

Chemical Response of the Upper Atmosphere due to Lightning-induced Electron Precipitation

Wei Xu,¹ Robert A. Marshall,¹ Antti Kero,² and Austin Sousa¹

¹ Ann and H. J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, Colorado, USA.

² Sodankylä Geophysical Observatory, University of Oulu, Oulu, Finland.

Key Points:

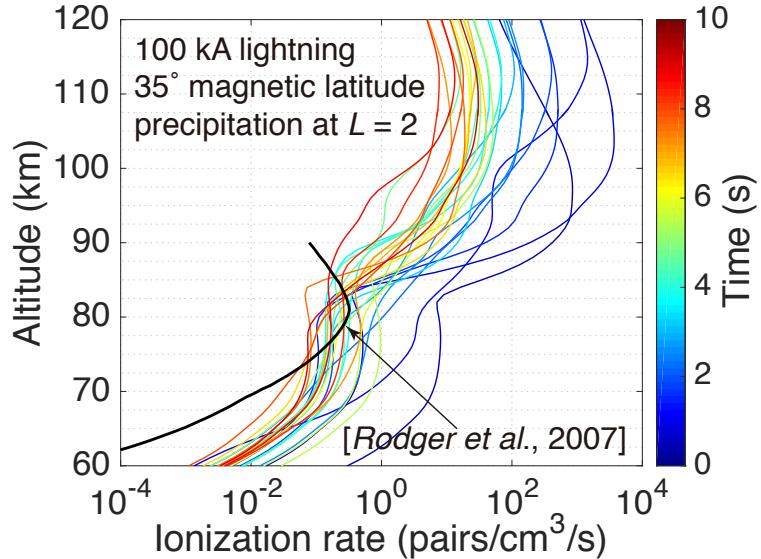
- We quantify the direct effects via excess odd hydrogen production on the middle atmosphere ozone layer produced by lightning-induced electron precipitation
- The change in ozone concentration (75–85 km altitude) during one thunderstorm via LEP processes is comparable to other types of energetic particle precipitation
- The long-term global chemical effects produced by LEP events are uncertain and need to be properly quantified

14 **Abstract**

15 Terrestrial lightning frequently serves as a loss mechanism for energetic electrons in
 16 the Van Allen radiation belts, leading to lightning-induced electron precipitation (LEP). Re-
 17 gardless of the specific causes, energetic electron precipitation from the radiation belts in
 18 general has a significant influence on the ozone concentration in the stratosphere and meso-
 19 sphere. The atmospheric chemical effects induced by LEP have been previously investigated
 20 using subionospheric VLF measurements at Faraday station, Antarctica (65.25° S, 64.27° W,
 21 $L = 2.45$). However, there exist large variations in the precipitation flux, ionization produc-
 22 tion, and occurrence rate of LEP events depending on the peak current of the parent light-
 23 ning discharge, as well as the season, location, and intensity of the thunderstorm activity.
 24 These uncertainties motivate us to revisit the calculation of atmospheric chemical changes
 25 produced by LEP. In this study, we combine a well-validated LEP model and first-principles
 26 atmospheric chemical simulation, and investigate three intense storms in the year of 2013,
 27 2015, and 2017 at the magnetic latitude of 50.9° , 32.1° , and 35.7° , respectively. Modeling
 28 results show that the LEP events in these storms can cumulatively drive significant changes
 29 in the NO_x , HO_x , and O_x concentration in the mesosphere. These changes are as high as
 30 $\sim 156\%$, $\sim 66\%$, and -5% at 75–85 km altitude, respectively, and comparable to the effects
 31 typically induced by other types of radiation belt electron precipitation events. Considering
 32 the high occurrence rate of thunderstorms around the globe, the long-term global chemical
 33 effects produced by LEP events need to be properly quantified.

34 **1 Introduction**

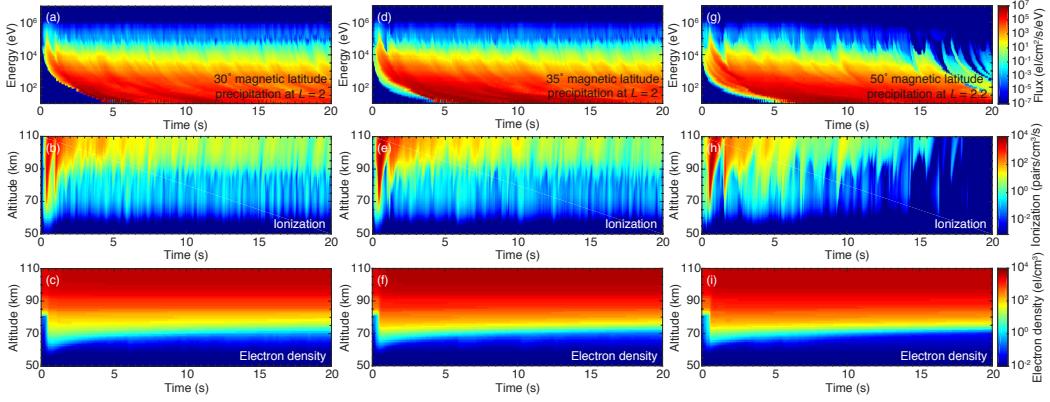
35 The concept of terrestrial lightning discharge as a loss mechanism for energetic elec-
 36 trons in the Van Allen radiation belts was first speculated by *Dungey* [1963], and later con-
 37 firmed by direct measurements from the S81-1 (SEEP) satellite [Voss *et al.*, 1984, 1998].
 38 This phenomenon is referred to as Lightning-induced Electron Precipitation (LEP), in which
 39 the Very-Low-Frequency (VLF, 3–30 kiloHertz, kHz) waves emitted from a lightning dis-
 40 charge propagate in the whistler mode through the Earth's magnetosphere, scatter energetic
 41 electrons into lower mirroring altitudes in the radiation belts, and ultimately cause the precip-
 42 itation of some trapped electrons into the upper atmosphere. As a strong coupling between
 43 the Earth's atmosphere and magnetosphere, LEP has been the main focus of various obser-
 44 vational studies [e.g., *Clilverd* *et al.*, 2002; *Rodger*, 2003; *Peter and Inan*, 2007; *Inan* *et al.*,
 45 2010] in the past few decades. Even long before the first spacecraft measurements, LEP has
 46 been investigated using radio measurements [*Helliwell* *et al.*, 1973; *Rycroft*, 1973; *Lohrey*
 47 and *Kaiser*, 1979]. The most effective approach of LEP observation is via the indirect mea-
 48 surements of ionospheric electron density enhancements using subionospheric VLF remote
 49 sensing. VLF waves radiated from the Naval transmitters are well trapped within the wave-
 50 guide formed between the ground and the sharp boundary in the lower ionosphere, and thus
 51 particularly sensitive to the electron density in the D-region ionosphere (~ 60 – 90 km), a re-
 52 gion that is frequently bombarded by LEP fluxes.


53 A major goal of previous and ongoing VLF observations is to estimate the size, fluxes,
 54 and spectra of LEP events, and thereby quantify the effects of terrestrial lightning on the ra-
 55 diation belt fluxes. Many of the pioneer works have been carried out by *Inan* *et al.* [1985];
 56 *Inan and Carpenter* [1986, 1987]. The authors revealed that the phase and amplitude per-
 57 turbations of VLF signals associated with LEP events (historically known as Trimpi events
 58 [*Helliwell* *et al.*, 1973]), in most cases, can be explained using a whistler-induced precipita-
 59 tion flux ranging from 10^{-4} to 10^{-2} erg/cm 2 /s. Using simultaneous measurements from mul-
 60 tiple ground receivers, the size of LEP events has been estimated, by *Johnson* *et al.* [1999]
 61 and *Clilverd* *et al.* [2002], to be as large as one thousand kilometers overhead the causative
 62 lightning discharge. *Clilverd* *et al.* [2004] have further studied the relationship between VLF
 63 perturbations and the peak current of the source lightning flashes, and pointed out that the
 64 amplitude change of typical Trimpi events is consistent with lightning peak currents of 70–

250 kA. *Rodger et al.* [2005] have estimated the energy deposition via the LEP process into the middle atmosphere; a mean rate of energy deposition at $L = 1.9\text{--}3.5$ was found to be 3×10^{-4} erg/cm 2 /min, with highs of 6×10^{-3} ergs/cm 2 /min above North America. Studies using the Holographic Array for Ionospheric/Lightning Research (HAIL) found that, for a 100-kA lightning discharge, the peak flux of precipitation electrons is on the order of 10 $^{-2}$ ergs/cm 2 /s [*Peter and Inan*, 2007]. In general, the spatial scale of lightning-induced electron precipitation ranges from several hundreds to one thousand kilometers, covering several degrees in latitude/longitude [e.g., *Clilverd et al.*, 2002]. As derived from ground VLF measurements, the displacement with respect to the lightning source is largely controlled by the geomagnetic field line, but primarily poleward shifted [e.g., *Peter and Inan*, 2007]. Lightning-generated whistler waves can lead to precipitation of energetic electron from both the inner and outer radiation belts: LEP events have been found to play a significant role in electron losses in the inner radiation belt [e.g., *Bortnik et al.*, 2006a,b; *Claude-pierre et al.*, 2020a,b]; LEP can also lead to electron losses from the outer radiation belt, for example, Trimpi events [*Helliwell et al.*, 1973].

Due to the indirect relationship between VLF perturbations and the underlying D-region electron density variation, quantification of LEP fluxes using VLF measurements is by nature a nonlinear problem [*Marshall et al.*, 2019b]. The amplitude and phase changes of transmitter VLF signals are controlled not solely by the electron density enhancement, but also by the geometry of the transmitter-receiver path, the ambient ionosphere along the path [e.g., *Xu et al.*, 2019], and the collision frequency profile driven by the background atmosphere [*Marshall*, 2012]. As such, the LEP fluxes as inversely derived from VLF measurements are inherently ambiguous, with large uncertainties in the energy spectrum in particular. Besides VLF technique, LEP fluxes have been directly measured by in situ particle instruments, for example, the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) [*Blake et al.*, 2001] and the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite [*Inan et al.*, 2007]. However, nearly all existing space-borne instruments can only resolve part of the loss cone angle [*Marshall et al.*, 2020] and these measurements only provide a coarse estimate of the true precipitating flux.

Regardless of the specific causes, energetic electron precipitation (EEP) into the Earth's atmosphere, in general, has a significant influence on the ozone concentration in the upper atmosphere [e.g., *Thorne*, 1980; *Randall et al.*, 2007; *Sinnhuber et al.*, 2012] through the catalytic cycles of odd nitrogen ($\text{NO}_x = [\text{N}] + [\text{NO}] + [\text{NO}_2]$) [*Rusch et al.*, 1981] and odd hydrogen ($[\text{HO}_x] = [\text{H}] + [\text{OH}] + [\text{HO}_2]$) [*Solomon et al.*, 1981]. Using 60 major EEP events measured during the solar cycle 23, *Andersson et al.* [2014a] revealed that EEP strongly affects the ozone concentration and can cause up to 90% depletion at altitudes of 60–80 km. *Turunen et al.* [2016] have studied the chemical changes during a pulsating aurora event on November 17, 2012, and found a maximum reduction of 14% in ozone concentration at 75 km altitude. As for the chemical effects of LEP, *Rodger et al.* [2007] have performed detailed atmospheric chemistry simulations using the mean LEP energy flux reported in *Rodger et al.* [2005], but rescaled using the Trimpi events observed at Faraday station, Antarctica (65.25°S, 64.27°W, $L = 2.45$) on April 14, 1994. The maximum changes in NO_x and HO_x concentration were found to be ~0.1% around 80 km altitude, with a reduction of odd oxygen concentration by less than 0.1%, and thus the atmospheric chemistry effects were concluded to be insignificant [*Rodger et al.*, 2007].


However, there exist large variations in the precipitation flux, ionization production, and occurrence rate of LEP events depending on the peak current of the parent lightning discharge, as well as the season, location, and intensity of thunderstorm activity [*Sousa*, 2018]. For example, Figure 1 shows the comparison of ionization production between the mean LEP ionization production used by *Rodger et al.* [2005]; *Rodger et al.* [2007], and our more recent LEP modeling results [*Marshall et al.*, 2019a]. The colored lines (color-coded using time) show the ionization rate versus altitude produced by an LEP event over the first 10 seconds after a 100-kA lightning discharge at 35° magnetic latitude, as calcu-

94 **Figure 1.** Comparison of the ionization production by lightning-induced electron precipitation between re-
 95 cent LEP modeling results [Marshall *et al.*, 2019a] using the WIPP code [Lauben *et al.*, 1999; Bortnik, 2004;
 96 Sousa, 2018] and the mean LEP ionization production [Rodger *et al.*, 2005; Rodger *et al.*, 2007]. The colored
 97 lines show the altitude profile of ionization production at $L = 2$ by a lightning source with a peak current of
 98 100 kA at 35° magnetic latitude.

123 lated using the Stanford Wave-Induced Particle Precipitation (WIPP) code [Lauben *et al.*,
 124 1999; Bortnik, 2004; Golden *et al.*, 2010; Sousa, 2018]. This code explicitly simulates from
 125 first principles the entire LEP process from the source lightning discharge to precipitation
 126 fluxes in the upper atmosphere. This model framework has been extensively used to analyze
 127 LEP-associated VLF measurements [e.g., Peter and Inan, 2007; Inan *et al.*, 2010], and more
 128 recently calibrated using X-ray measurements by the Balloon Array for Radiation-belt Rel-
 129 ativistic Electron Losses (BARREL) during possible LEP events [Marshall *et al.*, 2019a].
 130 In the first \sim 5 seconds, the mean LEP ionization production used by Rodger *et al.* [2007]
 131 (possibly corresponding to a peak current smaller than 100 kA) is on average one order of
 132 magnitude lower than that produced by this simulated 100-kA lightning discharge [Marshall
 133 *et al.*, 2019a].

134 Another parameter that is critical for LEP-induced chemical effects is the occurrence
 135 rate of intense lightning flashes. The flash rate was estimated to be approximately 3.3 events
 136 per minute for the Trimpi measurements at the Faraday station on April 14, 1994 [Rodger
 137 *et al.*, 2007]. A reexamination using the U.S. National Lightning Detection Network (NLDN)
 138 data [Cummins *et al.*, 1998] reveals that this value is not representative of intense thunder-
 139 storms at lower latitudes. As will be shown in section 3, the flash rate of lightning discharges
 140 with peak current larger than 50 kA could be as high as \sim 50 per minute, as observed during
 141 an intense thunderstorm occurring around 23.5°N, 97.5°W on October 25, 2015 (see Fig-
 142 ure 3). In addition, the duration of a single LEP event was assumed to be \sim 0.2 s [Rodger
 143 *et al.*, 2007] in the ducted case, whereas it can last up to 20 seconds or longer in the non-
 144 ducted case [Bortnik, 2004; Marshall *et al.*, 2019a] due to multiple magnetospheric reflec-
 145 tions between the conjugate hemispheres. Considering the high occurrence rate of LEP
 146 events (nearly once per minute globally) and potential chemical effects, the uncertainties in
 147 the LEP source (mostly from the uncertainties about the peak current of source lightning
 148 discharge, energy and pitch angle distribution of precipitation fluxes) motivate us to revisit
 149 the calculation of atmospheric chemical changes. In this paper, we present first-principles

171 **Figure 2.** (a) Differential flux of precipitation electrons with energies between 10 eV and 10 MeV at $L = 2$
 172 due to a 100 kA lightning source at 30° magnetic latitude. (b) Ionization production at altitudes between
 173 50 and 110 km by these precipitation electrons. The background atmospheric profile used in this ionization
 174 calculation is obtained using the date, latitude, and longitude of the 2015 storm reported by NLDN (see sec-
 175 tion 3). (c) Electron density change in the D-region ionosphere produced by this LEP event. Panels (d–f)
 176 show similar results, but for a lightning source at 35° magnetic latitude and precipitation fluxes at $L = 2$.
 177 Panels (g–i) show the results for a lightning source at 50° magnetic latitude and precipitation fluxes at $L = 2.2$.
 178 The background atmospheric profile used for the ionization calculation of panel (e) and (h) is obtained using
 179 the date and location of the 2017 and 2013 storm (see section 3), respectively.

150 modeling results of LEP events, including the precipitation fluxes, ionization production,
 151 and chemical changes. We use three NLDN-reported intense storms as extreme examples to
 152 quantify the chemical effects produced by LEP.

153 2 Numerical Simulations

154 In this study, we combine the WIPP-LEP simulations of lightning-induced electron
 155 precipitation [Lauben *et al.*, 1999; Bortnik, 2004; Sousa, 2018], the Boulder Electron Radia-
 156 tion to Ionization (BERI) model [Xu *et al.*, 2020], and the Sodankylä Ion and Neutral Chem-
 157 istry (SIC) model [Turunen *et al.*, 1996; Verronen *et al.*, 2005], specifically in three steps.
 158 First, following the framework formulated by Lauben *et al.* [1999]; Bortnik [2004], the WIPP
 159 model is employed to simulate LEP events produced by source lightning discharges at differ-
 160 ent magnetic latitudes and calculate the resultant precipitation fluxes at different observation
 161 locations (L values). Second, three intense storms are picked from the NLDN database for
 162 the years of 2013–2017 at the magnetic latitudes of 30° – 50° . Using the WIPP results ob-
 163 tained in the first step, we calculate the total ionization production by the precipitation fluxes
 164 induced by all lightning flashes in these storms (denoted as the cumulative ionization produc-
 165 tion hereafter). Finally, the cumulative ionization production is utilized as an external forcing
 166 in SIC simulations in order to quantify the atmospheric changes to constituents of interest.
 167 Similar to previous EEP studies [Turunen *et al.*, 1996, 2009], the main focus of this study is
 168 the relative change in the molecular concentration of odd hydrogen, odd nitrogen, and odd
 169 oxygen ($[O_x] = [O] + [O_3]$). In the following, we introduce the numerical models and the
 170 initial parameters used in these simulations.

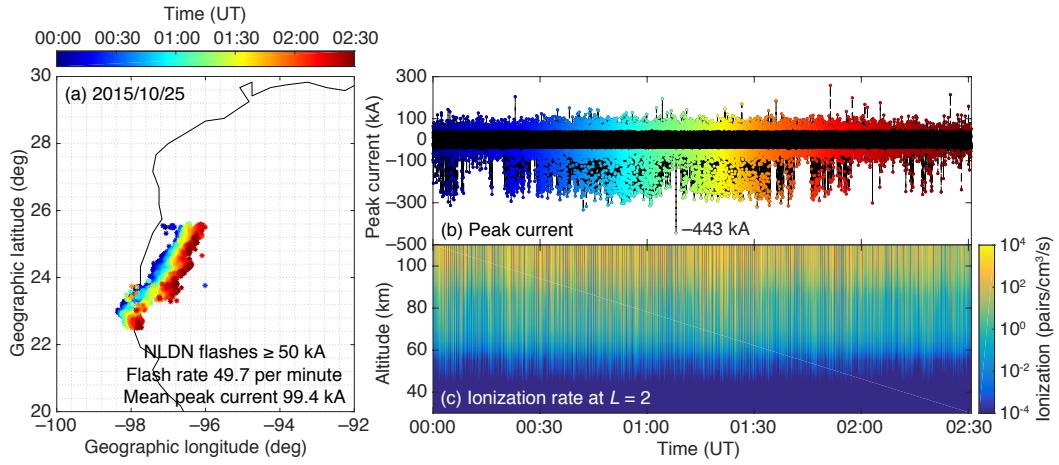
180 The WIPP code was built upon the modeling work of Inan [1977], and has been re-
 181 fined through the past three decades of LEP modeling work at Stanford by Lauben *et al.*
 182 [1999]; Bortnik [2004]; Golden *et al.* [2010]; Cotts [2011]; Sousa [2018]. The details of
 183 this code, as well as the most recent updates, can be found in Sousa [2018]. In short, a stan-

184 dard WIPP-LEP simulation includes four steps [Bortnik, 2004; Sousa, 2018; Marshall *et al.*,
 185 2019a]: i) The electromagnetic pulse (EMP) energy emitted by the return stroke current of
 186 a lightning discharge is calculated and mapped to the base of the ionosphere at 100 km alti-
 187 tude, ii) We calculate the attenuation of lightning-emitted VLF waves during their propaga-
 188 tion through the lossy ionosphere (100–1000 km altitude) using the VLF attenuation curves
 189 [Helliwell, 1965; Graf *et al.*, 2013a], iii) Starting from 1000 km altitude, the propagation of
 190 each frequency component in the plasmasphere is simulated using the improved Stanford ray-
 191 tracing program [Bortnik *et al.*, 2006a; Golden *et al.*, 2010]. Each ray is tracked through the
 192 plasmasphere for 20 seconds due to multiple magnetospheric reflections, iv) We calculate
 193 the resonant wave-particle interactions between these waves and the radiation belt fluxes, and
 194 mainly focus on the modification to the pitch angles of trapped electrons near the loss cone
 195 edge.

196 The fluxes and spectra of radiation belt electrons are calculated using the AE8 model
 197 [Vette, 1991] and their pitch angles are assumed to be sine-distributed between 0° and 90°
 198 [Sousa, 2018; Marshall *et al.*, 2019a]. Note that precipitation fluxes are strongly dependent
 199 on the assumption of the background fluxes and pitch angle distributions; the most important
 200 part of pitch angle distribution is the region near the loss cone angle; the uncertainty brought
 201 by the assumption of pitch angle distribution has been previously discussed in Marshall *et al.*
 202 [2019a]; our results were validated using Van Allen Probes data, as reported in Marshall
 203 *et al.* [2019a]. WIPP simulations are performed for lightning discharges at magnetic lati-
 204 tudes between 15° and 55° with 5° steps. For each magnetic latitude, the differential fluxes
 205 of precipitation electrons with energies between 10 eV and 10 MeV are calculated for differ-
 206 ent observation locations (L values). To quantify the maximum chemical effects, the location
 207 with the highest precipitation flux (as denoted in the upper panels of Figure 2) is used to cal-
 208 culate the ionization production and resultant chemical changes. It is important to emphasize
 209 that in the WIPP simulations, the precipitation fluxes scale linearly with the total input EMP
 210 energy, which is proportional to the square of lightning peak current. Following this relation,
 211 WIPP-calculated LEP fluxes can be readily rescaled to the NLDN-reported peak current.
 212 This relation is close to that empirically determined by Clilverd *et al.* [2004], wherein the
 213 precipitation flux scales as the 2.3 power of lightning peak current.

214 Knowing the precipitation fluxes, we calculate the ionization production at altitudes
 215 below 150 km altitude (the upper boundary of the SIC model) using the BERI model [Xu
 216 *et al.*, 2020]. This model is largely based on a lookup table of atmospheric ionization pro-
 217 duction by monoenergetic electrons with energies between 3 keV and 33 MeV, and pitch an-
 218 gles between 0° and 90°. This lookup table was developed using physics-based Monte Carlo
 219 simulations [e.g., Lehtinen *et al.*, 1999; Xu and Marshall, 2019], and allows rapid and accu-
 220 rate specification of ionization production by arbitrary precipitation energy and pitch angle
 221 distribution in any atmospheric condition. In this study, it is assumed that the precipitation
 222 electrons of each LEP burst at 500 km altitude are isotropically distributed in pitch angles
 223 between 0° and 90°. The mass density profile of background atmosphere is calculated using
 224 the NRLMSISE-00 model [Tobiska and Bouwer, 2006] for the date, latitude, and longitude
 225 of the storms reported by NLDN (see section 3).

226 Figure 2a shows WIPP modeling results of precipitation fluxes at $L = 2$ produced by
 227 a 100-kA lightning discharge at the magnetic latitude of 30°. The two peaks at ~ 0.4 s and
 228 ~ 1 s, as typical of satellite measurements of LEP events [Voss *et al.*, 1998], are caused by
 229 the interaction between radiation belt electrons and the initial upward-going whistler waves
 230 and the reflected whistler waves, respectively. The ionization production by these precipi-
 231 tation electrons at altitudes between 50 and 110 km is shown in Figure 2b. The background
 232 atmospheric profile used in this ionization calculation is obtained using the date, latitude,
 233 and longitude of the 2015 storm reported by NLDN (see Figure 3). Using a 5-species chem-
 234 istry model [Glukhov *et al.*, 1992; Lehtinen and Inan, 2007], we have further calculated the
 235 electron density change in the D-region ionosphere, as shown in Figure 2c. Figures 2d–2f
 236 show similar results, but for a lightning source at 35° magnetic latitude and precipitation


237 fluxes at $L = 2$, while Figures 2g–2i show those for a lightning source at 50° magnetic latitude
 238 and precipitation fluxes at $L = 2.2$. The background atmospheric profile used for the
 239 calculation of Figure 2e and Figure 2h is obtained using the date and location of the 2017
 240 and 2013 storm (see section 3), respectively. Of note, the electron density variations shown
 241 in the bottom panels of Figure 2 are capable of reproducing the typical amplitude changes
 242 (~ 0.5 – 2 dB) of transmitter VLF signal during LEP events [Peter and Inan, 2007]. Moreover,
 243 the peak precipitation flux produced by the lightning discharge at 30° , 35° , and 50° latitude
 244 is 0.06 , 0.14 , and 0.15 ergs/cm 2 /s, somewhat higher but not unreasonably different from the
 245 values suggested by Peter and Inan [2007].

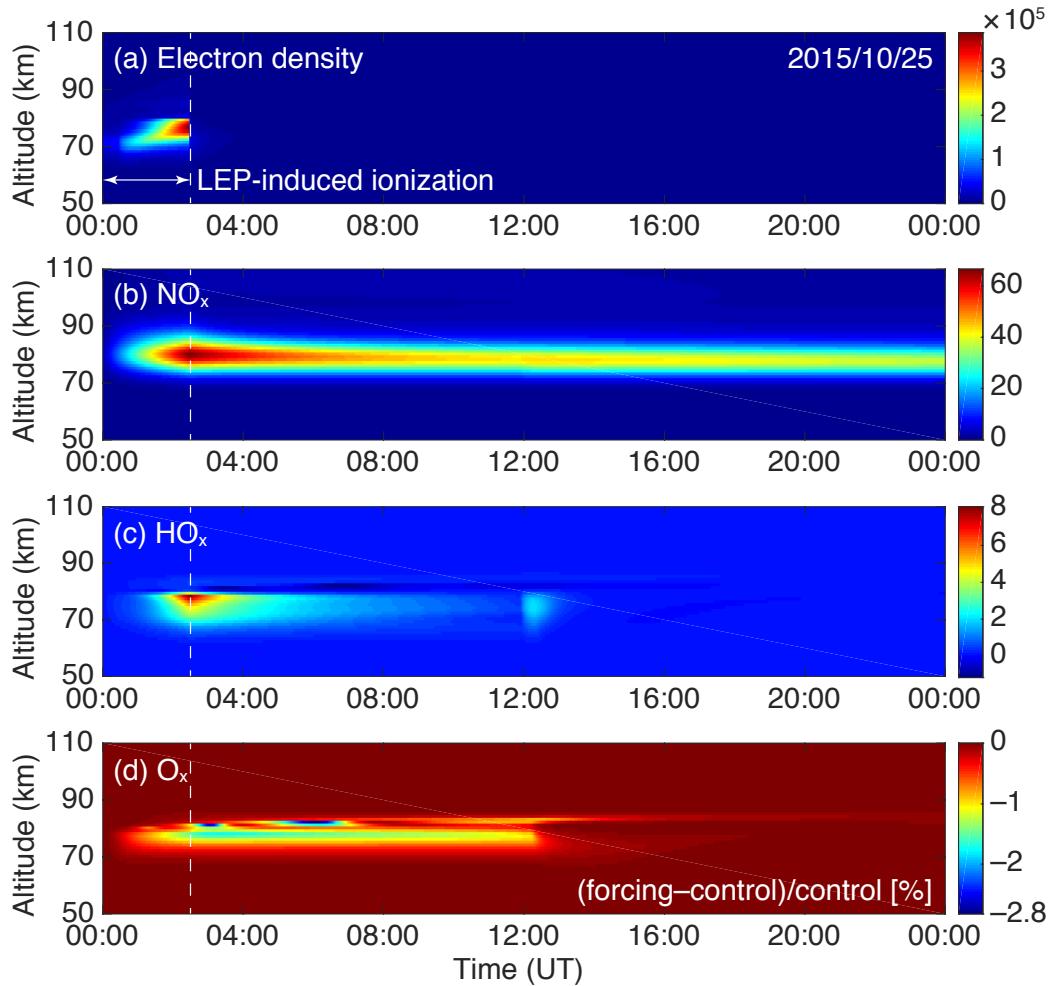
246 Because of the dense electron density in the D- and E-region ionosphere, the lightning
 247 EMP energy is severely attenuated during the daytime ionospheric conditions [Graf *et al.*,
 248 2013b] and the resultant precipitation fluxes are considerably lower than nighttime [Sousa,
 249 2018]. Therefore, in this study, we mainly focus on those thunderstorms with high flash rates
 250 and large peak currents, occurring during local nighttime conditions. Given these criteria,
 251 three intense storms were chosen from NLDN data for the years of 2013, 2015, and 2017 at
 252 the magnetic latitudes of 50.9° , 32.1° , and 35.7° , respectively. The geolocation, temporal
 253 evolution, and peak current of lightning flashes in these storms are presented in section 3.

254 The total ionization production during a thunderstorm is a key parameter in chemi-
 255 cal simulations, and is calculated using all the flashes with peak current larger than 50 kA
 256 in the present study. A minimum value of 50 kA is used since it is close to what is needed
 257 to trigger Trimpie events (70 kA) with detectable ionosphere enhancements [Clilverd *et al.*,
 258 2004]. Clilverd *et al.* [2002] also noted that, if the lightning peak current is less than 45 kA,
 259 the chance of observing any Trimpie events is almost zero. We have checked that, if a lower
 260 threshold value is instead used, the cumulative ionization production would not change sig-
 261 nificantly since the LEP flux scales linearly with the square of lightning peak current. Specif-
 262 ically, for a given storm, we use the WIPP results at the corresponding magnetic latitude (up-
 263 per panels of Figure 2) and rescale the ionization results (middle panels of Figure 2) using
 264 the peak current of all NLDN-reported lightning flashes (≥ 50 kA). The rescaled ionization
 265 production is then sorted using the NLDN-tagged time of each flash (see Figure 3b). Finally,
 266 these ionization results are summed together and we calculate the cumulative ionization pro-
 267 duction versus altitude and time for each storm (see Figure 3c).

268 The cumulative ionization production is then used as an input into SIC chemistry sim-
 269 ulations. SIC is a 1-D atmospheric model that dynamically solves for the concentration of
 270 16 minor neutral species and 72 ionic species in the altitude range between 20 and 150 km
 271 with 1 km resolution [Turunen *et al.*, 1996; Verronen *et al.*, 2005; Verronen, 2006]. Ver-
 272 tical motion of species is included as molecular and eddy diffusion, neglecting transport
 273 by prevailing neutral winds. The latest version of this model takes into account 389 ion-
 274 neutral and neutral-neutral reactions, and 2523 ion-ion and electron-ion recombination re-
 275 actions. The background profile of neutral density used in SIC modeling is obtained from the
 276 NRLMSISE-00 model [Tobiska and Bouwer, 2006] using the daily average values of solar
 277 radio flux ($F_{10.7}$) and the geomagnetic activity index (A_p). Note that horizontal mixing is not
 278 included in the 1-D SIC model; this effect will be investigated in our next-step study using
 279 global circulation simulations.

280 In this study, the neutral density profile is calculated using the specific date and loca-
 281 tion of each storm as reported by NLDN. Solar proton precipitation is provided as an op-
 282 tional external force in the SIC model, but not included in present simulations. The initial
 283 profiles of HO_x , NO_x , O_x are obtained by running the SIC model at the thunderstorm loca-
 284 tion for 5 days, prior to the LEP forcing with photoionization only. Chemical changes are
 285 simulated for a period of 24 hours starting from the first LEP event and stored every 1 minute
 286 of simulation. An average ionization rate of the event is used. Two sets of SIC simulations
 287 are performed for each storm, one with and another without the LEP-induced ionization pro-
 288 duction. The simulation results obtained without applying LEP ionization are regarded as

Figure 3. NLDN measurements of lightning flashes between \sim 00:00 and \sim 02:30 UT on October 25, 2015 near 23.5° N, 97.5° W. (a) Longitude and latitude of all lightning flashes with peak current magnitude larger than 50 kA. The rate of lightning flashes with peak current magnitude larger than 50 kA is \sim 49.7 flashes per minute and the average value of peak current for these flashes is \sim 99.4 kA. (b) Peak current of lightning flashes versus the occurrence time. The largest peak current recorded by NLDN was -443 kA at 01:08:08 UT. (c) Altitude profile of ionization production by the lightning flashes with peak current magnitude larger than 50 kA shown in panel (b).


the baseline, against which we compute the relative changes in neutral species and therefore quantify the chemical effects.

We emphasize that all above-mentioned numerical models have been well validated in previous studies. The WIPP code has been extensively used to interpret LEP-modulated VLF signals [e.g., Peter and Inan, 2007], and lately the X-ray fluxes recorded by BARREL during possible LEP events [Marshall *et al.*, 2019a]. Different from VLF measurements, X-ray measurements at balloon altitudes are directly linked to the precipitation fluxes and energy spectra of LEP bursts; WIPP results can fully explain the X-ray fluxes, temporal signature, and energy spectra measured by BARREL [Marshall *et al.*, 2019a]. As for the BERI model [Xu *et al.*, 2020], it shows good agreements with the parameterization method of Fang *et al.* [2010] in terms of the peak ionization rate and altitude, with a maximum difference of \sim 20% among tests using different precipitation energy and pitch angle distributions. The SIC model has been employed for the estimation of atmospheric chemical effects due to a wide variety of external sources, including radiation belt electron precipitation [e.g., Turunen *et al.*, 2016; Xu *et al.*, 2018], solar eclipse [e.g., Xu *et al.*, 2019], and solar proton events [e.g., Clilverd *et al.*, 2005].

3 Results

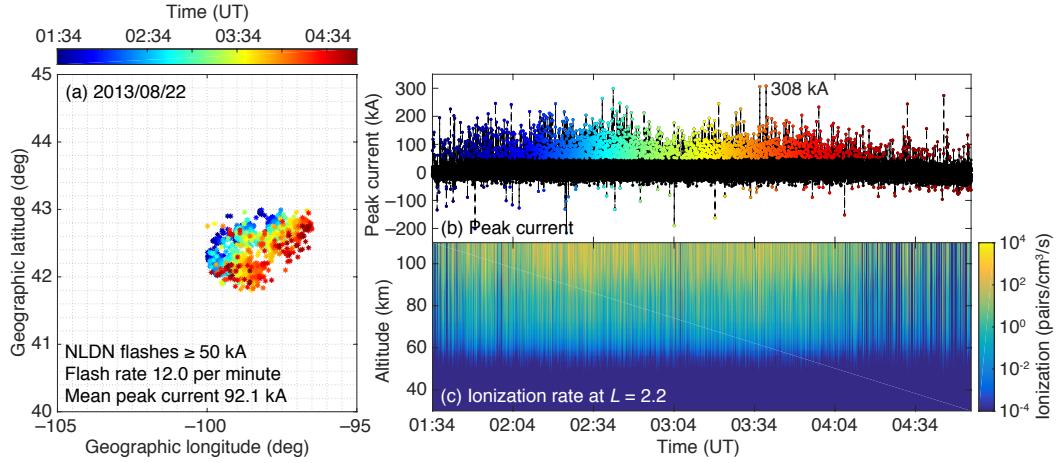
3.1 Storm 1: October 25, 2015

The first storm in this case study occurred on October 25, 2015 at geographic latitudes between 22.5° N and 25.6° N, and geographic longitudes between 96.0° W and 98.5° W, along the Caribbean coast of Texas / Mexico. Figure 3a shows the longitudes and latitudes of all lightning flashes with peak current magnitude larger than 50 kA recorded by the NLDN network between \sim 00:00 and \sim 02:30 UT, with color progressing in time from blue to red. The peak current and occurrence time of these lightning flashes are shown separately in Fig-

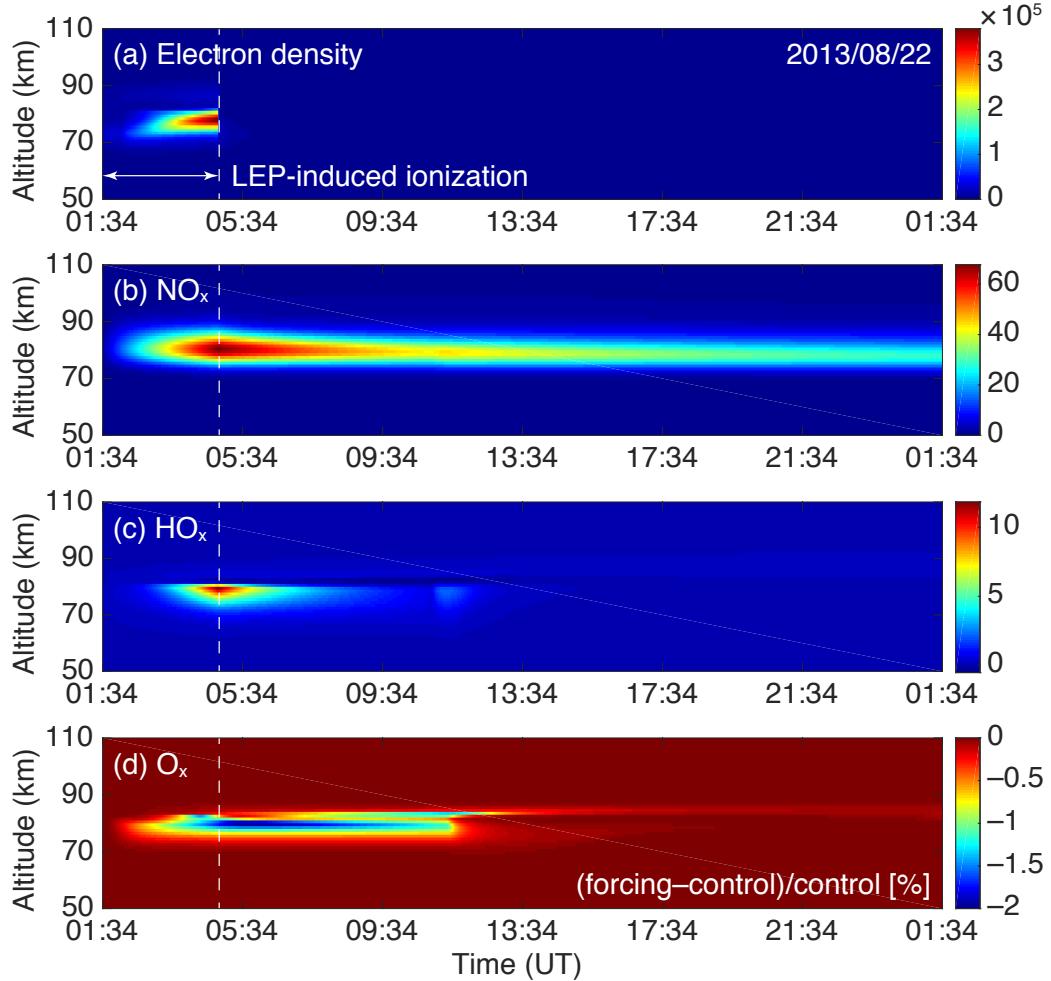
313 **Figure 4.** SIC modeling results of the relative changes in (a) electron, (b) NO_x , (c) HO_x , and (d) O_x
 314 concentration produced by all the LEP events in the 2015 storm. Sunrise time: 12:30:27 UT. This figure
 315 specifically shows the percentage difference between simulation results obtained with (denoted as forcing)
 316 and without (denoted as control) applying the cumulative ionization production (Figure 3c). The cumulative
 317 ionization production between 00:00 and 02:30 UT is marked using white dashed lines in these panels.

ure 3b. The black and colored dots show the lightning flashes with peak current magnitude smaller and larger than 50 kA, respectively.

NLDN reported a total of 33,504 flashes from this region between 00:00 and 02:30 UT, ~22.3% of which had peak current larger than 50 kA (7,453 flashes). The flash rate of intense lightning discharges (≥ 50 kA) was approximately 49.7 per minute. The average value of the peak current for these 7,453 flashes was ~99.4 kA and the majority were negative cloud-to-ground discharges. Out of the 33,504 flashes, the fraction of lightning flashes with peak current larger than 70 kA and 100 kA was approximately 11.2% (3,748 flashes) and 6.4% (2,157 flashes), respectively; the largest peak current was -443 kA at 01:08:08 UT, likely associated with large-scale high-altitude luminous events, for example, elves [e.g., Marshall *et al.*, 2010] or sprites [e.g., Pasko *et al.*, 1997].


The magnetic latitude corresponding to the center of this storm is approximately 32.1°N, as calculated using the International Geomagnetic Reference Field (IGRF) model [Thébault *et al.*, 2015]. Thus, the WIPP-calculated precipitation fluxes produced by the lightning discharge at 30° magnetic latitude (Figures 2a–2b) are used for the ionization calculation. The LEP-produced ionization profile in Figure 2b is rescaled using the peak current of the lightning flashes (colored dots with peak current ≥ 50 kA) shown in Figure 3b, sorted using the NLDN-tagged occurrence time (Figure 3b), and then summed together. Figure 3c shows the cumulative ionization production via all LEP processes during this 150-minute storm.

These ionization results are then used as the forcing input to the SIC model in order to calculate the atmospheric chemistry response. Figure 4, from top to bottom, presents the relative change in the concentration of electrons, NO_x , HO_x , and O_x produced by all the LEP events in storm 1. This figure specifically shows the percentage difference between the simulation results obtained with (denoted as forcing in Figure 4) and without (denoted as control in Figure 4) applying the cumulative ionization production during this storm ((forcing – control) / control $\times 100$ [%]). The cumulative ionization production between 00:00 and 02:30 UT is marked using white dashed lines in this figure. The electron density is dramatically enhanced, by three orders of magnitude in the D-region ionosphere, as seen in Figure 4a. This level of electron density change is close to previously reported results [e.g., Peter, 2007, Figure 5.2]. The maximum change of NO_x concentration, due to the LEP-induced ionization, is approximately 67% at ~80 km altitude. NO_x is relatively stable and these changes can persist for a long time; about 37% of the excess NO_x production remains at the end of this 24-hour simulation period (see Figure 4b).


Different from NO_x , the HO_x change is considerably smaller and non-monotonic. HO_x concentration increases by ~8.1% at the altitudes near 78 km, and decreases by ~1.2% at 82 km altitude after the LEP forcing at ~06:52 UT. Above 82 km, the HO_x change is very small because of the limited abundance of water vapor in this altitude range [Turunen *et al.*, 2016]. A reduction of 2.8% is predicted for the O_x density around the local minimum in the mesospheric ozone profile, ~82 km altitude. However, because of the solar radiation and enhanced photochemistry during the sunrise [Verronen, 2006], the HO_x concentration is shortly enhanced (see Figure 4c) and the O_x concentration returns to the background value around ~12:00 UT (see Figure 4d).

3.2 Storm 2: August 22, 2013

Lightning at higher magnetic latitudes projects to higher L -shells in the radiation belts, and thus has the potential to impact fluxes in the heart of the radiation belts and produce more intense precipitation signatures. To investigate the LEP effects at higher latitudes, the second case study is performed for the thunderstorm occurring on August 22, 2013 at geographic latitudes between 41.8°N and 43.0°N, and longitudes between 96.5°W and 100.0°W, in northeastern Nebraska. Nebraska is well known for producing uncommonly intense positive lightning discharges [e.g., Stolzenburg, 1994]. The magnetic latitude of this storm is ~50.9°N and the NLDN lightning data from 01:34 to 04:54 UT are used. Similar to Fig-

367 **Figure 5.** Similar to Figure 3, but for the NLDN-reported lightning flashes near 42.4°N , 98.7°W between
368 01:34 and 04:54 UT on August 22, 2013.

369 **Figure 6.** Similar to Figure 4, but for the NLDN-reported lightning flashes near 42.4°N , 98.7°W between
370 01:34 and 04:54 UT on August 22, 2013. Sunrise time: 11:51:14 UT.

380 ure 3, Figure 5a shows the temporal evolution of lightning flashes with peak current mag-
 381 nitude larger than 50 kA and Figure 5b shows the peak current versus occurrence time for
 382 these flashes. The WIPP results corresponding to a lightning source at 50° magnetic latitude
 383 (Figure 2h) are utilized for the calculation of cumulative ionization production, as shown in
 384 Figure 5c.

385 Compared to the baseline runs, the relative change in NO_x , HO_x , and O_x concentration
 386 is $\sim 67\%$, $\sim 12\%$, and -2% , respectively. The O_x change in this case is smaller than that of
 387 the first storm, the NO_x change is comparable, and the HO_x change is slightly higher. Note
 388 that the relative change of these neutral species is somewhat sensitive to the baseline condi-
 389 tions, for example, the season, location, and background atmospheric condition of baseline
 390 simulations. On average, the cumulative ionization production in the second storm is notably
 391 less than that of the first storm since the peak current and flash rate are lower. In the second
 392 storm, 2,390 lightning flashes with peak current larger than 50 kA were detected by NLDN
 393 and the flash rate was ~ 12.0 events per minute, a quarter of that for the first storm. The av-
 394 erage value of peak current for these flashes (≥ 50 kA) was ~ 92.1 kA, which is also 7.3%
 395 lower than the first storm (99.4 kA). Out of these 2,390 flashes, the number of flashes with
 396 peak current larger than 70 kA and 100 kA was 1,585 and 775, respectively, and the largest
 397 peak current reported by NLDN was 308 kA.

398 Atmospheric chemical changes, in essence, are positively related with the cumula-
 399 tive ionization production during a thunderstorm for a given atmospheric condition, which
 400 is largely controlled by the LEP fluxes and lightning flash rate if the dependence on the pre-
 401 cipitation energy spectrum is not considered. As explained in section 2, the precipitation flux
 402 of a single LEP event is linearly proportional to the square of lightning peak current. The
 403 lightning flash rate can enhance or diminish the cumulative effects of ionization production
 404 during a thunderstorm. Thus, these two parameters can be roughly considered as a proxy for
 405 the extent of ionization and chemical effects produced by thunderstorm activity via LEP pro-
 406 cesses. It is important to note that the fluxes of LEP bursts are also dependent on the L -shell
 407 from which lightning whistler induces electron precipitation, i.e., the availability of energetic
 408 electrons in the radiation belts, as well as their pitch angle distribution.

409 3.3 Storm 3: May 29, 2017

410 For completeness of this case study, a third storm is chosen at a magnetic latitude be-
 411 tween the first two storms, at $\sim 35.7^\circ\text{N}$. This storm took place on May 29, 2017 at geographic
 412 latitudes between 25.5°N and 28.2°N , and longitudes between 96.0°W and 100.5°W , near
 413 the U.S. and Mexico border along the Caribbean coast. The NLDN data between 04:29 and
 414 09:59 UT are used for the chemistry simulation. The geolocation, peak current, and ion-
 415 ization production by the lightning flashes in this storm are shown in Figure 7. A total of
 416 440,266 lightning flashes were identified by NLDN to originate from this storm, and the
 417 fraction of lightning discharges with peak current greater than 50 kA, 70 kA, and 100 kA
 418 was 2.5% (11,148 flashes), 0.9% (3,971 flashes), and 0.4% (1,753 flashes), respectively.
 419 These flashes were mostly negative cloud-to-ground discharges. The rate of lightning flashes
 420 with peak current larger than 50 kA was 33.8 flashes per minute, with the average value of
 421 the peak current (flashes ≥ 50 kA) being 77.6 kA and the largest value being 292 kA.

422 Given the NLDN-reported flash rate and peak current, it is not unexpected that this
 423 storm leads to the largest chemical changes among all cases, as evidenced in Figure 8. SIC
 424 modeling results show that LEP-induced ionization results in notable NO_x and HO_x changes:
 425 the NO_x concentration is more than doubled at altitudes between ~ 76 and ~ 84 km, with
 426 a maximum enhancement of 156% at ~ 80 km; the HO_x concentration increases by $\sim 66\%$
 427 around 78 km altitude compared to the control runs. The O_x change in this case closely fol-
 428 lows that of HO_x : at altitudes between ~ 77 and ~ 83 km, the O_x concentration reduces by
 429 more than $\sim 3\%$ and the maximum reduction is approximately 5% at 79 km altitude.

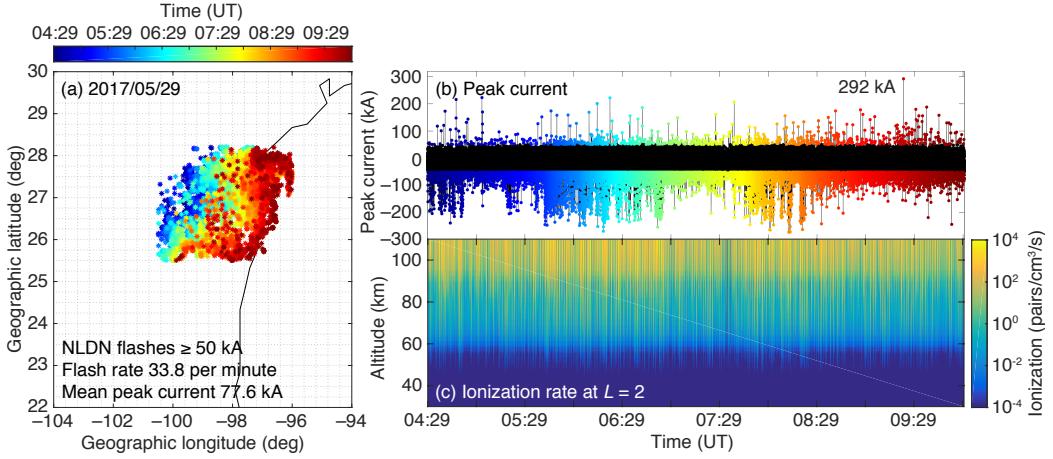


Figure 7. Similar to Figure 3, but for the NLDN-reported lightning flashes near 27.3°N , 98.3°W between 04:29 and 09:59 UT on May 29, 2017.

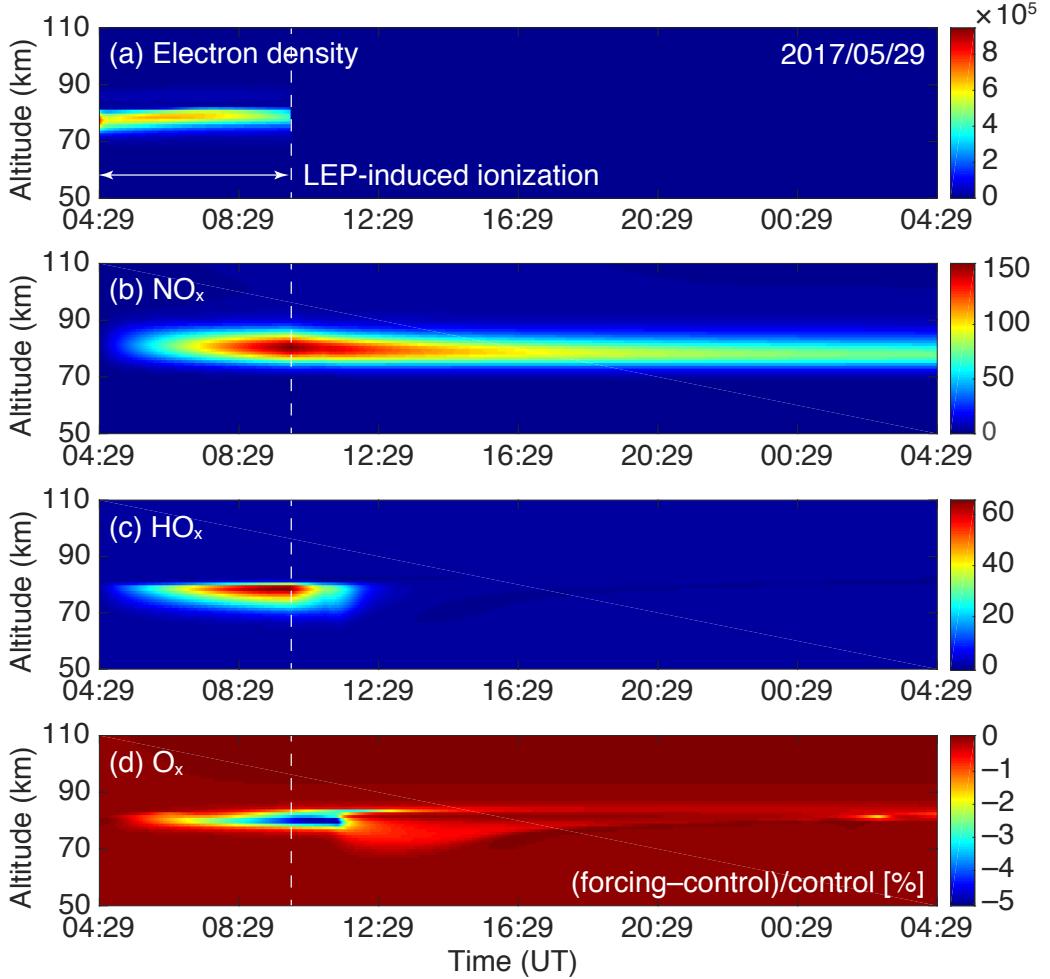


Figure 8. Similar to Figure 4, but for the NLDN-reported lightning flashes near 27.3°N , 98.3°W between 04:29 and 09:59 UT on May 29, 2017. Sunrise time: 11:42:58 UT.

434 4 Conclusion and Discussion

435 In this study, using a suite of well-validated LEP and atmospheric ionization models,
 436 we have calculated the precipitation fluxes and ionization production by lightning flashes at
 437 different magnetic latitudes. Case studies for three intense storms in the years from 2013 to
 438 2017 at magnetic latitudes of 30° – 50° are performed using NLDN-reported lightning data.
 439 Using SIC modeling of atmospheric changes, we have further quantified the relative changes
 440 in the electron, NO_x , HO_x , and O_x concentration due to the LEP events in these storms.

441 Because of LEP-induced ionization, the NO_x and HO_x concentration at altitudes be-
 442 tween 75 and 85 km is enhanced by up to $\sim 156\%$ and $\sim 66\%$, respectively, during these storms.
 443 The maximum reduction in ozone concentration is approximately 5%, as driven by the cat-
 444 alytic reaction cycles of HO_x . These atmospheric changes are one order of magnitude larger
 445 than those suggested by Rodger *et al.* [2007], mainly because of the variation in lightning
 446 flash rate and thunderstorm intensity. The mean LEP ionization production used by Rodger
 447 *et al.* [2007] was calculated using a mean precipitation energy flux of 2×10^{-3} ergs/cm 2 /s
 448 [Rodger *et al.*, 2005], as required to explain Faraday Trimpi measurements. The chemical
 449 simulation of Rodger *et al.* [2007] was conducted using the Trimpi events observed at the
 450 Faraday station on April 14, 1994, corresponding to a Trimpi rate of 3.3 events per minute.
 451 However, as shown in section 3, the NLDN-reported lightning peak current and flash rate for
 452 the three storms reported herein are orders of magnitude higher.

453 We emphasize that the three storms investigated in this study do not represent the most
 454 intense cases on a global scale, albeit stronger than majority of the thunderstorm activity in
 455 North America. According to space-borne measurements of lightning activity, north and
 456 central Argentina is the region that hosts the most intense convective storms on the Earth
 457 [e.g., Houze *et al.*, 2015]. As outlined above, the atmospheric effects are positively related
 458 with the intensity of thunderstorm activity, and it is conceivable that the chemical effects of
 459 Argentinian storms could be even more dramatic. On the other hand, Argentinian storms
 460 occur at low magnetic latitudes, corresponding to the inner radiation belt, where the available
 461 fluxes of electrons for precipitation may be lower.

462 The main findings of our study are not contradictory to those of Rodger *et al.* [2007],
 463 but more complementary. The main difference between the ionization calculation of Rodger
 464 *et al.* [2007] and Marshall *et al.* [2019a] is that Rodger *et al.* [2007] modeled LEP events in
 465 the ducted case, while Marshall *et al.* [2019a] modeled the LEP process in the nonducted
 466 case due to multiple magnetospheric reflections; the energy and pitch angle distribution of
 467 LEP fluxes are different. The main focus of Rodger *et al.* [2007] is the average LEP effects
 468 produced by lightning discharge at high magnetic latitude, while this study mainly focuses
 469 on the LEP effects at relatively lower latitudes and in extreme cases, which have not been
 470 previously investigated. This study represents the first step of a series of studies towards bet-
 471 ter understanding on the atmospheric chemical effects brought by LEP. The main goal is to
 472 evaluate the immediate effects produced by LEP against other known ionization sources. The
 473 next-step study is to quantify the indirect effects produced by LEP events using a 3D global
 474 circulation model. Future studies can also aim at comparing the chemical effects reported in
 475 this study with ground- and/or space-based measurements.

476 A 5% ozone depletion at 75–85 km altitude is comparable to that brought by other EEP
 477 processes, for example, microburst precipitation [Seppälä *et al.*, 2018], EMIC-driven elec-
 478 tron precipitation [Hendry *et al.*, 2021], as well as pulsating auroras [Turunen *et al.*, 2016].
 479 Compared to other types of energetic particle precipitation (EPP), a single LEP event is
 480 considerably shorter in duration and lower in precipitation fluxes. LEP produced by a 100-
 481 kA lightning discharge has a peak energy flux ranging from 10^{-2} [Peter and Inan, 2007] to
 482 10^{-1} ergs/cm 2 /s [Marshall *et al.*, 2019a], while typical values for the precipitation flux as-
 483 sociated with visible aurora are 0.1–10 ergs/cm 2 /s [Meng, 1976; Rees, 1992]. Nevertheless,
 484 with thousands of lightning flashes repetitively occurring within a short time window of a

485 few hours, i.e., an intense thunderstorm, the cumulative effects are pronounced, and the ion-
486 ization production and chemical changes become accordingly amplified.

487 An O_x change of several percent is more significant than it appears since the occur-
488 rence rate of LEP events globally is overwhelmingly higher than other EPP processes. The
489 global lightning flash rate ranges from several tens to one hundred per second [Rakov, 2016],
490 although not all flashes are sufficiently charged to give rise to radiation belt precipitation.
491 Using Trimpi measurements, a representative value of the mean LEP rate at the Faraday sta-
492 tion was found to be 0.79 per minute [Rodger *et al.*, 2004]. Rodger *et al.* [2003] have fur-
493 ther estimated the global LEP rate using lightning observation data. An average value was
494 suggested to be 0.18, 0.29, and 0.35 per minute at the L value of 2.4, 2, and 1.7, respec-
495 tively. These values however, as noted by the authors, should only be considered as the lower
496 bounds [Rodger *et al.*, 2003] since not all LEP events cause significant VLF changes, due to
497 the interference of waveguide modes and the nonlinear relation between the electron density
498 enhancement and VLF perturbation.

499 As in the 1D chemical simulation, the ozone reduction is mainly due to the immedi-
500 ate effects of HO_x variation. Because of self-dissociation, HO_x has a relatively short lifetime
501 and its effects on the ozone concentration are highly localized in space and time [Turunen
502 *et al.*, 2016]. Andersson *et al.* [2014b] have shown that the global distribution of nighttime
503 OH is mostly influenced by EEP events at high latitudes, whereas lightning discharge and
504 associated LEP event occur more frequently at low latitudes. As such, the ozone reduction
505 due to HO_x changes produced by LEP events could be insignificant. Present results show
506 that, due to LEP ionization, the NO_x concentration could be enhanced by as high as $\sim 156\%$
507 in the mesosphere, but their effects on the ozone layer are not captured by the present chem-
508 istry simulation. In the context of LEP events, the NO_x effects could become even greater
509 than what is predicted in the present study for a single thunderstorm if we take the global oc-
510 currence rate into account, although lightning activity tends to be more intense and frequent
511 during summer times at low- and mid-latitude regions [Sousa, 2018]. From this considera-
512 tion, the long-term global chemical effects of LEP events may be potentially important, but
513 have been largely overlooked in previous studies.

514 To quantify these effects, the ionization results presented in Figure 2 can be rescaled
515 using the lightning peak current reported by real time lightning-monitoring network, for ex-
516 ample, the World Wide Lightning Location Network (WWLLN) [Dowden *et al.*, 2002]. The
517 lightning data can be converted into altitude profiles of ionization production by LEP events,
518 and then incorporated into global atmospheric chemistry and transport models such as the
519 Whole Atmosphere Community Climate Model (WACCM) [Verronen *et al.*, 2016]. Future
520 studies can thereby take the latitudinal and seasonal variation of thunderstorm activity into
521 account, and aim at assessing the long-term global chemical effects produced by LEPs.

522 Acknowledgments

523 This research was supported by the NSF MAG award #AGS1732359. The work of
524 A. Kero is funded by the Tenure Track Project in Radio Science at Sodankylä Geophysical
525 Observatory/University of Oulu. We sincerely thank Vaisala Inc. for providing the NLDN
526 data. The simulation data and analysis codes used to generate all figures and results in this
527 paper are available at <https://doi.org/10.5281/zenodo.4599480>.

528 References

529 Andersson, M., P. Verronen, C. Rodger, M. Clilverd, and A. Seppälä (2014a), Missing driver
530 in the Sun–Earth connection from energetic electron precipitation impacts mesospheric
531 ozone, *Nature communications*, 5, 5197.
532 Andersson, M. E., P. T. Verronen, C. J. Rodger, M. A. Clilverd, and S. Wang (2014b), Longi-
533 tudinal hotspots in the mesospheric OH variations due to energetic electron precipitation,

534 *Atmospheric Chemistry and Physics*, *14*(2), 1095–1105.

535 Blake, J. B., U. S. Inan, M. Walt, T. F. Bell, J. Bortnik, D. L. Chenette, and H. J. Christian
536 (2001), Lightning-induced energetic electron flux enhancements in the drift loss cone, *J.*
537 *Geophys. Res.*, *106*(A12), 29,733–29,744.

538 Bortnik, J. (2004), Precipitation of radiation belt electrons by lightning-generated magneto-
539 spherically reflecting whistler waves, Ph.D. thesis, Stanford University.

540 Bortnik, J., U. S. Inan, and T. F. Bell (2006a), Temporal signatures of radiation belt electron
541 precipitation induced by lightning generated MR whistler waves. Part 1: Methodology, *J.*
542 *Geophys. Res.*, *111*, A02204, doi:10.1029/2005JA011182.

543 Bortnik, J., U. S. Inan, and T. F. Bell (2006b), Temporal signatures of radiation belt electron
544 precipitation induced by lightning-generated MR whistler waves: 2. Global signatures, *J.*
545 *Geophys. Res.*, *111*, A02,205.

546 Claudepierre, S. G., Q. Ma, J. Bortnik, T. P. O'Brien, J. F. Fennell, and J. B. Blake
547 (2020a), Empirically estimated electron lifetimes in the Earth's radiation belts:
548 Comparison with theory, *Geophys. Res. Lett.*, *47*(3), e2019GL086,056, doi:
549 <https://doi.org/10.1029/2019GL086056>.

550 Claudepierre, S. G., Q. Ma, J. Bortnik, T. P. O'Brien, J. F. Fennell, and J. B. Blake
551 (2020b), Empirically Estimated Electron Lifetimes in the Earth's Radiation Belts:
552 Van Allen Probe Observations, *Geophys. Res. Lett.*, *47*(3), e2019GL086,053, doi:
553 <https://doi.org/10.1029/2019GL086053>.

554 Clilverd, M. A., D. Nunn, S. J. Lev-Tov, U. S. Inan, R. L. Dowden, C. J. Rodger, and A. J.
555 Smith (2002), Determining the size of lightning-induced electron precipitation paths, *J.*
556 *Geophys. Res.*, *107*(A8), 1168, doi:10.1029/2001JA000301.

557 Clilverd, M. A., C. J. Rodger, and D. Nunn (2004), Radiation belt electron pre-
558 cipitation fluxes associated with lightning, *J. Geophys. Res.*, *109*, A12208, doi:
559 10.1029/2004JA010644.

560 Clilverd, M. A., C. J. Rodger, T. Ulich, A. Seppälä, E. Turunen, A. Botman, and N. R. Thom-
561 son (2005), Modeling a large solar proton event in the southern polar atmosphere, *Journal*
562 *of Geophysical Research: Space Physics*, *110*, A09307.

563 Cotts, B. R. T. (2011), Global quantification of lightning-induced electron precipitation using
564 very low frequency remote sensing, Ph.D. thesis, Stanford University.

565 Cummins, K. L., E. P. Krider, and M. D. Malone (1998), The US national lightning detection
566 networkTM and applications of cloud-to-ground lightning data by electric power utilities,
567 *IEEE Trans. on Electr. Comp.*, *40*, 465–480, doi:10.1109/15.736207.

568 Dowden, R. L., J. B. Brundell, and C. J. Rodger (2002), VLF lightning location by time of
569 group arrival (TOGA) at multiple sites, *Journal of Atmospheric and Solar-Terrestrial*
570 *Physics*, *64*(7), 817–830.

571 Dungey, J. (1963), Loss of Van Allen electrons due to whistlers, *Planetary and Space Sci-
572 ence*, *11*(6), 591–595.

573 Fang, X., C. E. Randall, D. Lummerzheim, W. Wang, G. Lu, S. C. Solomon, and R. A.
574 Frahm (2010), Parameterization of monoenergetic electron impact ionization, *Geophys.*
575 *Res. Lett.*, *37*, L22106.

576 Glukhov, V. S., V. P. Pasko, and U. S. Inan (1992), Relaxation of transient lower ionospheric
577 disturbances caused by lightning-whistler-induced electron precipitation bursts, *J. Geophys.*
578 *Res.*, *97*(A11), 16,971–16,979.

579 Golden, D. I., M. Spasojevic, F. R. Foust, N. G. Lehtinen, N. P. Meredith, and U. S. Inan
580 (2010), Role of the plasmapause in dictating the ground accessibility of ELF/VLF chorus,
581 *J. Geophys Res.*, *115*, A11211.

582 Graf, K. L., M. Spasojevic, R. A. Marshall, N. G. Lehtinen, F. R. Foust, and U. S. Inan
583 (2013a), Extended lateral heating of the nighttime ionosphere by ground-based VLF trans-
584 mitters, *J. Geophys. Res.*, *118*(12), 7783–7797, doi:<https://doi.org/10.1002/2013JA019337>.

585 Graf, K. L., N. G. Lehtinen, M. Spasojevic, M. B. Cohen, R. A. Marshall, and U. S. Inan
586 (2013b), Analysis of experimentally-validated trans-ionospheric attenuation estimates of
587 VLF signals, *J. Geophys. Res.*, *118*(5), 2708–2720, doi:<https://doi.org/10.1002/jgra.50228>.

588 Helliwell, R. A. (1965), *Whistlers and Related Ionospheric Phenomena*, Stanford University
589 Press.

590 Helliwell, R. A., J. P. Katsufrakis, and M. Trimpf (1973), Whistler-induced amplitude pertur-
591 bation in VLF propagation, *J. Geophys. Res.*, 78(22), 4679–4688.

592 Hendry, A. T., A. Seppälä, C. J. Rodger, and M. A. Clilverd (2021), Impact of EMIC-wave
593 driven electron precipitation on the radiation belts and the atmosphere, *Journal of Geo-
594 physical Research: Space Physics*, p. e2020JA028671, doi:10.1029/2020JA028671.

595 Houze, R. A., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik (2015), The variable na-
596 ture of convection in the tropics and subtropics: A legacy of 16 years of the tropical rain-
597 fall measuring mission satellite, *Reviews of Geophysics*, 53(3), 994–1021.

598 Inan, U. S. (1977), Non-linear gyroresonant interactions of energetic particles and coherent
599 VLF waves in the magnetosphere, Ph.D. thesis, stanford university.

600 Inan, U. S., and D. L. Carpenter (1986), On the correlation of whistlers and associated
601 subionospheric VLF/LF perturbations, *J. Geophys. Res.*, 91(A3), 3106–3116.

602 Inan, U. S., and D. L. Carpenter (1987), Lightning-induced electron precipitation events ob-
603 served at L=2.4 as phase and amplitude perturbations on subionospheric VLF signals, *J.
604 Geophys. Res.*, 92(A4), 3293–3303.

605 Inan, U. S., D. L. Carpenter, R. A. Helliwell, and J. P. Katsufrakis (1985), Subionospheric
606 VLF/LF phase perturbations produced by lightning-whistler induced particle precipitation,
607 *J. Geophys. Res.*, 90(A8), 7457–7469.

608 Inan, U. S., D. Piddyachiy, W. B. Peter, J. A. Sauvaud, and M. Parrot (2007), DEMETER
609 satellite observations of lightning-induced electron precipitation, *Geophys. Res. Lett.*,
610 34(7), L07103, doi:<https://doi.org/10.1029/2006GL029238>.

611 Inan, U. S., S. A. Cummer, and R. A. Marshall (2010), A survey of ELF and VLF research
612 on lightning-ionosphere interactions and causative discharges, *J. Geophys Res.*, 115,
613 A00E36, doi:10.1029/2009JA014775.

614 Johnson, M. P., U. S. Inan, S. J. Lev-Tov, and T. F. Bell (1999), Scattering pattern of
615 lightning-induced ionospheric disturbances associated with early/fast VLF events, *Geo-
616 phys. Res. Lett.*, 26(15), 2363–2366.

617 Lauben, D. S., U. S. Inan, and T. F. Bell (1999), Poleward-displaced electron precipitation
618 from lightning-generated oblique whistlers, *Geophys. Res. Lett.*, 26(16), 2633–2636.

619 Lehtinen, N. G., and U. S. Inan (2007), Possible persistent ionization caused by giant blue
620 jets, *Geophys. Res. Lett.*, 34, L08804, doi:10.1029/2006GL029051.

621 Lehtinen, N. G., T. F. Bell, and U. S. Inan (1999), Monte Carlo simulation of runaway MeV
622 electron breakdown with application to red sprites and terrestrial gamma ray flashes, *J.
623 Geophys. Res.*, 104(A11), 24,699–24,712.

624 Lohrey, B., and A. B. Kaiser (1979), Whistler-induced anomalies in VLF propagation, *J.
625 Geophys. Res.*, 84(A9), 5121–5130.

626 Marshall, R., W. Xu, A. Sousa, M. McCarthy, and R. Millan (2019a), X-ray signatures of
627 lightning-induced electron precipitation, *Journal of Geophysical Research: Space Physics*,
628 124(12), 10,230–10,245.

629 Marshall, R. A. (2012), An improved model of the lightning electromagnetic field
630 interaction with the D-region ionosphere, *J. Geophys Res.*, 117, A03316, doi:
631 <https://doi.org/10.1029/2011JA017408>.

632 Marshall, R. A., U. S. Inan, and V. S. Glukhov (2010), Elves and associated electron density
633 changes due to cloud-to-ground and in-cloud lightning discharges, *J. Geophys. Res.*, 115,
634 A00E17, doi:10.1029/2009JA014469.

635 Marshall, R. A., W. Xu, A. Kero, R. Kabirzadeh, and E. Sanchez (2019b), Atmospheric ef-
636 fects of a relativistic electron beam injected from above: chemistry, electrodynamics, and
637 radio scattering, *Frontiers in Astronomy and Space Sciences*, 6, 6.

638 Marshall, R. A., W. Xu, T. Woods, C. Cully, A. Jaynes, C. Randall, D. Baker, M. McCarthy,
639 H. E. Spence, G. Berland, et al. (2020), The AEPEX mission: Imaging energetic particle
640 precipitation in the atmosphere through its bremsstrahlung X-ray signatures, *Advances in
641 Space Research*, 66(1), 66–82.

642 Meng, C. (1976), Simultaneous observations of low-energy electron precipitation and optical
643 auroral arcs in the evening sector by the DMSP 32 satellite, *J. Geophys. Res.*, *81*, 2771–
644 2785.

645 Pasko, V. P., U. S. Inan, T. F. Bell, and Y. N. Taranenko (1997), Sprites produced by quasi-
646 electrostatic heating and ionization in the lower ionosphere, *J. Geophys. Res.*, *102*(A3),
647 4529–4561.

648 Peter, W. B. (2007), Quantitative measurement of lightning-induced electron precipitation
649 using VLF remote sensing, Ph.D. thesis, Stanford University.

650 Peter, W. B., and U. S. Inan (2007), A quantitative comparison of lightning-induced elec-
651 tron precipitation and VLF signal perturbations, *J. Geophys. Res.*, *112*, A12212, doi:
652 10.1029/2006JA012165.

653 Rakov, V. A. (2016), *Fundamentals of lightning*, Cambridge University Press.

654 Randall, C. E., V. L. Harvey, C. S. Singleton, S. M. Bailey, P. F. Bernath, M. Codrescu,
655 H. Nakajima, and J. M. Russell III (2007), Energetic particle precipitation effects on the
656 southern hemisphere stratosphere in 1992–2005, *J. Geophys. Res.*, *112*(D8), D08308, doi:
657 <https://doi.org/10.1029/2006JD007696>.

658 Rees, M. H. (1992), Auroral energy deposition rate, *Planet. Space Sci.*, *40*(2/3), 299–313.

659 Rodger, C. J. (2003), Subionospheric VLF perturbations associated with lightning dis-
660 charges, *J. Atmos. Solar-Terr. Phys.*, *65*(5), 591–606.

661 Rodger, C. J., M. A. Clilverd, and R. J. McCormick (2003), Significance of lightning-
662 generated whistlers to inner radiation belt electron lifetimes, *J. Geophys. Res.*, *108*, 1462,
663 doi:<https://doi.org/10.1029/2003JA009906>.

664 Rodger, C. J., R. J. McCormick, and M. A. Clilverd (2004), Testing the importance of pre-
665 cipitation loss mechanisms in the inner radiation belt, *Geophys. Res. Lett.*, *31*, L10803,
666 doi:<https://doi.org/10.1029/2004GL019501>.

667 Rodger, C. J., M. A. Clilverd, N. R. Thomson, D. Nunn, and J. Lichtenberger (2005), Light-
668 ning driven inner radiation belt energy deposition into the atmosphere: regional and global
669 estimates, *Ann. Geophys.*, *23*, 3419–3430.

670 Rodger, C. J., C.-F. Enell, E. Turunen, M. A. Clilverd, N. R. Thomson, and P. T. Verronen
671 (2007), Lightning-driven inner radiation belt energy deposition into the atmosphere: im-
672 plications for ionisation-levels and neutral chemistry, *Ann. Geophys.*, *25*(8), 1745–1757,
673 doi:10.5194/angeo-25-1745-2007.

674 Rusch, D., J.-C. Gérard, S. Solomon, P. Crutzen, and G. Reid (1981), The effect of particle
675 precipitation events on the neutral and ion chemistry of the middle atmosphere—I. odd ni-
676 tragen, *Planetary and Space Science*, *29*(7), 767–774, doi:[http://dx.doi.org/10.1016/0032-0633\(81\)90048-9](http://dx.doi.org/10.1016/0032-0633(81)90048-9).

678 Rycroft, M. J. (1973), Enhanced energetic electron intensities at 100 km altitude and a
679 whistler propagating through the plasmasphere, *Planet. Space. Sci.*, *21*(2), 239–251.

680 Seppälä, A., E. Douma, C. J. Rodger, P. T. Verronen, M. A. Clilverd, and J. Bortnik (2018),
681 Relativistic electron microburst events: Modeling the atmospheric impact, *Geophys. Res.
682 Lett.*, *45*(2), 1141–1147.

683 Sinnhuber, M., H. Nieder, and N. Wieters (2012), Energetic particle precipitation and the
684 chemistry of the mesosphere/lower thermosphere, *Surveys in Geophysics*, *33*(6), 1281–
685 1334.

686 Solomon, S., D. Rusch, J. Gérard, G. Reid, and P. Crutzen (1981), The effect of particle pre-
687 cipitation events on the neutral and ion chemistry of the middle atmosphere: II. odd hy-
688 drogen, *Planetary and Space Science*, *29*(8), 885–893, doi:[http://dx.doi.org/10.1016/0032-0633\(81\)90078-7](http://dx.doi.org/10.1016/0032-0633(81)90078-7).

689 Sousa, A. P. (2018), Global and seasonal effects of lightning-induced electron precipitation,
690 Ph.D. thesis, Stanford University.

691 Stolzenburg, M. (1994), Observations of high ground flash densities of positive lightning in
692 summertime thunderstorms, *Monthly weather review*, *122*(8), 1740–1750.

693 Thébault, E., et al. (2015), International geomagnetic reference field: the 12th generation,
694 *Earth, Planets and Space*, *67*(1), 1–19.

696 Thorne, R. M. (1980), The importance of energetic particle precipitation on the chemical
697 composition of the middle atmosphere, *pure and applied geophysics*, 118(1), 128–151.

698 Tobiska, W. K., and S. D. Bouwer (2006), New developments in solar2000 for space research
699 and operations, *Adv. Space Res.*, 37, 347–358, doi:10.1016/j.asr.2005.08.015.

700 Turunen, E., H. Matveinen, J. Tolvanen, and H. Ranta (1996), D-region ion chemistry model,
701 in *STEP Handbook of Ionospheric Models*, edited by R. W. Schunk, pp. 1–25, SCOSTEP
702 Secretariat, Boulder, Colorado.

703 Turunen, E., P. T. Verronen, A. Seppälä, C. J. Rodger, M. A. Clilverd, J. Tamminen, C.-F.
704 Enell, and T. Ulich (2009), Impact of different energies of precipitating particles on NO_x
705 generation in the middle and upper atmosphere during geomagnetic storms, *Journal of*
706 *Atmospheric and Solar-Terrestrial Physics*, 71(10), 1176–1189.

707 Turunen, E., A. Kero, P. T. Verronen, Y. Miyoshi, S.-I. Oyama, and S. Saito (2016), Meso-
708 spheric ozone destruction by high-energy electron precipitation associated with pulsating
709 aurora, *Journal of Geophysical Research: Atmospheres*, 121(19), 11,852–11,861, doi:
710 <https://doi.org/10.1002/2016JD025015>.

711 Verronen, P. T. (2006), Ionosphere-atmosphere interaction during solar proton events, Ph.D.
712 thesis, Univ. of Helsinki, Helsinki, Finland.

713 Verronen, P. T., A. Seppälä, M. A. Clilverd, C. J. Rodger, E. Kyrölä, C.-F. Enell,
714 T. Ulich, and E. Turunen (2005), Diurnal variation of ozone depletion during the
715 October–November 2003 solar proton events, *J. Geophys. Res.*, 110, A09S32, doi:
716 10.1029/2004JA010932.

717 Verronen, P. T., M. E. Andersson, D. R. Marsh, T. Kovacs, and J. M. C. Plane (2016),
718 WACCM-D—Whole Atmosphere Community Climate Model with D-region ion chem-
719 istry, *J. Adv. Modeling Earth Sys.*, 8(2), 945–975.

720 Vette, J. I. (1991), The AE-8 trapped electron model environment, *Tech. Rep. 24*, National
721 Space Science Data Center (NSSDC) World Data Center A for Rockets and Satellites
722 (WDC-A-R&S).

723 Voss, H. D., W. L. Imhof, M. Walt, J. Mobilia, E. E. Gaines, J. B. Reagan, and U. S. Inan
724 (1984), Lightning induced electron precipitation, *Nature*, 312, 740–742.

725 Voss, H. D., M. Walt, W. L. Imhof, J. Mobilia, and U. S. Inan (1998), Satellite observations
726 of lightning-induced electron precipitation, *J. Geophys. Res.*, 103, 11,725–11,744.

727 Xu, W., and R. A. Marshall (2019), Characteristics of Energetic Electron Precipitation Es-
728 timated from Simulated Bremsstrahlung X-ray Distributions, *Journal of Geophysical Re-*
729 *search: Space Physics*, 124(4), 2831–2843.

730 Xu, W., R. A. Marshall, X. Fang, E. Turunen, and A. Kero (2018), On the effects of
731 bremsstrahlung radiation during energetic electron precipitation, *Geophys. Res. Lett.*, 45,
732 1167–1176.

733 Xu, W., R. A. Marshall, A. Kero, E. Turunen, D. Drob, J. Sojka, and D. Rice (2019), VLF
734 measurements and modeling of the D-region response to the 2017 total solar eclipse, *IEEE*
735 *Transactions on Geoscience and Remote Sensing*, 57(10), 7613–7622.

736 Xu, W., R. A. Marshall, H. N. Tyssøy, and X. Fang (2020), A Generalized Method for Calcu-
737 lating Atmospheric Ionization by Energetic Electron Precipitation, *Journal of Geophysical*
738 *Research: Space Physics*, 125(11), e2020JA028,482.