypes) found by CliqueSNV.

The two different dissimilarity measures that we use are (a) the Hamming dis-

tance, and (b) the TN-93 distance Tamura and Nei (1993).
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2.3 MeShClust

For comparison purposes, we also apply methods designed for clustering metage-

nomics and multiviral sequencing data. We clustered the sequences using MeSh-

Clust James et al. (2018), an unsupervised machine-learning method that aims

to provide highly-accurate clustering without the need for user-specified simi-

larity parameters (these are learned).

However, this approach is intended for use with data sets containing genomes

of multiple different viruses. In particular, it was validated on a data set contain-

ing 96 sequences of average length of 3K–12K, coming from 9 different viruses.

On the other hand, SARS-CoV-2 data sets usually contain several hundred thou-

sand sequences of a single virus, with genome length averaging around 30K.

2.4 Monte-Carlo Based Entropy Minimization

We use clustering entropy Li et al. (2004) to assess the various clustering meth-

ods that we propose in this work (see Sec. 3.1). For this reason, we also employ

a technique aimed directly at minimizing clustering entropy as the objective.

We first define clustering entropy in the following.

Formally, we have a set S of aligned nucleotide sequences on the set X of

genomic sites. Since they are aligned, sequences can be viewed as rows of a

matrix and, when restricted to a site x ∈ X, can be viewed as columns of this

matrix. Let N = {A, C, G, T} be the four nucleotides, not counting the gap

(–) character. Using the notation of Li et al. (2004), the entropy Ĥx(C) of a

subset C (a cluster) of sequences from S at site x ∈ X is then

Ĥx(C) = −
∑
s∈C

∑
a∈N

px(s = a) log px(s = a) . (2)

Note that px(s = a) — the probability that a sequence s ∈ C has nucleotide a
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at site x — essentially amounts to the relative frequency of nucleotide a ∈ N

in C at site x. The entropy ĤX(C) of subset C of sequences on a subset X of

sites is then

ĤX(C) =
∑
x∈X

Ĥ(x) , (3)

that is, we simply sum up the entropies at the individual sites. Since the set

of sites will always correspond to the SNV sites of our sequences, we will use

simply Ĥ(C) for the entropy of a subset (a cluster) of sequences from hereon in.

The expected entropy Li et al. (2004) of a clustering C = C1, . . . , Ck of sequences

is then

H(C) =
1

n

k∑
i=1

niĤ(Ci) , (4)

where ni = |Ci|, the number of elements in cluster Ci, and n is the total number

of sequences. For completeness, the total entropy of a clustering is simply the

sum

T (C) =
k∑

i=1

Ĥ(Ci) (5)

of the individual entropies of each cluster (not weighted by ni).

In Li et al. (2004), the authors prove that the entropy Eq. 4 is a convex

function, allowing any optimization procedure to reach a global minimum. It

is because of this property that we can use techniques aimed directly at mini-

mizing clustering entropy as the objective. The Monte-Carlo method is broad

class of computational algorithms that rely on repeated random sampling to op-

timize some criterion. In this context, we are randomly sampling clusterings of

sequences in order to minimize Eq. 4. The basic idea is that we start with some

clustering — note that the clustering corresponding to placing all sequences in

the same cluster has maximum entropy, by definition. The Monte-Carlo process

then operates according to the iteration:

• from the current clustering, randomly pick a sequence from some cluster
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and place it into another cluster, resulting in a new clustering;

• compute the entropy (Eq. 4) of the new clustering; and

• accept this new clustering, if the entropy has decreased, otherwise keep

the current clustering;

until convergence, i.e., the clustering does not change after some number θ of

iterations.

In Li et al. (2004), the authors prove the concept of applying the Monte-Carlo

method to entropy minimization by implementing a very basic procedure similar

to the above, and then demonstrate it on a small dataset. Since our datasets are

on a much larger scale (millions of sequences on 30K genomic sites), the basic

iteration which randomly samples a single sequence in each iteration would need

many iterations for a very small improvement. For this reason we apply the

following preprocessing step, to improve the convergence. Rather than using

all (30K) columns, we first sort the columns according to their (unclustered)

entropy value. We then select the n columns, or tags, with highest entropy.

Next, we then run the above Monte-Carlo process on the reduced dataset with

the n tags. This results in a clustering (of the rows), to which we then apply to

the original set of all columns.

2.5 Filling gaps

Finally, the set of SARS-CoV-2 sequences that we deal with contain missing

nucleotides, due to gaps or deletions. This is particularly true with GISAID

sequences collected from December 2019 to the end of March 2020, when se-

quencing, alignment, etc., were less refined. This is further complicated by the

presence of deletions, which could be confused with gaps.

Here, we attempt to use the clustering obtained by some clustering method

in order to fill the gaps. That is, rather than uniformly filling all sequences with,
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e.g., the reference genome, we fill each sequence with the center of its cluster.

The idea is that if a clustering performs well, then the sequences of a cluster

should correspond to a subtype. In this case, the center — a consensus sequence

of this subtype — should be much closer to any sequence of its cluster than the

reference genome, resulting in a more accurate filling of the gaps.

3 Measures for assessing clustering quality

In this section, we present two measures for assessing clustering quality, in order

to compare the various clustering methods that we outlined in the previous

section. The first measure is clustering entropy, an internal evaluation criterion

that reflects the underlying processes which generate a set of viral sequences.

The second is a measure of the selective fitness of clusters, based on how their

rates of change in size vary over time.

3.1 Clustering entropy

Since we are comparing various clustering methods without knowing a ground

truth, we need to consider an internal evaluation criteria. Many of the com-

monly used criteria require some notion of distance, or dissimilarity measure,

between the objects being clustered. For example, criteria such as the Calinski-

Harabasz Index Caliński and Harabasz (1974) or the Gap Statistic Tibshi-

rani et al. (2001) rely on the Euclidean distance, while the Davies-Bouldin In-

dex Davies and Bouldin (1979) or the Silhouette Coefficient Rousseeuw (1987)

require this distance (or dissimilarity) to be a metric. For the same reason that

we use k-modes for clustering — sequences are objects on categorical attributes

which take values A, C, G, T (and –, a gap) — criteria based on the Euclidean

distance are not appropriate. Moreover, because the various dissimilarity mea-

sures that we use within the k-modes framework for clustering are not Euclidean
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(Hamming distance), or even a metric (TN-93 distance, see Table 1 of Tamura

and Nei (1993)), even criteria such as the Davies-Bouldin Index or Silhouette

Coefficient would not apply.

The clustering entropy Li et al. (2004) (Eq. 4 and Eq. 5) is an internal

evaluation criterion that was shown to generalize any distance-based criterion,

and does not even require any notion of distance or dissimilarity. Hence, for the

reasons mentioned above, the clustering entropy criterion is appropriate in our

case. Moreover, clustering entropy naturally reflects the fact that the population

of viral sequences comes from a number of subtypes. Clustering entropy can be

formally derived using a likelihood principle based on Bernoulli mixture models.

In these mixture models, the observed data are thought of as coming from a

number of different latent classes. In Li et al. (2004), the authors prove that

minimizing clustering entropy is equivalent to maximizing the likelihood that

set of objects are generated from a set of (k) classes. This reflects the underlying

processes which generate a set of viral sequences: that they evolved from a set

of (k) subtypes.

This relates closely to the widely-used notion of sequence logo Schneider

and Stephens (1990): a graphical representation of a set of aligned sequences

which conveys at each position both the relative frequency of each base (or

residue), and the amount of information (the entropy) in bits. A clustering of

viral sequences of low entropy then relates to a reliable set of sequence logos

(in terms of information), and can hence shed light on the possible biological

function of the viral subtype that each such logo (or related motif) represents.

3.2 Fitness

We use a mathematical model proposed in Skums et al. (2012) for the calculation

of a numerical measure of the fitness of a quasispecies. This model is used here
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to calculate the fitness of a cluster, based on how the rate of change in size

(number of sequences it contains) varies over time. For a set C1, . . . , Ck of

clusters, Xi(t) denotes the size of cluster Ci at a particular time t. The fitness

coefficient is calculated using hi, which is the cumulative sum of the Xi. It

follows that h(t) =
∑k

i=1 hi(t) is the total infected population size at time t.

Each hi(t) is normalized over h(t), which is denoted by ui(t), that is,

ui(t) =
hi(t)∑k
i=1 hi(t)

. (6)

Using cubic splines, ui(t) and h(t) are interpolated over the time period and

the derivatives u̇i(t) and ḣ(t) are calculated. The fitness function gi, for each

cluster Ci is then defined as

gi(t) =
u̇i(t)

ui(t)
+
ḣ(t)

h(t)
. (7)

The fitness coefficient ri, which is the average fitness over the time period T

(composed of the times t) for cluster Ci is then

ri =
1

T

∫ T

1

gi(t)dt . (8)

In order to reduce sampling error, we use the Poisson distribution to draw

random samples. For each cluster at time t, a sufficiently large number of ran-

dom samples is drawn from the Poisson distribution on Xi(t) as the expectation

of the interval. Then Xi(t) is replaced by the mean value of these random

samples. This is repeated a sufficiently large number of times (e.g., 100) to

calculate a set of Poisson-distributed sizes. The fitness coefficient calculation

is then applied on each repetition separately and a confidence interval of this

fitness coefficient is obtained.
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Table 1: Some known variants of SARS-CoV-2a

Variant Region Lineage S/Gen. Source

Gamma Brazil P.1(B.1.1.28.1) 10 / 21
Naveca et al. (2021b)

Zeta Brazil P.2(B.1.1.28.2) 1 / 5

Epsilon California B.1.427/B.1.429 3 / 5 Zhang et al. (2021)

Iota New York B.1.526 6 / 16 West et al. (2021)

Beta S. Africa B.1.351 9 / 21
Galloway et al. (2021)

Alpha UK B.1.1.7 8 / 17

Kappa India B.1.167.1 8 / 17
Yadav et al. (2021)

Delta India B.1.167.2 8 / 17

a Known variants of SARS-CoV-2. The five columns, starting from the left, are: Variant
(Greek name); Region where it was first identified; PANGOLIN Lineage identifier; Number
of mutations on the S gene / entire genome; and Source.

4 Datasets

In this section we outline the datasets that we used in the experiments of the

next section. We first give a brief overview of well-known subtypes, or variants,

from the literature, and then describe the three datasets we use, which are

known to contain different proportions of these variants.

4.1 Known variants

Since its emergence in November 2019 Deasy et al. (2020), SARS-CoV-2 has

evolved into different variants. Divergences in mutation at the genomic level

have been observed in different regions of the world as new infectious variants

are emerging. The following is a description of some of the well-known variants

to date. A more complete list can be found in Table 1.

4.1.1 Alpha variant (UK)

The Alpha variant, also known as the B.1.1.7 variant of SARS-CoV-2 was first

identified in Kent, UK, in late summer to early autumn 2020. It has the highest
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transmissibility of any lineage, with a 50% to 100% reproduction rate Volz

et al. (2021a). The first case was reported on December 14, 2020, and this

variant is now detected in over 30 countries, with more than 15 thousand people

affected worldwide Galloway et al. (2021). Of the many genomic mutations that

characterize this variant, it has a 69/70 deletion and a mutation at position

501, which affects the conformation of the receptor binding domain (RBD) of

the spike protein of SARS-CoV-2. It has 17 mutations which include 14 amino

acids and 3 in-frame deletions at open-reading frame (ORF) 1 a/b, ORF 8, spike

(S), and N gene regions. These mutations have biological implications and have

resulted in diagnostic failures Ramı́rez et al. (2021).

4.1.2 Beta variant (South Africa)

The first case of the Beta variant, also known as B.1.351, was identified in Nelson

Mandela Bay, South Africa, in October 2020. This lineage was predominant by

the end of November 2020 in the Eastern and Western Cape Provinces of South

Africa. By January 2021, there were 415 known cases of infection with this

variant, found in 13 different countries. This variant has eight mutations in

the S gene region, including three mutations SK417N, E484K and N501Y that

affect the RBD of the spike protein. These three mutations can be the reason for

increased transmissibility, and can also lead to alterations in conformation that

could pose a challenge for the effectiveness of vaccines Galloway et al. (2021);

Zucman et al. (2021); Tang et al. (2021).

4.1.3 Gamma and Zeta variants (Brazil)

The Gamma variant, also known as P.1(B.1.1.28.1), was initially identified in

February 2020, in Japanese travelers coming from Amazonas State, Brazil. It

was first reported in a 29-year-old female resident of Amazonas State. The

P.1 lineage has mutations K417T, E484K, and N501Y in the S gene region,
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which affect the RBD of the spike protein. The Zeta variant, also known as

P.2(B.1.1.28.2) was first identified in Rio de Janeiro, Brazil. It shares the mu-

tation E484K with the Gamma variant Naveca et al. (2021a).

4.1.4 Epsilon variants (California, USA)

In July 2020, the first case of the Epsilon variants, also known as the CAL.20C or

B.1.427/B.1.429 variants of SARS-CoV-2, was identified in Los Angeles County,

California, USA. The Cedars-Sinai Medical Center (CSMC) reported that the

second B.1.429 Epsilon variant contains five mutations at ORF 1 a (I4205V),

ORF 1 b (D1183Y), and S gene mutations S13I, W152C and L452R. Mutation

L452R is correlated with higher infectivity Zhang et al. (2021). The Epsilon

variants are spreading in the US and in 29 other countries McCallum et al.

(2021).

4.1.5 Iota Variant (New York, USA)

The Iota variant, also known as B.1.526, was first found in November 2020 in

New York, USA. At that time, the number of sequences of the Iota variant

comprised less than 1% of all sequences in the GISAID database Elbe and

Buckland-Merrett (2017). Scientists from Caltech noticed a surge in growth of

this number by roughly one third by February 2021. This variant has mutations

L5F, T95I, D253G, E484K or S477N, D614G, and A701V in the S gene region

— mutations E484K and S477N affecting the RBD of the spike protein. Note

that the E484K mutation causes attenuation in in vitro neutralization, and is

found in other variants of concern (VOCs) Thompson et al. (2021); West et al.

(2021), such as the Beta, Gamma and Zeta variants, described above.
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Table 2: Datasets used in the experimentsa

Dataset Database Start End No. Sequences

GISAID 1 GISAID 2019-12-24 2020-11-07 209 334
GISAID 1A GISAID 2019-12-24 2020-03-05 3 688
UK EMBL-EBI 2020-01-29 2020-12-29 88 008
GISAID 2 GISAID 2019-12-24 2021-04-04 1 000 982

a The four datasets that are used in the experiments of Sec. 5. The five columns,
starting from the left, are: Name we use here; Database it is from (GISAID Elbe and
Buckland-Merrett (2017) or EMBL-EBI EMBL-EBI (2020)); Earliest collection date of
any sequence; Latest collection date; and Number of sequences. Note that GISAID 1A
is a subset of GISAID 1, which is, in turn, a subset of GISAID 2.

4.2 Datasets used

In our experiments, we use four different datasets, three of which are vari-

ous snapshots of the GISAID Elbe and Buckland-Merrett (2017) database at

different time points, and the fourth is a dataset obtained from the EMBL-

EBI EMBL-EBI (2020) database in the UK. These datasets are summarized

in Table 2, and then each one is explained in more detail in its corresponding

subsection below.

4.2.1 GISAID 1

The first dataset consists of sequences submitted to the GISAID Elbe and

Buckland-Merrett (2017) database up until November 2020. This dataset con-

tains sequences from all over the world. Since this dataset covers the period

of time from December 2019 to March 2020, some of these sequences have a

sizeable number of gaps.

4.2.2 GISAID 1A

The second dataset consists of sequences submitted to GISAID up until the

beginning of March 2020. This smaller dataset, a subset of GISAID 1, was

designed in order to test out the Monte Carlo optimization procedure described
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in Sec. 2.4.

4.2.3 UK

The third data set consists of sequences submitted to the EMBL-EBI EMBL-

EBI (2020) database from the end of January 2020 to the end of December 2020.

Since this database is in the UK, and given the collection period, this dataset

contains a sizeable portion of the Alpha variant.

4.2.4 GISAID 2

The third data set consists of all sequences submitted to GISAID up until

April 2021. Since many of the known variants mentioned above have been

well-documented by April 2021, this dataset contains a sizable portion of se-

quences annotated as being from the Alpha, Beta, Gamma, Epsilon and Zeta

variants. Such labels correspond to “ground truth clusters” for which we can

compute the precision, specificity, F1 score, etc., of a clustering obtained with

a given method.

5 Experimental results

In this section we report the results of our approaches of clustering and gap

filling using the four data sets mentioned in Sec. 4.2, above. For all datasets, we

align the sequences and trim the first and last 50bp of the aligned sequences.

We use default parameters for running CliqueSNV to find initial cluster centers,

in all cases setting the minimum cluster frequency to be at least 1% of the

population. We refer to the approach of using CliqueSNV to find the initial

centers, followed by clustering with k-modes as our CliqueSNV-based approach

(setting 3. of Sec. 2.2).
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Figure 1: Subtype distribution (GISAID dataset, 15-day window, relative count)

These experiments, and their results, are grouped as follows: a general com-

parison of clustering and gap filling approaches, using the GISAID 1 dataset

(Sec. 5.1); a test of our Monte-Carlo based entropy minimization procedure

introduced in Sec. 2.4, using the GISAID 1A dataset (Sec. 5.2); and a demon-

stration of the use of various clustering methods for finding subtypes, using the

UK and GISAID 2 datasets (Sec. 5.3).

5.1 Comparison of clustering approaches

Using the GISAID 1 dataset, our CliqueSNV-based approach identified at most

66 subtypes (smallest k which achieves minimum cluster frequency ≥ 1%), which

vary in proportion between December 2019 and November 2020. We report the

relative distributions over time of these different subtypes in Fig. 1 and Fig. 2,

in a similar way to that of Fig. 3 of du Plessis et al. (2021).

Table 3 gives an assessment of all clusterings (and gap fillings) of the GISAID
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Figure 2: Subtype distribution (GISAID dataset, cumulative, relative count).

1 dataset that were computed for the various settings mentioned in Sec. 2.2, in

terms of both the expected entropy (Eq. 4) and total entropy (Eq. 5). While

any form of clustering achieves a better expected (and total) entropy than not

clustering at all, our CliqueSNV-based approach tends to outperform all other

forms of clustering using either Hamming or TN-93 distance. This demonstrates

that CliqueSNV finds meaningful centers in these inter-host viral data. Based

on these results, from hereon in we use only the Hamming distance setting of

our CliqueSNV-based clustering (setting 3.(a) of Sec. 2.2, second-last line of

Table 3), and the random centers initialization and Hamming distance setting

(setting 1.(a) of Sec. 2.2, second line of Table 3) of k-modes, unless otherwise

indicated. Finally, by filling gaps in sequences based on the center of its cluster,

we achieve an even lower expected (and total) entropy. This highlights the

value of a cluster-based approach for filling gaps. For example, the entropy

of the dataset without clustering remained high even after filling gaps, which
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Table 3: Entropy of all clusterings of GISAID 1 dataset computeda

k-modes setting
(initialization + distance)

without gap filling with gap filling

expected
entropy

total
entropy

expected
entropy

total
entropy

without clustering 9536.89 9536.89 8417.89 8417.89
random centers + Hamming 123.00 3170.60 109.21 2474.30
random centers + TN-93 127.32 4401.18 111.05 3470.03
pairwise distant + Hamming 422.65 4651.23 294.98 3629.47
pairwise distant + TN-93 273.34 3500.14 256.44 3007.07
CliqueSNV + Hamming 110.58 2585.29 90.42 2308.95
CliqueSNV + TN-93 121.87 2379.46 100.85 2117.40

a The expected entropy (Eq. 4) and total entropy (Eq. 5) of the sequences of the GISAID 1 dataset
without clustering (i.e., considered as a single cluster containing all sequences), and when clustering
using each of the six combinations of settings mentioned in Sec. 2.2, both without filling gaps and
with gap filling.

would, by definition, be based on the center for the entire dataset, which is

effectively the reference genome.

Table 4 reports the runtimes of the various stages of our CliqueSNV-based

clustering approach, and Table 5 compares the overall runtimes of CliqueSNV-

based clustering and the k-modes approach. We note, given the latter table, that

the CliqueSNV-based approach had a slightly lower runtime than the k-modes

approach, despite it performing best overall.

5.2 Entropy minimization

The main goal of entropy minimization is to make further gains on the perfor-

mance of existing clustering techniques. Hence, we apply our Monte-Carlo based

procedure described in Sec. 2.4 to the clustering obtained by our CliqueSNV-

based method (the most performant method), which identified 28 subtypes in

the GISAID 1A dataset. As a baseline for comparison, we also produce a ran-

dom clustering of the data into 28 clusters. Table 6 reports results of our

Monte-Carlo based entropy minimization procedure on these two initial cluster-

ings when preprocessing to various different numbers n of tags. Initial clustering
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Table 4: Runtime of each stage of the CliqueSNV-based
approacha

Stage Time (seconds)

CliqueSNV (finding initial centers) 2405.08
clustering (with k-modes) 2324.34
gap filling 2740.32
entropy computation 1254.22

Total 8723.96

a Runtime of each of the different stages of the CliqueSNV-based
approach on the GISAID 1 dataset. All stages were executed on a
PC with an Intel(R) Xeon(R) CPU X5550 2.67GHz x2 with 8 cores
per CPU, DIMM DDR3 1333 MHz RAM 4Gb x12, and running the
CentOS 6.4 operating system.

Table 5: Runtimes of CliqueSNV-based and
k-modes clusteringa

Clustering method Time (seconds)

CliqueSNV-based 4729.42
k-modes 4922.44

a Runtimes of CliqueSNV-based and k-modes (ran-
dom centers + Hamming) for the GISAID 1 dataset.
Both methods were executed on a PC with an In-
tel(R) Xeon(R) CPU X5550 2.67GHz x2 with 8
cores per CPU, DIMM DDR3 1333 MHz RAM 4Gb
x12, and running the CentOS 6.4 operating system.
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Table 6: Entropy minimization with the GISAID 1A dataseta

Initial Tags Iterations Init. Entropy Final Entropy

CliqueSNV-based

28000 4625

2093.6

2051.8
1500 2650 1166.3
1000 3100 945.9
750 3300 971.8
500 8100 1117.3

Random

28000 1100

4479.1

4458.7
1000 1975 4324.5
750 6175 4115.2
500 4600 4098.7

a Monte-Carlo based entropy minimization applied to the GISAID 1A dataset for various
initial clusterings and numbers of tags. The five columns, starting from the left, are: Initial
clustering (to k = 28 clusters); Number n of tags selected in the preprocessing; Cumulative
number of iterations of the Monte-Carlo procedure; Initial clustering entropy; Final clustering
entropy after the number of iterations reported in column 3. Note that a threshold of θ = 1000
(see Sec. 2.4) was used in all cases.

with our CliqueSNV-based method followed by our Monte-Carlo procedure with

1000 tags achieved the largest decrease in entropy, from 2093.6 to 945.9, as well

as the best overall final clustered entropy. The results for CliqueSNV-based clus-

tering indicate that a local (probably global) minimum sits somewhere between

1500 and 500, in terms of the optimal number n of tags to select to achieve the

best results. While the results for random clustering were considerably worse,

there seems to be a trend towards better entropy with reduced numbers of tags.

Finally, Fig. 3a and Fig. 3b depict the entropy descent of our Monte-Carlo

method applied to the initial CliqueSNV-based clustering for 28000 and 1000

tags, respectively. The latter shows more (relative) improvement in the entropy,

indicating that selecting a subset of tags can allow the Monte-Carlo iteration to

approach closer to the optimum entropy with fewer iterations.
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(a) (b)

Figure 3: The entropy descent of our Monte-Carlo method applied to the initial
clustering obtained by CliqueSNV-based clustering of the GISAID 1A dataset
after having preprocessed to: (a) n = 28000 tags; and (b) n = 1000 tags. Note
that in the latter table, the entropy is in terms of just the 1000 tags — the
optimal clustering in terms of these 1000 tags then applied to the original set of
all columns, for the final entropy 945.9 seen in Table 6. Note that a threshold
of θ = 1000 (see Sec. 2.4) was used in both cases.

5.3 Finding subtypes

One of the important goals of clustering in this context is to identify subtypes,

e.g., variants of concern (VoCs), etc. Here we demonstrate the ability of our

clustering approaches to finding subtypes in the UK dataset, and then in the

much larger GISAID 2 dataset.

5.3.1 The UK dataset

Using the UK dataset, our CliqueSNV-based approach identified 15 subtypes.

Since the data here are over a shorter time span (are smaller) and more uniform,

a k of 15 was sufficient for the minimum cluster frequency to be at least 1% of

the population. On the other hand, MeShClust James et al. (2018) was only

able to find 3 clusters in this data set. Table 7 reports the F1 score of the

methods we compared. Our CliqueSNV-based approach outperformed other

methods by a large margin in producing a clustering with all sequences of the
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Table 7: F1 score of various clustering approaches on
the UK dataseta

Method F1 score F1 largest cluster

CliqueSNV-based 0.99 0.99
k-modes 0.003 0.24
MeShClust 0.11 0.11

a The F1 score of the clustering produced by a method (col-
umn 1) with respect to the sequences of the Alpha variant (col-
umn 2), and, of the cluster containing the largest number of
sequences with the Alpha variant (column 3).

Alpha variant residing in a single cluster, while 1.30% of the sequences in this

cluster do not belong to the Alpha variant. In the clustering produced by the

k-modes approach, the sequences of the Alpha variant were spread over five

clusters, while one cluster contained 97.45% of the Alpha variant sequences.

However, 86.54% of the sequences of this cluster did not belong to the Alpha

lineage. MeShClust, on the other hand, produced a clustering with all Alpha

variant sequences residing in a single cluster, where 90.68% of the sequences in

this cluster do not belong to the Alpha variant.

We report the relative distributions of these different subtypes in Fig. 4

over the period of time between the beginning of October 2020, when the first

case of the Alpha variant was reported in the UK, to the middle of December,

when this variant comprised more than one third of all sequences. We report

a weekly moving average because a weekly oscillation in SARS-CoV-2 data has

been noted in Bukhari et al. (2020). One will notice, in Fig. 4, the sharp increase

of the relative proportion of a certain subtype (in red) to more than a third of

the population. We confirm from metadata that this corresponds to the Alpha

variant that was first identified in studies such as Volz et al. (2021b).

When restricting the clusters returned by our CliqueSNV-based approach

to the final one-week interval of Fig. 4, leading up to mid December 2020, all

Alpha variant sequences appear in a single cluster (among a total of 15). In the
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Figure 4: Subtype distribution (the UK dataset, weekly window, relative count),
produced our CliqueSNV-based clustering method. The subtype in red con-
tributes to sequences that correspond to the Alpha variant.

clusters returned by the k-modes approach, on the other hand, sequences of the

Alpha variant are spread over 13 clusters, with counts ranging from 1 to 6327

Alpha variant sequences per cluster. MeShClust again produced only 3 clusters,

with a single cluster containing all Alpha variant sequences, when restricted to

this final interval, while 90.86% of the sequences in this cluster did not belong

to the Alpha variant. The expected entropy of our CliqueSNV-based approach

and the k-modes approach were 75.73 and 94.16, respectively, while the total

entropy was 986.48 and 2074.12, respectively. This illustrates the ability of our

clustering to identify subtypes which are known in the literature. Interestingly

enough, the study of Volz et al. (2021b) is based on an approach of building a

phylogenetic tree. This demonstrates our approach, which is based on clustering

sequences, as a viable alternative.

Our CliqueSNV-based clustering method was able to detect one subtype
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which tends to dominate the population in this UK dataset, in attaining good

entropy and F1 scores. However, we wanted to further validate if this is con-

sistent with other independent measures of quality, such as the cluster-based

fitness coefficient that we detail in Sec. 3.2. To compute this, we chose our

time points t to be intervals of one week over the period from the beginning

of October to the middle of December, exactly as in Fig. 4. The size Xi(t)

of each cluster Ci (of k = 15 clusters) for every week t was obtained, and

each fitness coefficient ri was computed according to Eq. 8. In order to reduce

sampling error, we drew 2000 random samples from the Poisson distribution

on Xi(t) according to Sec. 3.2. We repeated this 100 times, and we report in

Table 8 the 95% confidence interval of the top five clusters, sorted by interval

lower bound. We note that similar results are obtained with either Hamming

or TN-93 distance, with TN-93 distance corresponding to slightly higher fitness

coefficients. We confirm that in either case, the mostly highly ranked cluster in

terms of fitness (with cluster ID 6) corresponds to the cluster containing all of

the sequences pertaining to the Alpha variant from above. This highlights the

ability of our clustering-based approach for detecting, based purely on sequence

content, novel subtypes which have the potential of becoming dominant in the

population.

5.3.2 The GISAID 2 dataset

Since our CliqueSNV-based clustering approach was able to clearly pinpoint

the Alpha variant within the UK dataset, we tested it also on the GISAID

2 dataset, which contains many of the variants listed in Table 1. CliqueSNV-

based clustering identified 36 subtypes in this dataset. We first computed fitness

coefficients ri (Eq 8) for these 36 clusters using one week time intervals t. Table 9

reports the 95% confidence interval due to subsampling (see Sec 3.2) of the

top and bottom five clusters, sorted by interval lower bound. One will notice
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Table 8: Fitness coefficients of the clusters of the UK dataseta

Distance Rank Cluster ID Int. Lower B. Int. Upper B.

Hamming

1 6 1.343 1.504
2 3 0.354 0.369
3 14 0.284 0.324
4 8 0.08691 0.0881
5 2 0.08690 0.0878

TN-93

1 6 1.390 1.510
2 2 0.789 0.795
3 3 0.351 0.364
4 14 0.353 0.390
5 8 0.086 0.0869

a The 95% confidence interval of the top five fitness coefficients, according to interval
lower bound, of the 15 clusters of the UK dataset obtained using our CliqueSNV-based
clustering method with Hamming distance and TN-93 distance, respectively.

immediately that fitness coefficient is much more evenly distributed across the

clusters of this dataset, compared to the UK dataset (Table 8).

Table 10 reports some the variants found by our CliqueSNV-based approach

in terms of specificity, F1 score and fitness rank (Table 9). Notice that specificity/F1

score generally decreases with rank and cluster size, as would be expected. Ex-

ceptions to this trend are the Gamma/Zeta variant in F1 score vs. Rank (having

a high F1 score for its rank) and the Epsilon variant (having a large cluster size

for its F1 score and rank). Finally, since the GISAID 2 dataset contains more

than 1 million sequences, the Gamma/Zeta, Beta and Epsilon variants comprise

less than 1% of the sequences, yet our CliqueSNV-based was still able to identify

them with specificities around 50% and F1 scores ≥ 0.5. This demonstrates the

ability of our clustering approach to detect rare subtypes in very large sets of

sequences.
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Table 9: Fitness coefficients of the clusters of the GISAID 2
dataseta

Rank Cluster ID Int. Lower B. Int. Upper B.

1 1 0.0601 0.0602
2 17 0.0486 0.0489
3 21 0.0463 0.0463
4 20 0.0456 0.0457
5 35 0.0440 0.0440

32 4 0.0143 0.0143
33 29 0.0138 0.0138
34 28 0.0120 0.0120
35 32 0.0118 0.0118
36 34 0.0110 0.0110

a The 95% confidence interval of the top and bottom five fitness co-
efficients, according to interval lower bound, of the 36 clusters of
the GISAID 2 dataset obtained using our CliqueSNV-based clustering
method. The mean (µ) ± standard deviation (σ) of the interval lower
and upper bounds are 0.0281±0.0122 and 0.0281±0.0122, respectively.

Table 10: Variants found in the GISAID 2 dataset using CliqueSNV-
based clusteringa

Variant ID Specificity F1 Rank Size

Alpha (UK) 1 93.16% 0.96 1 265 255
Gamma & Zeta (Brazil) 25 51.21% 0.68 7 1892
Beta (S. Africa) 21 45.85% 0.62 3 2754
Epsilon (California) 13 41.08% 0.58 13 9251

a Specificity, F1 score and fitness rank (Table 9) of the cluster containing the largest
number of sequences of the corresponding variant.
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6 Conclusions

In this work, we successfully adapted a method CliqueSNV Knyazev et al.

(2020), originally designed for discovering viral haplotypes in an intra-host pop-

ulation, to finding subtypes of SARS-CoV-2 in the (massively inter-host) global

population. We use clustering entropy Li et al. (2004) to assess the quality of

a clustering — a notion which naturally reflects the underlying processes from

which a set of viral subtypes arises. We introduce two additional techniques

which boost the entropy even further, namely, gap filling and Monte Carlo en-

tropy minimization. The former is useful for sequences collected before March

2020 when collection and sequencing were not yet refined, while the latter is pos-

sible because clustering entropy is convex Li et al. (2004), allowing optimization

techniques aimed directly at minimizing entropy as the objective. We show that

our CliqueSNV-based clustering method outperforms other techniques in terms

of low entropy, and the further improvements in entropy which can be obtained

with gap filling and Monte Carlo minimization.

We then turned to datasets obtained from the GISAID and EMBL-EBI

(UK) databases in order to identify viral subtypes. Our method was able to

most clearly identify the Alpha variant in the UK dataset, with a single cluster

containing all sequences with a specificity > 99%. These results tended to be in

agreement with the entropies obtained, as well as with the measure of selective

fitness introduced in Sec. 3.2. In the GISAID dataset, which contains over one

million sequences, our CliqueSNV-based method was able to clearly identify

the Alpha variant, but also the lesser represented Beta (South Africa), Epsilon

(California), Gamma and Zeta (Brazil) variants. What is interesting about

this is that these lesser represented variants comprise a few thousand sequences

each (< 1% of the sequences), and yet our method was able to cluster them with

specificities around 50%, corroborating again with the fitness coefficient. This
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demonstrates the approach of clustering as a viable and scalable alternative for

detecting even the rarest subtypes at an early stage of development.

An immediate future work is a more full exploration of how our Monte

Carlo entropy minimization approach can be made faster and more scalable to

large datasets. Ideas include parallelization of our current approach, the design

of data structures that can be more efficiently updated, or heuristics beyond

our use of tags. The use of optimization techniques other than the Monte

Carlo method is a possibility as well. Since CliqueSNV Knyazev et al. (2020)

is a relatively new technique, possible advancements in its ability to better

detect viral haplotypes within an intra-host population would likely carry over

to improvements to finding subtypes in the inter-host population setting of this

work. Finally, while we provide a viable alternative to building phylogenetic

trees (e.g., du Plessis et al. (2021)) for detecting subtypes, it would be interesting

to explore how these could be combined (as in e.g., Ciccolella et al. (2021a)).
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