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Abstract: The availability of millions of SARS-CoV-2 sequences
in public databases such as GISAID and EMBL-EBI (UK) allows a
detailed study of the evolution, genomic diversity and dynamics of
a virus like never before. Here we identify novel variants and sub-

types of SARS-CoV-2 by clustering sequences in adapting methods
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originally designed for haplotyping intra-host viral populations. We
asses our results using clustering entropy — the first time it has been

used in this context.

Our clustering approach reaches lower entropies compared to other
methods, and we are able to boost this even further through gap
filling and Monte Carlo based entropy minimization. Moreover, our
method clearly identifies the well-known Alpha variant in the UK
and GISAID datasets, but is also able to detect the much less repre-
sented (< 1% of the sequences) Beta (South Africa), Epsilon (Cali-
fornia), Gamma and Zeta (Brazil) variants in the GISAID dataset.
Finally, we show that each variant identified has high selective fit-
ness, based on the growth rate of its cluster over time. This demon-
strates that our clustering approach is a viable alternative for de-

tecting even rare subtypes in very large datasets.

1 Background

The novel coronavirus SARS-CoV-2, which is responsible for the Covid-19 dis-
ease, was first detected in Wuhan, China at the end of 2019 Wu et al. (2020);
Zhou et al. (2020). Covid-19 was declared a global pandemic in March 2020
by the World Health Organization (WHO). According to recent data from the
WHO (WHO), there have been almost 4 million deaths due to Covid-19, and
there have been hundreds of millions of confirmed cases so far, while over 3
billion vaccine doses have been administered. As the virus continues to spread
throughout countries and regions across the globe, it continues to mutate, as
seen in the genomic variation among the millions of sequences which are avail-
able in public databases such as GISAID Elbe and Buckland-Merrett (2017).

This mutational variability can be used to understand the evolution, genomic



diversity and dynamics of SARS-CoV-2, and to generate hypotheses on how the

virus has evolved and spread since it first originated.

An important part of these dynamics are the subsets of sequences (or sub-
types) that vary more than others in terms of genomic content, which continue
to emerge. In some cases, these subtypes appear in an atypically large num-
ber or are associated with an extremely high growth rate, indicating a possible
fitness advantage (transmissibility, evasion from therapies or vaccines, etc.) of
this genomic variation. The best example of this is the Alpha (or B.1.1.7 Ram-
baut et al. (2020)) variant, which differs from the typical sequence by about
30 mutations, and comprises hundreds of thousands of the currently available
sequences. The Alpha variant was first detected in the UK at the end of summer
2020, where it grew to more than a third of the infected population in the UK
by mid December 2020, as seen in the EMBL-EBI (UK) database EMBL-EBI
(2020). One of the first variants of concern (VoCs), the Alpha variant has un-
dergone much investigation, some studies Volz et al. (2021b) showing it to be
between 40-80% more transmissible. This variant is now found in countries all
over the world, some for which it is the dominant variant (e.g., The USA). De-
spite this, the origins of the Alpha variant are still contested, popular hypotheses
including immunocompromised patients, the loss of records, or even minks as
an intermediary host. There are now roughly a dozen variants identified around
the globe (see Table 1) — an interesting question is whether they have or could

potentially have the same degree of divergence as the Alpha variant.

The typical approach that is used to recover such knowledge from viral
sequences is to construct a phylogenetic tree Hadfield et al. (2018); du Plessis
et al. (2021) of evolution. However, with the high computational complexity of
building a tree, more than a million sequences poses a scalability challenge for

such methods Hadfield et al. (2018); du Plessis et al. (2021); Vrbik et al. (2015).
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An orthogonal approach to trees is to build transmission networks of infection
— the structure of the network revealing general trends. In Skums et al. (2020),
the authors show that such a network is scale-free, i.e., that few genomic variants
are responsible for the majority of possible transmissions. A third alternative
to studying the mutational variability of SARS-CoV-2 that we employ here is
to cluster sets of sequences. While individual sequences are often unique, the
sheer number of sequences available is expected to unveil meaningful groups and
trends. Moreover, since most clustering techniques are much faster than, e.g.,
tree building Hadfield et al. (2018); du Plessis et al. (2021), such an approach
can easily scale to the full size of the current datasets in order to leverage this
information. The idea is that clusters of similar sequences should correspond to

variants and subtypes, such as the Alpha variant mentioned above.

In this work, we cluster sequences by adapting methods which were originally
designed for finding viral haplotypes from intra-host viral populations. The idea
is that we use, e.g., CliqueSNV Knyazev et al. (2020), to find haplotypes in the
massively inter-host viral population, using them as cluster centers in categorical
clustering algorithms such as k-modes Huang (1997) in order to find subtypes.
A measure we use to asses the clustering approaches, in the absence of a ground
truth, is clustering entropy. This notion was introduced in Li et al. (2004), where
the authors show that minimizing clustering entropy is equivalent to maximizing
the likelihood that the set of sequences are generated from a set of subtypes,
which closely models this setting of viral sequence evolution. Moreover, the
authors of Li et al. (2004) show that clustering entropy is a convex function,
allowing us to apply general optimization techniques such as the Monte Carlo
method to minimizing entropy directly, as the objective. Finally, we use the
subtypes found from our clustering techniques to patch gaps in the sequences,

as an alternative to filling in the missing data with the reference genome, for



example. This applies in particular to sequences collected before March, when

SARS-CoV-2 sequencing and alignment were still being refined.

To validate our approaches, we use data from both GISAID and EMBL-
EBI (UK) databases mentioned above (see Table 2). In a general comparison
of methods and parameter settings on data from GISAID, we show that our
CliqueSNV-based approach can achieve the lowest clustering entropy. What is
interesting is that our gap filling approach allowed each method to lower its
entropy even more. We then tested out a Monte Carlo based entropy mini-
mization technique to show that it gives our method an even further edge on
lowering the entropy. We compared various methods on their ability to find sub-
types in the UK dataset, verifying this with the “ground truth” clusters which
arise from metadata which tags each sequence with its lineage (e.g., B.1.1.7, the
Alpha variant). Our CliqueSNV-based approach identified the Alpha variant
with significantly higher precision and specificity compared to other methods,
based on these metadata. This reinforces the notion that clustering entropy is
an appropriate measure of the quality of clustering in this context. We then
used our CliqueSNV-based clustering approach to identify subtypes in the GI-
SAID dataset, again verifying this from metadata. While our method clearly
identified the Alpha variant, it was also able to detect the lesser represented
Beta (South Africa), Epsilon (California), Gamma and Zeta (Brazil) variants
with specificities around 50%. What is particularly interesting about this is that
these lesser represented variants comprise less than 1% of the GISAID dataset
(which contains more than one million sequences), yet our method was able to
detect them with a much higher specificity. Finally, we validate our approaches
to finding subtypes using the fitness coefficient, a third measure of clustering
quality which is orthogonal to both entropy and specificity mentioned above.

The fitness coefficient, introduced in Skums et al. (2012), is an assessment
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of the selective fitness of a subtype, based on the number of sequences in the
corresponding cluster, and the rate at which this grows over time. Our results
show that fitness tends to corroborate with these other two measures, further
strengthening our results. This demonstrates that we can use clustering for the
identification and surveillance of new variants, which have the potential to grow
quickly, or become a threat to public health.

This paper is structured as follows. In Sec. 2, we detail the various ap-
proaches to clustering, gap filling and entropy minimization that we use in this
work. In Sec. 3, we specify the measures that we used to assess the clustering
approaches — clustering entropy and the fitness coefficient. In Sec. 4, we give
details on the datasets that we use in this study, as well as some of the known
variants which we can expect to find in their metadata. In Sec. 5, we report
the results of the experiments we performed to assess the various clustering ap-
proaches, gap filling, entropy minimization, and the identification of subtypes.
Sec. 6 then concludes the paper with a discussion of the contributions of our

approach, in light of these results.

2 Methods used in clustering

We outline in this section all of the methods that were used in clustering nu-

cleotide sequences of the SARS-CoV-2 virus.

2.1 CliqueSNV

Since we are clustering viral sequences in order to identify subtypes, we pro-
pose to use currently existing tools that were developed to identify subtypes in
intra-host viral populations from NGS data reviewed in Knyazev et al. (2021),
such as Savage Baaijens et al. (2017), PredictHaplo Prabhakaran et al. (2014),

aBayesQR Ahn and Vikalo (2018), etc. However, our setting is slightly dif-
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ferent, where the data consists of large collections of inter-host consensus se-
quences gathered from different regions and countries around the world Elbe
and Buckland-Merrett (2017); EMBL-EBI (2020). We expect, however, that
such tools are appropriate at this scale: now the “host” is an entire region
or country, and we reconstruct the subtypes, or variants, and their dynamics
within these regions or countries. The SARS-CoV-2 sequences in GISAID are
consensus sequences of approximate length 30K. Such sequences by quality and
length have similar properties as PacBio reads. We choose CliqueSNV since it

performed very well on PacBio reads Knyazev et al. (2020).

2.2 k-modes

Since nucleotide sequences can be viewed as objects on categorical attributes
— the attributes are the genomic sites, and the categories are A, C, G, T (and
—, a gap) — we use k-modes Huang (1997, 1998) for clustering. The k-modes
approach is almost identical to k-means Anderberg (1973); MacQueen et al.
(1967), but it is based on the notion of mode (rather than Euclidean mean),
making it appropriate for clustering categorical data. Indeed, the Euclidean
mean of three nucleotides has little meaning in this context, and may not even
be well-defined, e.g., in cases where the “distance” from A to G is different than
from G to A. Similar observations were made in the context cancer mutation
profiles Ciccolella et al. (2020), in the form of absence/presence information.
Treating these as categories, in using k-modes (rather than as 0’s and 1’s, in
using k-means) resulted in a clustering approach Ciccolella et al. (2021a) that,
when used as a preprocessing step, allowed cancer phylogeny building methods
to attain a higher accuracy Ciccolella et al. (2021b), and in some cases with much
lower runtimes Jahn et al. (2016). We briefly describe the k-modes approach in

the context of clustering nucleotide sequences as follows.
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The mode ¢ of a cluster C of sequences on categorical attributes A =

{A, C, G, T, -} is another “sequence” on .4 which minimizes

D(C,q) = d(s,q) , (1)

seC

where d is some categorical dissimilarity measure (e.g., Hamming distance) be-
tween the sequences we are considering. Note that ¢ is not necessarily an element
of C. For a set S of sequences on attributes A, we are given some initial set
Q = {q1,...,qr} of k cluster “centers” (each on A). The k-modes approach

(similarly to k-means) then operates according to the iteration:

e compute the dissimilarity d(s,q) between each sequence s € S and each

center ¢ € Q;

e assign each sequence s € S to the closest center based on the first step,

resulting in a clustering with %k clusters; and

e compute the mode of each cluster from the second step, resulting in a new

set Q' of k centers;

until convergence, i.e., the clustering does not change after an iteration.

In this paper we cluster sequences of SARS-CoV-2 with k-modes using three
different ways to compute the initial set ) of cluster centers, and using two
different dissimilarity measures d. The three ways to compute the initial set of

cluster centers are:
1. choose k random sequences from the dataset;
2. choose k centers that are maximally pairwise distant from each other; and

3. use the centers (the subtypes) found by CliqueSNV.

The two different dissimilarity measures that we use are (a) the Hamming dis-

tance, and (b) the TN-93 distance Tamura and Nei (1993).
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2.3 MeShClust

For comparison purposes, we also apply methods designed for clustering metage-
nomics and multiviral sequencing data. We clustered the sequences using MeSh-
Clust James et al. (2018), an unsupervised machine-learning method that aims
to provide highly-accurate clustering without the need for user-specified simi-
larity parameters (these are learned).

However, this approach is intended for use with data sets containing genomes
of multiple different viruses. In particular, it was validated on a data set contain-
ing 96 sequences of average length of 3K-12K, coming from 9 different viruses.
On the other hand, SARS-CoV-2 data sets usually contain several hundred thou-

sand sequences of a single virus, with genome length averaging around 30K.

2.4 Monte-Carlo Based Entropy Minimization

We use clustering entropy Li et al. (2004) to assess the various clustering meth-
ods that we propose in this work (see Sec. 3.1). For this reason, we also employ
a technique aimed directly at minimizing clustering entropy as the objective.
We first define clustering entropy in the following.

Formally, we have a set S of aligned nucleotide sequences on the set X of
genomic sites. Since they are aligned, sequences can be viewed as rows of a
matrix and, when restricted to a site x € X, can be viewed as columns of this
matrix. Let A' = {A, C, G, T} be the four nucleotides, not counting the gap
() character. Using the notation of Li et al. (2004), the entropy H,(C) of a

subset C' (a cluster) of sequences from S at site 2 € X is then

Hy(C) ==Y "> pa(s =a)logps(s =a) . (2)

seC aeN

Note that p,(s = a) — the probability that a sequence s € C has nucleotide a
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at site x — essentially amounts to the relative frequency of nucleotide a € N
in C' at site z. The entropy Hy (C) of subset C of sequences on a subset X of

sites is then

Hx(C) = Y H(w) (3)

zeX
that is, we simply sum up the entropies at the individual sites. Since the set
of sites will always correspond to the SNV sites of our sequences, we will use
simply H(C) for the entropy of a subset (a cluster) of sequences from hereon in.
The ezpected entropy Li et al. (2004) of a clustering C = C4, ..., C} of sequences

is then

k
H(©) = - > mifi(C) (4)

where n; = |C;|, the number of elements in cluster C;, and n is the total number
of sequences. For completeness, the total entropy of a clustering is simply the

sum

k
T(C) = Z H(C;) (5)

of the individual entropies of each cluster (not weighted by n;).

In Li et al. (2004), the authors prove that the entropy Eq. 4 is a convex
function, allowing any optimization procedure to reach a global minimum. It
is because of this property that we can use techniques aimed directly at mini-
mizing clustering entropy as the objective. The Monte-Carlo method is broad
class of computational algorithms that rely on repeated random sampling to op-
timize some criterion. In this context, we are randomly sampling clusterings of
sequences in order to minimize Eq. 4. The basic idea is that we start with some
clustering — note that the clustering corresponding to placing all sequences in
the same cluster has maximum entropy, by definition. The Monte-Carlo process

then operates according to the iteration:

e from the current clustering, randomly pick a sequence from some cluster
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and place it into another cluster, resulting in a new clustering;
e compute the entropy (Eq. 4) of the new clustering; and

e accept this new clustering, if the entropy has decreased, otherwise keep

the current clustering;

until convergence, i.e., the clustering does not change after some number 6 of
iterations.

In Li et al. (2004), the authors prove the concept of applying the Monte-Carlo
method to entropy minimization by implementing a very basic procedure similar
to the above, and then demonstrate it on a small dataset. Since our datasets are
on a much larger scale (millions of sequences on 30K genomic sites), the basic
iteration which randomly samples a single sequence in each iteration would need
many iterations for a very small improvement. For this reason we apply the
following preprocessing step, to improve the convergence. Rather than using
all (30K) columns, we first sort the columns according to their (unclustered)
entropy value. We then select the n columns, or tags, with highest entropy.
Next, we then run the above Monte-Carlo process on the reduced dataset with
the n tags. This results in a clustering (of the rows), to which we then apply to

the original set of all columns.

2.5 Filling gaps

Finally, the set of SARS-CoV-2 sequences that we deal with contain missing
nucleotides, due to gaps or deletions. This is particularly true with GISAID
sequences collected from December 2019 to the end of March 2020, when se-
quencing, alignment, etc., were less refined. This is further complicated by the
presence of deletions, which could be confused with gaps.

Here, we attempt to use the clustering obtained by some clustering method

in order to fill the gaps. That is, rather than uniformly filling all sequences with,
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e.g., the reference genome, we fill each sequence with the center of its cluster.
The idea is that if a clustering performs well, then the sequences of a cluster
should correspond to a subtype. In this case, the center — a consensus sequence
of this subtype — should be much closer to any sequence of its cluster than the

reference genome, resulting in a more accurate filling of the gaps.

3 Measures for assessing clustering quality

In this section, we present two measures for assessing clustering quality, in order
to compare the various clustering methods that we outlined in the previous
section. The first measure is clustering entropy, an internal evaluation criterion
that reflects the underlying processes which generate a set of viral sequences.
The second is a measure of the selective fitness of clusters, based on how their

rates of change in size vary over time.

3.1 Clustering entropy

Since we are comparing various clustering methods without knowing a ground
truth, we need to consider an internal evaluation criteria. Many of the com-
monly used criteria require some notion of distance, or dissimilarity measure,
between the objects being clustered. For example, criteria such as the Calinski-
Harabasz Index Caliiski and Harabasz (1974) or the Gap Statistic Tibshi-
rani et al. (2001) rely on the Euclidean distance, while the Davies-Bouldin In-
dex Davies and Bouldin (1979) or the Silhouette Coefficient Rousseeuw (1987)
require this distance (or dissimilarity) to be a metric. For the same reason that
we use k-modes for clustering — sequences are objects on categorical attributes
which take values A, C, G, T (and —, a gap) — criteria based on the Euclidean
distance are not appropriate. Moreover, because the various dissimilarity mea-

sures that we use within the k-modes framework for clustering are not Euclidean
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(Hamming distance), or even a metric (TN-93 distance, see Table 1 of Tamura
and Nei (1993)), even criteria such as the Davies-Bouldin Index or Silhouette
Coefficient would not apply.

The clustering entropy Li et al. (2004) (Eq. 4 and Eq. 5) is an internal
evaluation criterion that was shown to generalize any distance-based criterion,
and does not even require any notion of distance or dissimilarity. Hence, for the
reasons mentioned above, the clustering entropy criterion is appropriate in our
case. Moreover, clustering entropy naturally reflects the fact that the population
of viral sequences comes from a number of subtypes. Clustering entropy can be
formally derived using a likelihood principle based on Bernoulli mixture models.
In these mixture models, the observed data are thought of as coming from a
number of different latent classes. In Li et al. (2004), the authors prove that
minimizing clustering entropy is equivalent to maximizing the likelihood that
set of objects are generated from a set of (k) classes. This reflects the underlying
processes which generate a set of viral sequences: that they evolved from a set
of (k) subtypes.

This relates closely to the widely-used notion of sequence logo Schneider
and Stephens (1990): a graphical representation of a set of aligned sequences
which conveys at each position both the relative frequency of each base (or
residue), and the amount of information (the entropy) in bits. A clustering of
viral sequences of low entropy then relates to a reliable set of sequence logos
(in terms of information), and can hence shed light on the possible biological

function of the viral subtype that each such logo (or related motif) represents.

3.2 Fitness

We use a mathematical model proposed in Skums et al. (2012) for the calculation

of a numerical measure of the fitness of a quasispecies. This model is used here
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to calculate the fitness of a cluster, based on how the rate of change in size
(number of sequences it contains) varies over time. For a set Ci,...,Cj of
clusters, X;(¢) denotes the size of cluster C; at a particular time ¢. The fitness
coefficient is calculated using h;, which is the cumulative sum of the X;. It
follows that h(t) = Zle h;(t) is the total infected population size at time t.

Each h;(t) is normalized over h(t), which is denoted by w;(t), that is,

A A 6
Zi:l hz(t) ( )

Using cubic splines, u;(t) and h(t) are interpolated over the time period and
the derivatives () and A(t) are calculated. The fitness function g;, for each

cluster C; is then defined as

gi(t) = + - (7)

The fitness coefficient r;, which is the average fitness over the time period T

(composed of the times t) for cluster C; is then

T
= /1 gi(t)dt . (8)

In order to reduce sampling error, we use the Poisson distribution to draw
random samples. For each cluster at time t, a sufficiently large number of ran-
dom samples is drawn from the Poisson distribution on X;(¢) as the expectation
of the interval. Then X;(¢) is replaced by the mean value of these random
samples. This is repeated a sufficiently large number of times (e.g., 100) to
calculate a set of Poisson-distributed sizes. The fitness coefficient calculation
is then applied on each repetition separately and a confidence interval of this

fitness coefficient is obtained.
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Table 1: Some known variants of SARS-CoV-2%

Variant Region Lineage S/Gen. Source

Gamma  Brazil P.1(B.1.1.28.1) 10/21

Zeta Brazil P2(B.1.1.282) 1/5  Naveeaetal (2021b)
Epsilon  California B.1.427/B.1.429 3 /5 Zhang et al. (2021)
Tota New York B.1.526 6/16  West et al. (2021)
Beta S. Africa  B.1.351 9/21

Alpha UK B117 8/ 17 Galloway et al. (2021)
Kappa  India B.1.167.1 8 /17

Delta  Tndia B.1.167.2 g /17  Yadavetal (2021)

@ Known variants of SARS-CoV-2. The five columns, starting from the left, are: Variant
(Greek name); Region where it was first identified; PANGOLIN Lineage identifier; Number
of mutations on the S gene / entire genome; and Source.

4 Datasets

In this section we outline the datasets that we used in the experiments of the
next section. We first give a brief overview of well-known subtypes, or variants,
from the literature, and then describe the three datasets we use, which are

known to contain different proportions of these variants.

4.1 Known variants

Since its emergence in November 2019 Deasy et al. (2020), SARS-CoV-2 has
evolved into different variants. Divergences in mutation at the genomic level
have been observed in different regions of the world as new infectious variants
are emerging. The following is a description of some of the well-known variants

to date. A more complete list can be found in Table 1.

4.1.1 Alpha variant (UK)

The Alpha variant, also known as the B.1.1.7 variant of SARS-CoV-2 was first

identified in Kent, UK, in late summer to early autumn 2020. It has the highest
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transmissibility of any lineage, with a 50% to 100% reproduction rate Volz
et al. (2021a). The first case was reported on December 14, 2020, and this
variant is now detected in over 30 countries, with more than 15 thousand people
affected worldwide Galloway et al. (2021). Of the many genomic mutations that
characterize this variant, it has a 69/70 deletion and a mutation at position
501, which affects the conformation of the receptor binding domain (RBD) of
the spike protein of SARS-CoV-2. It has 17 mutations which include 14 amino
acids and 3 in-frame deletions at open-reading frame (ORF) 1 a/b, ORF 8, spike
(S), and N gene regions. These mutations have biological implications and have

resulted in diagnostic failures Ramirez et al. (2021).

4.1.2 Beta variant (South Africa)

The first case of the Beta variant, also known as B.1.351, was identified in Nelson
Mandela Bay, South Africa, in October 2020. This lineage was predominant by
the end of November 2020 in the Eastern and Western Cape Provinces of South
Africa. By January 2021, there were 415 known cases of infection with this
variant, found in 13 different countries. This variant has eight mutations in
the S gene region, including three mutations SK417N, E484K and N501Y that
affect the RBD of the spike protein. These three mutations can be the reason for
increased transmissibility, and can also lead to alterations in conformation that
could pose a challenge for the effectiveness of vaccines Galloway et al. (2021);

Zucman et al. (2021); Tang et al. (2021).

4.1.3 Gamma and Zeta variants (Brazil)

The Gamma variant, also known as P.1(B.1.1.28.1), was initially identified in
February 2020, in Japanese travelers coming from Amazonas State, Brazil. It
was first reported in a 29-year-old female resident of Amazonas State. The

P.1 lineage has mutations K417T, E484K, and N501Y in the S gene region,
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which affect the RBD of the spike protein. The Zeta variant, also known as
P.2(B.1.1.28.2) was first identified in Rio de Janeiro, Brazil. It shares the mu-

tation E484K with the Gamma variant Naveca et al. (2021a).

4.1.4 Epsilon variants (California, USA)

In July 2020, the first case of the Epsilon variants, also known as the CAL.20C or
B.1.427/B.1.429 variants of SARS-CoV-2, was identified in Los Angeles County,
California, USA. The Cedars-Sinai Medical Center (CSMC) reported that the
second B.1.429 Epsilon variant contains five mutations at ORF 1 a (I14205V),
ORF 1 b (D1183Y), and S gene mutations S13I, W152C and L452R. Mutation
L452R is correlated with higher infectivity Zhang et al. (2021). The Epsilon
variants are spreading in the US and in 29 other countries McCallum et al.

(2021).

4.1.5 Tota Variant (New York, USA)

The Iota variant, also known as B.1.526, was first found in November 2020 in
New York, USA. At that time, the number of sequences of the Iota variant
comprised less than 1% of all sequences in the GISAID database Elbe and
Buckland-Merrett (2017). Scientists from Caltech noticed a surge in growth of
this number by roughly one third by February 2021. This variant has mutations
L5F, T951, D253G, E484K or S477N, D614G, and A701V in the S gene region
— mutations E484K and S477N affecting the RBD of the spike protein. Note
that the E484K mutation causes attenuation in in wvitro neutralization, and is
found in other variants of concern (VOCs) Thompson et al. (2021); West et al.

(2021), such as the Beta, Gamma and Zeta variants, described above.



18 4 DATASETS

Table 2: Datasets used in the experiments®

Dataset Database  Start End No. Sequences
GISAID 1 GISAID 2019-12-24  2020-11-07 209 334
GISAID 1A GISAID 2019-12-24  2020-03-05 3 688
UK EMBL-EBI  2020-01-29 2020-12-29 88 008
GISAID 2 GISAID 2019-12-24  2021-04-04 1 000 982

@ The four datasets that are used in the experiments of Sec. 5. The five columns,
starting from the left, are: Name we use here; Database it is from (GISAID Elbe and
Buckland-Merrett (2017) or EMBL-EBI EMBL-EBI (2020)); Earliest collection date of
any sequence; Latest collection date; and Number of sequences. Note that GISAID 1A
is a subset of GISAID 1, which is, in turn, a subset of GISAID 2.

4.2 Datasets used

In our experiments, we use four different datasets, three of which are vari-
ous snapshots of the GISAID Elbe and Buckland-Merrett (2017) database at
different time points, and the fourth is a dataset obtained from the EMBL-
EBI EMBL-EBI (2020) database in the UK. These datasets are summarized
in Table 2, and then each one is explained in more detail in its corresponding

subsection below.

4.2.1 GISAID 1

The first dataset consists of sequences submitted to the GISAID Elbe and
Buckland-Merrett (2017) database up until November 2020. This dataset con-
tains sequences from all over the world. Since this dataset covers the period
of time from December 2019 to March 2020, some of these sequences have a

sizeable number of gaps.

4.2.2 GISAID 1A

The second dataset consists of sequences submitted to GISAID up until the
beginning of March 2020. This smaller dataset, a subset of GISAID 1, was

designed in order to test out the Monte Carlo optimization procedure described
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in Sec. 2.4.

4.2.3 UK

The third data set consists of sequences submitted to the EMBL-EBI EMBL-
EBI (2020) database from the end of January 2020 to the end of December 2020.
Since this database is in the UK, and given the collection period, this dataset

contains a sizeable portion of the Alpha variant.

4.2.4 GISAID 2

The third data set consists of all sequences submitted to GISAID up until
April 2021. Since many of the known variants mentioned above have been
well-documented by April 2021, this dataset contains a sizable portion of se-
quences annotated as being from the Alpha, Beta, Gamma, Epsilon and Zeta
variants. Such labels correspond to “ground truth clusters” for which we can
compute the precision, specificity, F; score, etc., of a clustering obtained with

a given method.

5 Experimental results

In this section we report the results of our approaches of clustering and gap
filling using the four data sets mentioned in Sec. 4.2, above. For all datasets, we
align the sequences and trim the first and last 50bp of the aligned sequences.
We use default parameters for running CliqueSNV to find initial cluster centers,
in all cases setting the minimum cluster frequency to be at least 1% of the
population. We refer to the approach of using CliqueSNV to find the initial
centers, followed by clustering with k-modes as our CliqueSNV-based approach

(setting 3. of Sec. 2.2).
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Figure 1: Subtype distribution (GISAID dataset, 15-day window, relative count)

These experiments, and their results, are grouped as follows: a general com-
parison of clustering and gap filling approaches, using the GISAID 1 dataset
(Sec. 5.1); a test of our Monte-Carlo based entropy minimization procedure
introduced in Sec. 2.4, using the GISAID 1A dataset (Sec. 5.2); and a demon-
stration of the use of various clustering methods for finding subtypes, using the

UK and GISAID 2 datasets (Sec. 5.3).

5.1 Comparison of clustering approaches

Using the GISAID 1 dataset, our CliqueSNV-based approach identified at most
66 subtypes (smallest k& which achieves minimum cluster frequency > 1%), which
vary in proportion between December 2019 and November 2020. We report the
relative distributions over time of these different subtypes in Fig. 1 and Fig. 2,
in a similar way to that of Fig. 3 of du Plessis et al. (2021).

Table 3 gives an assessment of all clusterings (and gap fillings) of the GISAID
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Figure 2: Subtype distribution (GISAID dataset, cumulative, relative count).

1 dataset that were computed for the various settings mentioned in Sec. 2.2, in
terms of both the expected entropy (Eq. 4) and total entropy (Eq. 5). While
any form of clustering achieves a better expected (and total) entropy than not
clustering at all, our CliqueSNV-based approach tends to outperform all other
forms of clustering using either Hamming or TN-93 distance. This demonstrates
that CliqueSNV finds meaningful centers in these inter-host viral data. Based
on these results, from hereon in we use only the Hamming distance setting of
our CliqueSNV-based clustering (setting 3.(a) of Sec. 2.2, second-last line of
Table 3), and the random centers initialization and Hamming distance setting
(setting 1.(a) of Sec. 2.2, second line of Table 3) of k-modes, unless otherwise
indicated. Finally, by filling gaps in sequences based on the center of its cluster,
we achieve an even lower expected (and total) entropy. This highlights the
value of a cluster-based approach for filling gaps. For example, the entropy

of the dataset without clustering remained high even after filling gaps, which
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Table 3: Entropy of all clusterings of GISAID 1 dataset computed?®

k-modes setting without gap filling with gap filling
(initialization + distance) expected total expected total
entropy entropy | entropy entropy
without clustering 9536.89 9536.89 8417.89 8417.89
random centers + Hamming 123.00 3170.60 109.21 2474.30
random centers + TN-93 127.32 4401.18 111.05 3470.03
pairwise distant + Hamming 422.65 4651.23 294.98 3629.47
pairwise distant 4+ TN-93 273.34 3500.14 256.44 3007.07
CliqueSNV 4+ Hamming 110.58  2585.29 90.42  2308.95
CliqueSNV + TN-93 121.87 2379.46 100.85 2117.40

@ The expected entropy (Eq. 4) and total entropy (Eq. 5) of the sequences of the GISAID 1 dataset
without clustering (i.e., considered as a single cluster containing all sequences), and when clustering
using each of the six combinations of settings mentioned in Sec. 2.2, both without filling gaps and
with gap filling.

would, by definition, be based on the center for the entire dataset, which is
effectively the reference genome.

Table 4 reports the runtimes of the various stages of our CliqueSNV-based
clustering approach, and Table 5 compares the overall runtimes of CliqueSNV-
based clustering and the k-modes approach. We note, given the latter table, that
the CliqueSNV-based approach had a slightly lower runtime than the k-modes

approach, despite it performing best overall.

5.2 Entropy minimization

The main goal of entropy minimization is to make further gains on the perfor-
mance of existing clustering techniques. Hence, we apply our Monte-Carlo based
procedure described in Sec. 2.4 to the clustering obtained by our CliqueSNV-
based method (the most performant method), which identified 28 subtypes in
the GISAID 1A dataset. As a baseline for comparison, we also produce a ran-
dom clustering of the data into 28 clusters. Table 6 reports results of our
Monte-Carlo based entropy minimization procedure on these two initial cluster-

ings when preprocessing to various different numbers n of tags. Initial clustering
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Table 4: Runtime of each stage of the CliqueSNV-based
approach®

Stage Time (seconds)
CliqueSNV (finding initial centers) 2405.08
clustering (with k-modes) 2324.34
gap filling 2740.32
entropy computation 1254.22
Total 8723.96

¢ Runtime of each of the different stages of the CliqueSNV-based
approach on the GISAID 1 dataset. All stages were executed on a
PC with an Intel(R) Xeon(R) CPU X5550 2.67GHz x2 with 8 cores
per CPU, DIMM DDR3 1333 MHz RAM 4Gb x12, and running the
CentOS 6.4 operating system.

Table 5: Runtimes of CliqueSNV-based and
k-modes clustering®

Clustering method Time (seconds)

CliqueSNV-based 4729.42
k-modes 4922.44

@ Runtimes of CliqueSNV-based and k-modes (ran-
dom centers + Hamming) for the GISAID 1 dataset.
Both methods were executed on a PC with an In-
tel(R) Xeon(R) CPU X5550 2.67GHz x2 with 8
cores per CPU, DIMM DDR3 1333 MHz RAM 4Gb
x12, and running the CentOS 6.4 operating system.

23
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Table 6: Entropy minimization with the GISAID 1A dataset®

Initial Tags Iterations Init. Entropy Final Entropy
28000 4625 2051.8

1500 2650 1166.3

CliqueSNV-based 1000 3100 2093.6 945.9
750 3300 971.8

500 8100 1117.3

28000 1100 4458.7

1000 1975 4324.5

Random 750 6175 44791 4115.2
500 4600 4098.7

@ Monte-Carlo based entropy minimization applied to the GISAID 1A dataset for various
initial clusterings and numbers of tags. The five columns, starting from the left, are: Initial
clustering (to k = 28 clusters); Number n of tags selected in the preprocessing; Cumulative
number of iterations of the Monte-Carlo procedure; Initial clustering entropy; Final clustering
entropy after the number of iterations reported in column 3. Note that a threshold of 8 = 1000
(see Sec. 2.4) was used in all cases.

with our CliqueSNV-based method followed by our Monte-Carlo procedure with
1000 tags achieved the largest decrease in entropy, from 2093.6 to 945.9, as well
as the best overall final clustered entropy. The results for CliqueSNV-based clus-
tering indicate that a local (probably global) minimum sits somewhere between
1500 and 500, in terms of the optimal number n of tags to select to achieve the
best results. While the results for random clustering were considerably worse,
there seems to be a trend towards better entropy with reduced numbers of tags.
Finally, Fig. 3a and Fig. 3b depict the entropy descent of our Monte-Carlo
method applied to the initial CliqueSNV-based clustering for 28000 and 1000
tags, respectively. The latter shows more (relative) improvement in the entropy,
indicating that selecting a subset of tags can allow the Monte-Carlo iteration to

approach closer to the optimum entropy with fewer iterations.
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Figure 3: The entropy descent of our Monte-Carlo method applied to the initial
clustering obtained by CliqueSNV-based clustering of the GISAID 1A dataset
after having preprocessed to: (a) n = 28000 tags; and (b) n = 1000 tags. Note
that in the latter table, the entropy is in terms of just the 1000 tags — the
optimal clustering in terms of these 1000 tags then applied to the original set of
all columns, for the final entropy 945.9 seen in Table 6. Note that a threshold
of 6 = 1000 (see Sec. 2.4) was used in both cases.

5.3 Finding subtypes

One of the important goals of clustering in this context is to identify subtypes,
e.g., variants of concern (VoCs), etc. Here we demonstrate the ability of our
clustering approaches to finding subtypes in the UK dataset, and then in the

much larger GISAID 2 dataset.

5.3.1 The UK dataset

Using the UK dataset, our CliqueSNV-based approach identified 15 subtypes.
Since the data here are over a shorter time span (are smaller) and more uniform,
a k of 15 was sufficient for the minimum cluster frequency to be at least 1% of
the population. On the other hand, MeShClust James et al. (2018) was only
able to find 3 clusters in this data set. Table 7 reports the Fj score of the
methods we compared. Our CliqueSNV-based approach outperformed other

methods by a large margin in producing a clustering with all sequences of the

10°
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Table 7: F} score of various clustering approaches on
the UK dataset®

Method F} score [ largest cluster
CliqueSNV-based 0.99 0.99
k-modes 0.003 0.24
MeShClust 0.11 0.11

@ The F score of the clustering produced by a method (col-
umn 1) with respect to the sequences of the Alpha variant (col-
umn 2), and, of the cluster containing the largest number of
sequences with the Alpha variant (column 3).

Alpha variant residing in a single cluster, while 1.30% of the sequences in this
cluster do not belong to the Alpha variant. In the clustering produced by the
k-modes approach, the sequences of the Alpha variant were spread over five
clusters, while one cluster contained 97.45% of the Alpha variant sequences.
However, 86.54% of the sequences of this cluster did not belong to the Alpha
lineage. MeShClust, on the other hand, produced a clustering with all Alpha
variant sequences residing in a single cluster, where 90.68% of the sequences in
this cluster do not belong to the Alpha variant.

We report the relative distributions of these different subtypes in Fig. 4
over the period of time between the beginning of October 2020, when the first
case of the Alpha variant was reported in the UK, to the middle of December,
when this variant comprised more than one third of all sequences. We report
a weekly moving average because a weekly oscillation in SARS-CoV-2 data has
been noted in Bukhari et al. (2020). One will notice, in Fig. 4, the sharp increase
of the relative proportion of a certain subtype (in red) to more than a third of
the population. We confirm from metadata that this corresponds to the Alpha
variant that was first identified in studies such as Volz et al. (2021D).

When restricting the clusters returned by our CliqueSNV-based approach
to the final one-week interval of Fig. 4, leading up to mid December 2020, all

Alpha variant sequences appear in a single cluster (among a total of 15). In the
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Figure 4: Subtype distribution (the UK dataset, weekly window, relative count),
produced our CliqueSNV-based clustering method. The subtype in red con-
tributes to sequences that correspond to the Alpha variant.

clusters returned by the k-modes approach, on the other hand, sequences of the
Alpha variant are spread over 13 clusters, with counts ranging from 1 to 6327
Alpha variant sequences per cluster. MeShClust again produced only 3 clusters,
with a single cluster containing all Alpha variant sequences, when restricted to
this final interval, while 90.86% of the sequences in this cluster did not belong
to the Alpha variant. The expected entropy of our CliqueSNV-based approach
and the k-modes approach were 75.73 and 94.16, respectively, while the total
entropy was 986.48 and 2074.12, respectively. This illustrates the ability of our
clustering to identify subtypes which are known in the literature. Interestingly
enough, the study of Volz et al. (2021b) is based on an approach of building a
phylogenetic tree. This demonstrates our approach, which is based on clustering

sequences, as a viable alternative.

Our CliqueSNV-based clustering method was able to detect one subtype
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which tends to dominate the population in this UK dataset, in attaining good
entropy and F} scores. However, we wanted to further validate if this is con-
sistent with other independent measures of quality, such as the cluster-based
fitness coefficient that we detail in Sec. 3.2. To compute this, we chose our
time points ¢ to be intervals of one week over the period from the beginning
of October to the middle of December, exactly as in Fig. 4. The size X;(t)
of each cluster C; (of k& = 15 clusters) for every week ¢ was obtained, and
each fitness coefficient r; was computed according to Eq. 8. In order to reduce
sampling error, we drew 2000 random samples from the Poisson distribution
on X,(t) according to Sec. 3.2. We repeated this 100 times, and we report in
Table 8 the 95% confidence interval of the top five clusters, sorted by interval
lower bound. We note that similar results are obtained with either Hamming
or TN-93 distance, with TN-93 distance corresponding to slightly higher fitness
coefficients. We confirm that in either case, the mostly highly ranked cluster in
terms of fitness (with cluster ID 6) corresponds to the cluster containing all of
the sequences pertaining to the Alpha variant from above. This highlights the
ability of our clustering-based approach for detecting, based purely on sequence
content, novel subtypes which have the potential of becoming dominant in the

population.

5.3.2 The GISAID 2 dataset

Since our CliqueSNV-based clustering approach was able to clearly pinpoint
the Alpha variant within the UK dataset, we tested it also on the GISAID
2 dataset, which contains many of the variants listed in Table 1. CliqueSNV-
based clustering identified 36 subtypes in this dataset. We first computed fitness
coefficients r; (Eq 8) for these 36 clusters using one week time intervals ¢. Table 9
reports the 95% confidence interval due to subsampling (see Sec 3.2) of the

top and bottom five clusters, sorted by interval lower bound. One will notice
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Table 8: Fitness coeflicients of the clusters of the UK dataset®

Distance Rank Cluster ID Int. Lower B. Int. Upper B.

1 6 1.343 1.504
2 3 0.354 0.369
Hamming 3 14 0.284 0.324
4 8 0.08691 0.0881
5 2 0.08690 0.0878
1 6 1.390 1.510
2 2 0.789 0.795
TN-93 3 3 0.351 0.364
4 14 0.353 0.390
5 8 0.086 0.0869

@ The 95% confidence interval of the top five fitness coefficients, according to interval
lower bound, of the 15 clusters of the UK dataset obtained using our CliqueSNV-based
clustering method with Hamming distance and TN-93 distance, respectively.

immediately that fitness coefficient is much more evenly distributed across the

clusters of this dataset, compared to the UK dataset (Table 8).

Table 10 reports some the variants found by our CliqueSNV-based approach
in terms of specificity, F; score and fitness rank (Table 9). Notice that specificity / F}
score generally decreases with rank and cluster size, as would be expected. Ex-
ceptions to this trend are the Gamma/Zeta variant in Fy score vs. Rank (having
a high F score for its rank) and the Epsilon variant (having a large cluster size
for its F} score and rank). Finally, since the GISAID 2 dataset contains more
than 1 million sequences, the Gamma/Zeta, Beta and Epsilon variants comprise
less than 1% of the sequences, yet our CliqueSNV-based was still able to identify
them with specificities around 50% and F} scores > 0.5. This demonstrates the
ability of our clustering approach to detect rare subtypes in very large sets of

sequences.
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Table 9: Fitness coefficients of the clusters of the GISAID 2
dataset®

Rank Cluster ID Int. Lower B. Int. Upper B.

1 1 0.0601 0.0602
2 17 0.0486 0.0489
3 21 0.0463 0.0463
4 20 0.0456 0.0457
5 35 0.0440 0.0440
32 4 0.0143 0.0143
33 29 0.0138 0.0138
34 28 0.0120 0.0120
35 32 0.0118 0.0118
36 34 0.0110 0.0110

@ The 95% confidence interval of the top and bottom five fitness co-
efficients, according to interval lower bound, of the 36 clusters of
the GISAID 2 dataset obtained using our CliqueSNV-based clustering
method. The mean (p) + standard deviation (o) of the interval lower
and upper bounds are 0.0281+0.0122 and 0.028140.0122, respectively.

Table 10: Variants found in the GISAID 2 dataset using CliqueSNV-
based clustering®

Variant ID Specificity F Rank Size
Alpha (UK) 1 93.16% 096 1 265 255
Gamma & Zeta (Brazil) 25 51.21% 0.68 7 1892
Beta (S. Africa) 21 45.85% 0.62 3 2754
Epsilon (California) 13 41.08% 0.58 13 9251

@ Specificity, F1 score and fitness rank (Table 9) of the cluster containing the largest
number of sequences of the corresponding variant.
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6 Conclusions

In this work, we successfully adapted a method CliqueSNV Knyazev et al.
(2020), originally designed for discovering viral haplotypes in an intra-host pop-
ulation, to finding subtypes of SARS-CoV-2 in the (massively inter-host) global
population. We use clustering entropy Li et al. (2004) to assess the quality of
a clustering — a notion which naturally reflects the underlying processes from
which a set of viral subtypes arises. We introduce two additional techniques
which boost the entropy even further, namely, gap filling and Monte Carlo en-
tropy minimization. The former is useful for sequences collected before March
2020 when collection and sequencing were not yet refined, while the latter is pos-
sible because clustering entropy is convex Li et al. (2004), allowing optimization
techniques aimed directly at minimizing entropy as the objective. We show that
our CliqueSNV-based clustering method outperforms other techniques in terms
of low entropy, and the further improvements in entropy which can be obtained

with gap filling and Monte Carlo minimization.

We then turned to datasets obtained from the GISAID and EMBL-EBI
(UK) databases in order to identify viral subtypes. Our method was able to
most clearly identify the Alpha variant in the UK dataset, with a single cluster
containing all sequences with a specificity > 99%. These results tended to be in
agreement with the entropies obtained, as well as with the measure of selective
fitness introduced in Sec. 3.2. In the GISAID dataset, which contains over one
million sequences, our CliqueSNV-based method was able to clearly identify
the Alpha variant, but also the lesser represented Beta (South Africa), Epsilon
(California), Gamma and Zeta (Brazil) variants. What is interesting about
this is that these lesser represented variants comprise a few thousand sequences
each (< 1% of the sequences), and yet our method was able to cluster them with

specificities around 50%, corroborating again with the fitness coefficient. This
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demonstrates the approach of clustering as a viable and scalable alternative for
detecting even the rarest subtypes at an early stage of development.

An immediate future work is a more full exploration of how our Monte
Carlo entropy minimization approach can be made faster and more scalable to
large datasets. Ideas include parallelization of our current approach, the design
of data structures that can be more efficiently updated, or heuristics beyond
our use of tags. The use of optimization techniques other than the Monte
Carlo method is a possibility as well. Since CliqueSNV Knyazev et al. (2020)
is a relatively new technique, possible advancements in its ability to better
detect viral haplotypes within an intra-host population would likely carry over
to improvements to finding subtypes in the inter-host population setting of this
work. Finally, while we provide a viable alternative to building phylogenetic
trees (e.g., du Plessis et al. (2021)) for detecting subtypes, it would be interesting

to explore how these could be combined (as in e.g., Ciccolella et al. (2021a)).
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