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Abstract

The use of pessimism, when reasoning about datasets lacking exhaustive explo-
ration, has recently gained prominence in offline reinforcement learning. Despite
the robustness it adds to the algorithm, overly pessimistic reasoning can be equally
damaging in precluding the discovery of good policies, which is an issue for the
popular bonus-based pessimism. In this paper, we introduce the notion of Bellman-
consistent pessimism for general function approximation: instead of calculating
a point-wise lower bound for the value function, we implement pessimism at the
initial state over the set of functions consistent with the Bellman equations. Our the-
oretical guarantees only require Bellman closedness as standard in the exploratory
setting, in which case bonus-based pessimism fails to provide guarantees. Even
in the special case of linear function approximation where stronger expressivity
assumptions hold, our result improves upon a recent bonus-based approach byO(d)
in its sample complexity when the action space is finite and small. Remarkably, our
algorithms automatically adapt to the best bias-variance tradeoff in the hindsight,
whereas most prior approaches require tuning extra hyperparameters a priori.

1 Introduction

Using past experiences to learn improved behavior for future interactions is a critical capability for a
Reinforcement Learning (RL) agent. However, robustly extrapolating knowledge from a historical
dataset for sequential decision making is highly challenging, particularly in settings where function
approximation is employed to generalize across related observations. In this paper, we provide a
systematic treatment of such scenarios with general function approximation, and devise algorithms
that can provably leverage an arbitrary historical dataset to discover the policy that obtains the largest
guaranteed rewards, amongst all possible scenarios consistent with the dataset.

The problem of learning a good policy from historical datasets, typically called batch or offline RL,
has a long history [see e.g., Precup et al., 2000; Antos et al., 2008; Levine et al., 2020, and references
therein]. Many prior works [e.g., Precup et al., 2000; Antos et al., 2008; Chen and Jiang, 2019]
make the so-called coverage assumptions on the dataset, requiring the dataset to contain any possible
state, action pair or trajectory with a lower bounded probability. These assumptions are evidently
prohibitive in practice, particularly for problems with large state and/or action spaces. Furthermore,
the methods developed under these assumptions routinely display unstable behaviors such as lack
of convergence or error amplification, when coverage assumptions are violated [Wang et al., 2020,
2021].
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Driven by these instabilities, a growing body of recent literature has pursued a so-called best effort
style of guarantee instead. The key idea is to replace the stringent assumptions on the dataset with a
dataset-dependent performance bound, which gracefully degrades from guaranteeing a near-optimal
policy under standard coverage assumptions to offering no improvement over the data collection
policy in the most degenerate case. Algorithmically, these works all leverage the principle of
pessimistic extrapolation from offline data and aim to maximize the rewards the trained agent would
obtain in the worst possible MDP that is consistent with the observed dataset. These methods have
been shown to be typically more robust to the violation of coverage assumptions in practice, and their
theoretical guarantees often provide non-trivial conclusions in settings where the previous results did
not apply.

Even though many such best-effort methods have now been developed, very few works provide
a comprehensive theory for using generic function approximation, unlike the setting where the
dataset satisfies the coverage assumptions [Antos et al., 2008; Munos, 2003; Szepesvári and Munos,
2005; Munos and Szepesvári, 2008; Farahmand et al., 2010; Chen and Jiang, 2019; Xie and Jiang,
2020]. For example, [Kidambi et al., 2020] provides a partial theory under the assumption of an
uncertainty quantification oracle, which however is highly nontrivial to obtain for general function
approximation. [Fujimoto et al., 2019; Kumar et al., 2020] develop sound theoretical arguments in
the tabular setting, which were only heuristically extended to the function approximation setting. The
works that explicitly consider function approximation in their design either use an ad-hoc truncation
of Bellman backups [Liu et al., 2020] or strongly rely on particular parameterizations such as linear
function approximation [Jin et al., 2021]. In particular, [Liu et al., 2020] additionally requires the
ability to approximate stationary distribution of the behavior policy, which is a challenging density
estimation problem for complex state spaces and cannot be provably performed in the standard linear
MDP setting (see Section 3.1).

Our paper takes an important step in this direction. We provide a systematic way to encode pessimism
compatible with an arbitrary function approximation class and MDP and give strong theoretical
guarantees without requiring any coverage assumptions on the dataset. Our first contribution is an
information theoretic algorithm that returns a policy with a small regret to any comparator policy, for
which coverage assumptions (approximately) hold with respect to the data collection policy. This
regret bound is identical to what can be typically obtained when the coverage assumptions hold for all
policies [Antos et al., 2008; Chen and Jiang, 2019]. But our algorithm requires neither the coverage
assumptions, nor additional assumptions such as reliable density estimation for the data generating
distribution used by existing best-effort approaches [Liu et al., 2020]. We furthermore instantiate
these results in the special case of linear parameterization; under the linear MDP assumption, our
sample complexity bound leads to a factor of O(d) improvement for a d-dimensional linear MDP,
compared with the best known result translated to our discounted setting [Jin et al., 2021], when
the action set is small in size. In addition to the information theoretic algorithm, we also develop
a computationally practical version of our algorithm using a Lagrangian relaxation combined with
recent advances in soft policy iteration [Even-Dar et al., 2009; Geist et al., 2019; Agarwal et al., 2019].
We show that this algorithm can be executed efficiently by querying a (regularized) loss minimization
oracle over the value function class, although it has slightly worse theoretical guarantees than the
information theoretic version. Both our algorithms display an adaptive property in selecting the best
possible form of a bias-variance decomposition, where most prior approaches had to commit to a
particular point through their choice of hyperparameters (see the discussion following Theorem 3.1).

2 Preliminaries

Markov Decision Processes We consider dynamical systems modeled as Markov Decision Pro-
cesses (MDPs). An MDP is specified by (S,A, P,R, γ, s0), where S is the state space, A is the
action space, P : S × A → ∆(S) is the transition function with ∆(·) being the probability sim-
plex, R : S × A → [0, Rmax] is the reward function, γ ∈ [0, 1) is the discount factor, and s0

is a deterministic initial state, which is without loss of generality. We assume the state and the
action spaces are finite but can be arbitrarily large. A (stochastic) policy π : S → ∆(A) spec-
ifies a decision-making strategy, and induces a random trajectory s0, a0, r0, s1, a1, r1, . . ., where
at ∼ π(·|st), rt = R(st, at), st+1 ∼ P (·|st, at), ∀t ≥ 0. We denote the expected discounted return
of a policy π as J(π) := E[

∑∞
t=0 γ

trt|π], and the learning goal is to find the maximizer of this
value: π? := argmaxπ J(π). A related concept is the policy-specific Q-function, Qπ : S ×A → R.
Qπ(s, a) is the discounted return when the trajectory starts with (s, a) and all remaining actions
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are taken according to π. Qπ is the unique fixed point of the (policy-specific) Bellman operator
T π : RS×A → RS×A, defined as:

∀f, (T πf)(s, a) = R(s, a) + γEs′∼P (·|s,a)[f(s′, π)],

where f(s′, π) is a shorthand for Ea′∼π(·|s′)[f(s′, a′)].

Another important concept is the notion of discounted state-action occupancy, dπ ∈ ∆(S × A),
defined as dπ(s, a) := (1 − γ)E[

∑∞
t=0 γ

t1[st = s, at = a]|π], which characterizes the states and
actions visited by a policy π.

Offline RL In the offline setting, the learner only has access to a pre-collected dataset and cannot
directly interact with the environment. We assume the standard i.i.d. data generation protocol in our
theoretical derivations, that the offline dataset D consists of n i.i.d. (s, a, r, s′) tuples generated as
(s, a) ∼ µ, r = R(s, a), s′ ∼ P (·|s, a) for some data distribution µ. We will also use Eµ[·] for taking
expectation with respect to µ. We will frequently use the data-weighted 2-norm (squared) ‖f‖22,µ :=

Eµ[f2], and the definition extends when we replace µ with any other state-action distribution ν. The
empirical approximation of ‖f‖22,µ is ‖f‖22,D := 1

n

∑
(s,a,r,s′)∈D f(s, a)2.

Function Approximation Function approximation is crucial to generalizing over large and
complex state and action spaces. In this work, we search for a good policy in a policy class
Π ⊂ (S → ∆(A)) with the help of a value-function class F ⊂ (S × A → [0, Vmax]) to model
Qπ, where Vmax = Rmax/(1− γ). Such a combination is commonly found in approximate policy
iteration and actor-critic algorithms [e.g., Bertsekas and Tsitsiklis, 1996; Konda and Tsitsiklis, 2000].
For most part of the paper we do not make any structural assumptions on Π and F , making our
approach and guarantees applicable to generic function approximators. For simplicity we will assume
that these function classes are finite but exponentially large, and use log-cardinality to measure their
statistical complexities in the generic results (Section 3 and Section 4). These guarantees easily
extend to continuous function classes where log-cardinalities are replaced by the appropriate notions
of covering numbers, which we demonstrate when we instantiate our results in the linear function
approximation setting and work with continuous linear classes (Section 3.1).

We now recall two standard expressivity assumptions on F [e.g., Antos et al., 2008]. To our
knowledge, no existing works on offline RL with insufficient data coverage have provided guarantees
under these standard assumptions for general function approximation, and they often require stronger
or tweaked assumptions (see Section 1).
Assumption 1 (Realizability). For any π ∈ Π, we have

inf
f∈F

sup
admissible ν

‖f − T πf‖22,ν ≤ εF ,

where an admissible distribution ν means that ν ∈ {dπ′ : π′ ∈ Π}.

Assumption 1 requires that for every π ∈ Π, there exists f ∈ F that well-approximates Qπ. This
assumption is often called realizability.1 Technically this is asserted by requiring f to have small
Bellman error w.r.t. T π under all possible admissible distributions. As a sufficient condition, we have
εF = 0 if Qπ ∈ F , ∀π ∈ Π.
Assumption 2 (Completeness). For any π ∈ Π, we have

sup
f∈F

inf
f ′∈F

‖f ′ − T πf‖22,µ ≤ εF,F .

Assumption 2 asserts that F is approximately closed under T π .2 Such an assumption is widely used
in RL theory and can be only avoided in some rare cases [Xie and Jiang, 2021], and the hardness of
learning with realizability alone has been established in various settings (e.g., [Weisz et al., 2021;
Zanette, 2021]). We also emphasize that we only measure the violation of completeness under µ and
do not need to reason about all admissible distributions.

1In the exploratory setting, realizability is usually stated in the form of inff∈F ‖f − T πf‖22,µ ≤ εF for
any π ∈ Π. However, the exploratory setting also usually has data coverage assumptions in the form of
supν ‖ν/µ‖∞ ≤ C. Combining them together implies Assumption 1.

2Sometimes completeness implies realizability, so the latter does not need to be assumed separately [Chen
and Jiang, 2019]. However, this often relies on µ being exploratory, which is not the case here.
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Distribution shift A unique challenge in RL is that the learned policy may induce a state (and
action) distribution that is different from the data distribution µ, and the issue is particularly salient
when we do not impose any coverage assumption on µ. Therefore, it is important to carefully
characterize the distribution shift, which we measure using the following definition, which generalizes
prior definitions specific to linear function approximation [Agarwal et al., 2019; Duan et al., 2020]:
Definition 1. We define C (ν;µ,F , π) as follows to measure the distribution shift from an arbitrary
distribution ν to the data distribution µ, w.r.t. F and π,

C (ν;µ,F , π) := max
f∈F

‖f − T πf‖22,ν
‖f − T πf‖22,µ

.

Intuitively, C (ν;µ,F , π) measures how well Bellman errors under π transfer between the distribu-
tions ν and µ. For instance, a small value of C (dπ;µ,F , π) enables accurate policy evaluation for π
using data collected under µ. More generally, we observe that

C (ν;µ,F , π) ≤ ‖ν/µ‖∞ := sup
s,a

ν(s, a)

µ(s, a)
, for any π, F .

and the RHS is a classical notion of bounded distribution ratio for error transfer (e.g., [Munos and
Szepesvári, 2008; Chen and Jiang, 2019; Xie and Jiang, 2020]). Moreover, our measure can be
tighter than ‖ν/µ‖∞: Even two distributions ν and µ that are sufficiently disparate might admit a
reasonable transfer, so long as this difference is not detected by π and F . To this end, our definition
better captures the crucial role of function approximation in generalizing across different states. As
an example, in the special case of linear MDPs, full coverage under our definition (i.e., boundedness
of C for all admissible ν) can be implied from the standard coverage assumption for linear MDPs
that considers the spectrum of the feature covariance matrix under µ; see Section 3.1 for more details.

3 Information-Theoretic Results with Bellman-consistent Pessimism

In this section, we provide our first theoretical result which is information-theoretic, in that it uses a
computationally inefficient algorithm. The approach uses the offline dataset to first compute a lower
bound on the value of each policy π ∈ Π, and then returns the policy with the highest pessimistic
value estimate. While this high-level template is at the heart of many recent approaches [e.g., Fujimoto
et al., 2019; Kumar et al., 2019; Liu et al., 2020; Kidambi et al., 2020; Yu et al., 2020; Kumar et al.,
2020], our main novelty is in the design and analysis of Bellman-consistent pessimism for general
function approximation.
For a policy π, we first form a version space of all the functions f ∈ F which have a small Bellman
error under the evaluation operator T π . We then return the predicted value of π in the initial state s0

by the functions in this version space. The use of pessimism at the initial state, while maintaining
Bellman consistency (by virtue of having a small Bellman error) limits over pessimism, which is
harder to preclude in the pointwise pessimistic penalties used in some other works [Jin et al., 2021].
More formally, given a dataset D, let us define

L(f ′, f, π;D) :=
1

n

∑
(s,a,r,s′)∈D

(f ′(s, a)− r − γf(s′, π))
2
,

and an empirical estimate of the Bellman error E(f, π;D) is
E(f, π;D) := L(f, f, π;D)− min

f ′∈F
L(f ′, f, π;D). (3.1)

Our algorithm. With this notation, our information-theoretic approach finds a policy by optimizing:
π̂ = argmax

π∈Π
min
f∈Fπ,ε

f(s0, π), where Fπ,ε = {f ∈ F : E(f, π;D) ≤ ε}, (3.2)

In the formulation above, Fπ,ε is the version space of policy π. To better understand the intuition
behind the estimator in Equation 3.2, let us define
fπ,min := argmin

f∈Fπ,ε
f(s0, π), fπ,max := argmax

f∈Fπ,ε
f(s0, π), and ∆fπ(s, a) := fπ,max(s, a)−fπ,min(s, a).

Intuitively, if the parameter ε is defined to ensure that Qπ (or its best approximation in F ) is in Fπ,ε,
we easily see that ∆fπ(s0, π) is an upper bound on the error in our estimate of J(π) for any π ∈ Π.
In fact, an easy argument in our analysis shows that if Qπ ∈ Fπ,ε for all π ∈ Π, then ∆f(s0, π) is an
upper bound on the regret J(π)− J(π̂) of our estimator relative to any π we wish to compete with.
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Theoretical analysis. To leverage this observation, we first define the a critical threshold εr which
ensures that (the best approximation of) Qπ is indeed contained in our version spaces for all π:

εr :=
139V 2

max log |F||Π|δ

n
+ 39εF . (3.3)

With this definition, we now give a more refined bound on the regret of our algorithm (3.2) by further
splitting the error estimate ∆fπ(s0, π) which is random owing to its dependence on the version space,
and analyze it through a novel decomposition into on-support and off-support components. While
we bound the on-support error using standard techniques, the off-support error is akin to a bias term
which captures the interplay between the data collection distribution and function approximation in
the quality of the final solution. Also note that our choice of εr requires the knowledge of εF , which
is a common characteristic of version-space-based algorithms [e.g., Jiang et al., 2017]. The challenge
of unknown εF can be possibly addressed using model-selection techniques in practice and we leave
further investigation to future work.

Theorem 3.1. Let ε = εr where is εr defined in Eq.(3.3) and π̂ be obtained by Eq.(3.2). Then, for
any policy π ∈ Π and any constant C2 ≥ 1, with probability at least 1− δ,

J(π)− J(π̂) ≤ O

Vmax

√
C2

1− γ

√
log |F||Π|δ

n
+

√
C2(εF,F + εF )

1− γ


︸ ︷︷ ︸

erron(π): on-support error

+
1

1− γ
· min
ν:C (ν;µ,F,π)≤C2

∑
(s,a)∈S×A

(dπ \ ν)(s, a) [∆fπ(s, a)− (T π∆fπ)(s, a)]

︸ ︷︷ ︸
erroff (π): off-support error

,

where C (ν;µ,F , π) is defined in Definition 1 and (dπ \ ν)(s, a) := max(dπ(s, a)− ν(s, a), 0).

𝜇

𝑑𝜋

max d𝜋/𝜇 ≈ 3.7

max d𝜋/𝜇 ≈ 25.8

Figure 1: An example illustrating dif-
ferent on-support and off-support split-
tings (denoted by two different vertical
lines). Different splitting has different
C2 values, and further yields different
bias-variance trade-offs.

Bias-variance decomposition. Note that decomposi-
tion of our error bound into on-support and off-support
parts effectively achieves a bias-variance tradeoff. A small
value of the concentrability threshold C2 requires the
choice of the distribution ν closer to µ, which results
in better estimation error guarantee (which is O(

√
C2/n))

when we transfer from µ to ν, but potentially pays a high
bias due to the mismatch between dπ and ν. A larger
threshold permits more flexibility in choosing ν similar
to dπ for a smaller bias, but results in a larger variance
and estimation error. Rather than commit to a particular
tradeoff, our estimator automatically adapts to the best
possible splitting (Figure 1 illustrates this concept) by al-
lowing us to choose the best threshold C2. The on-support
part matches the n rate (fast rate error bound) of API or
AVI analysis (e.g., [Pires and Szepesvári, 2012; Lazaric et al., 2012; Chen and Jiang, 2019]). The
dependency on horizon is only linear and matches the best previous result with concentrability
assumption [Xie and Jiang, 2020]. For the off-support part, it depends on the off-support mass dπ \ ν
and the “quality” of the off-support estimation: if all value functions in the version space are close to
each other in the off-support region for policy π, the gap between J(π) and J(π̂) can still be small
even with a large off-support mass. The following corollary formally states this property.

Corollary 1 (“Double Robustness”). Under conditions of Theorem 3.1, for any π and C2 ≥ 0,
erroff(π) = 0 when either (1) C (dπ;µ,F , π) ≤ C2, or, (2) ∆fπ − T π∆fπ ≡ 0.

Adaptive guarantees by algorithm design. As mentioned above, Theorem 3.1 implicitly selects
the best bias-variance decomposition through the best choice of C2 in hindsight, with this decom-
position being purely a proof technique, not an knob in the algorithm. In contrast, many prior
approaches [Liu et al., 2020; Fujimoto et al., 2019; Kumar et al., 2019] employ explicit thresholds
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to control density ratios in their algorithms, which makes the tradeoff a hyperparameter in their
algorithms. Since choosing hyperparameters is particularly challenging in offline RL, where even
policy evaluation can be unreliable, this novel axis of adaptivity is an extremely desirable property of
our approach.

Comparison to guarantees in the exploratory setting. When a dataset with full coverage is given,
classical analyses provide near-optimality guarantees that compete with the optimal policy π? with
a polynomial sample complexity, when π? ∈ Π and both realizability and completeness hold for
F ; see [Antos et al., 2008] for a representative analysis. As mentioned earlier, such analysis often
requires boundedness of ‖ν/µ‖∞ for all admissible distributions ν ∈ {dπ : π ∈ Π}. On the other
hand, it is easily seen that we can compete with π? under much weaker conditions.
Corollary 2 (Competing with optimal policy). Under conditions of Theorem 3.1, if
C (dπ? ;µ,F , π?) ≤ C2, we have

J(π?)− J(π̂) ≤ O

Vmax

√
C2

1− γ

√
log |F||Π|δ

n
+

√
C2(εF,F + εF )

1− γ

 .

Notably, these milder coverage assumptions in Corollaries 1 and 2 provide offline RL counterparts
to the benefits of policy-gradient-style methods with online access to the environment [Kakade and
Langford, 2002; Scherrer, 2014; Agarwal et al., 2019].

Comparison with Liu et al. [2020]. The closest prior result to our work is that of [Liu et al.,
2020], who develop a pessimistic estimator that truncates Bellman backups from state-action pairs
infrequently visited by µ, and analyzes the resulting pessimistic policy and value iteration algorithms
under general function approximation. For truncating Bellman backups, however, their work requires
estimating the state-action distribution of data, which can be challenging in high-dimensions and
they incur additional errors from density estimation which we avoid. Further, their algorithms only
compete with policies π where ‖dπ/µ‖∞ is bounded instead of the more general result that we
provide, and makes their results vacuous in a linear MDP setting under typical feature coverage
assumptions.

Safe Policy Improvement. Some prior works [e.g. Laroche et al., 2019; Liu et al., 2020] discuss
the scenario where the datasetD is collected with a behavior policy πb with µ = dπb , and demonstrate
that their algorithms always return a policy competitive with πb. In our setup, this is straightforward
as dπb is always covered, as shown next.
Corollary 3 (Bounded degradation from behavior policy). Under conditions of Theorem 3.1, if
µ = dπb for some policy πb ∈ Π, we have

J(πb)− J(π̂) ≤ O

 Vmax

1− γ

√
log |F||Π|δ

n
+

√
εF,F + εF

1− γ

 .

Proof sketch of Theorem 3.1. We now briefly describe the core ideas in the proof. More detailed
arguments are deferred to the full proof in Appendix B.1.

The key to prove Theorem 3.1 is to translate the J(π)− J(π̂) to the Bellman error of value functions
in the version space Fπ,ε. Our main proving strategies are as follows:

1. As the selection of ε = εr ensures the accurate estimation Qπ is contained in the version space
Fπ̂,ε for any π, we can obtain J(π) − J(π̂) ≤ maxf∈Fπ,ε f(s0, π) − minf∈Fπ̂,ε f(s0, π̂) +
approximation error.

2. By the optimality of π̂, we have minf∈Fπ̂,ε f(s0, π̂) ≥ minf∈Fπ,ε f(s0, π). This indicates that
J(π)− J(π̂) ≤ maxf∈Fπ,ε f(s0, π)−minf∈Fπ,ε f(s0, π) + approximation error.

3. By using a standard telescoping argument (e.g., [Xie and Jiang, 2020, Lemma 1]),
maxf∈Fπ,ε f(s0, π) − minf∈Fπ,ε f(s0, π) can be upper bounded by the Bellman error of
argmaxf∈Fπ,ε f(s0, π) and argminf∈Fπ,ε f(s0, π) over distribution dπ .

After combining all the three steps above together and considering the distribution shift effect, we
complete the proof.
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3.1 Results for Linear Function Approximation

Here we perform a case study in linear function approximation. We will show that our results—when
instantiated under linear function approximation (with realizability and completeness assumptions)—
automatically provides state-of-the-art guarantees, improving over existing results specialized to this
setting by a factor of O(d) [Jin et al., 2021] when the action space is finite and small.

We recall the linear function approximation setup (we set Rmax = 1 and Vmax = 1
1−γ for consistency

with literature).

Definition 2 (Linear Function Approximation). Let φ : S ×A → Rd be a feature mapping. Without
loss of generality, we assume ‖φ(s, a)‖2 ≤ 1, ∀(s, a) ∈ S ×A. We define the value-function class
FΦ as FΦ := {φ(·, ·)Tθ : θ ∈ Rd, φ(·, ·)Tθ ∈ [0, Vmax]}, and the policy class ΠΦ consists of the
greedy policies of each value function in FΦ.

Assumption 3 (Realizability and Completeness). εF,F = εF = 0.

Note that, when the feature mapping φ(·, ·) is the one induced by the linear MDP [Jin et al., 2020], it
automatically ensure that π? ∈ ΠΦ and FΦ satisfies Assumptions 3. In contrast, we highlight that
the standard linear function approximation or linear MDP setup does not entail all the assumptions
needed by Liu et al. [2020] as mentioned earlier.

Below is our main result in the linear function approximation setting.

Theorem 3.2. Suppose the value-function class F is a linear function class that satisfies realizability
and completeness (Definition 2 and Assumption 3) and π̂ is the output of Eq.(3.2) using value-
function class FΦ and policy class ΠΦ. If we choose ε = cV 2

maxd log Vmax|A|d
δ /n, then, for any

policy π : S → ∆(A), we have

J(π)− J(π̂) ≤ O

 Vmax

1− γ

√
d log Vmax|A|d

δ

n
Edπ

[√
φ(s, a)TΣ−1

D φ(s, a)

] ,

where c is an absolute constant, and ΣD := ED
[
φ(s, a)φ(s, a)T

]
.

The detailed proof of Theorem 3.2 is provided in Appendix B.2. Our guarantee is structurally very
similar to that of Jin et al. [2021, Theorem 4.4], except that we only need linear function approximation
with realizability and completeness assumptions, and they consider the finite-horizon linear MDP
setting. If we translate their result to the discounted setting by setting H = O(1/(1− γ)), we enjoy
a net improvement of order O(d) in sample complexity when the action space is finite and small. To
make it concrete, that is O(

√
d2 log(dn/δ)/n) vs. O(

√
d log(d|A|/δ)/n) error bounds. The bound also

shows that having a full-rank ΣD (which is ensured by a full-rank covariance under µ) is sufficient
for consistent offline RL in linear function approximation. Crucially, the full-rank covariance is an
easily checkable condition on data, as opposed to unverifiable concentrability assumptions. As a
caveat, our results do not imply a computationally efficient algorithm, as a naïve implementation
involves evaluating each policy pessimistically to pick the best. We discuss a computationally efficient
adaptation of our approach in the next section.

4 Practical Algorithm — Regularized Offline Policy Optimization

A major challenge using the proposed algorithm in Section 3 in practice is that searching the policy
with the best pessimistic evaluation over the policy space Π is not computationally tractable. In
this section, we present a practical algorithm that is computationally efficient assuming access to a
(regularized) loss minimization oracle over the value function class F , and also comes with rigorous
theoretical guarantees.

Our practical algorithm is summarized in Algorithm 1. It has three key differences from the
information-theoretic version in Eq.(3.2):

1. The pessimistic policy evaluation is now performed via regularization (Line 3) instead of con-
strained optimization.
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Algorithm 1 PSPI: Pessimistic Soft Policy Iteration
Input: Batch data D, regularization coefficient λ.

1: Initialize policy π1 as the uniform policy.
2: for t = 1, 2, . . . , T do
3: Obtain the pessimistic estimation for πt as ft,

ft ← argmin
f∈F

(f(s0, πt) + λE(f, πt;D)) , (4.1)

where E(f, πt;D) is defined in Eq.(3.1).
4: Calculate πt+1 by,

πt+1(a|s) ∝ πt(a|s) exp (ηft(s, a)) , ∀s, a ∈ S ×A.

5: end for
6: Output π̄ := Unif(π[1:T ]). . uniformly mix π1, . . . , πT at the trajectory level

2. Instead of searching over an explicit policy space Π, we search over a policy class implicitly
induced from F (defined in Eq.(4.2)) and therefore no longer have a policy class independent of
F separately, which is a common practice in API-style algorithms [Munos, 2003; Antos et al.,
2008; Lazaric et al., 2012].

3. We optimize the policy using mirror descent updates, which yields computationally tractable
optimization over the implicit policy class. This property has been leveraged in many prior works,
although typically in online RL settings [Even-Dar et al., 2009; Agarwal et al., 2019; Geist et al.,
2019; Cai et al., 2020; Shani et al., 2020].

Note that the use of a specific policy class above can be relaxed if a stronger structural assumption is
made on the MDP (e.g., linear MDPs [Jin et al., 2020, 2021]).

4.1 Analysis of Algorithm 1

We now provide the analysis of Algorithm 1 in this section. For ease of presentation, we formally
define the implicit policy class for this section:

ΠSPI := {π′(·|s) ∝ exp(η
t∑
i=1

f (t)(s, ·)) : 1 ≤ t ≤ T, f (1), . . . , f (i) ∈ F}, (4.2)

which is the natural policy class for soft policy-iteration approaches. The following theorem describes
the performance guarantee of π̄.

Theorem 4.1. Let λ = 3
√
Vmax/(1−γ)2ε2r with εr in Eq.(3.3), η =

√
log |A|

2V 2
maxT

, and π̄ be obtained from
Algorithm 1. For any policy π : S → ∆(A) we wish to compete with, suppose Assumptions 1 and 2
hold with respect to the policy class ΠSPI ∪ {π}. Then, for any constant C2 ≥ 1, we have with
probability at least 1− δ,

J(π)− J(π̄)

≤ O

√C2

√εF,F + εF
1− γ

+
Vmax

1− γ
3

√
T log |F|δ

n
+ 3

√
VmaxεF
(1− γ)2


︸ ︷︷ ︸

erron(π): on-support error

+O

(
Vmax

1− γ

√
log |A|
T

)
︸ ︷︷ ︸

optimization error

+
1

T

T∑
t=1

 min
ν:C (ν;µ,F,πt)≤C2

∣∣∣∣∣∣
∑

(s,a)∈S×A

(dπ \ ν)(s, a) [ft(s, a)− (T πtft)(s, a)]

∣∣∣∣∣∣


︸ ︷︷ ︸
erroff (π): off-support error

,

where C (ν;µ,F , πt) is defined in Definition 1, (dπ \ ν)(s, a) := max(dπ(s, a)− ν(s, a), 0).

We provide a proof sketch of Theorem 4.1 at the end of this section, and defer the full proof to
Appendix C. We now make a few remarks about the results in Theorem 4.1.
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Measurement of distribution shift effect. Compared with the information-theoretical result (pro-
vided in Theorem 3.1), the measurement of distribution shift in Theorem 4.1 depends on the optimiza-
tion trajectory. That is, it measures the distance between two distribution ν and µ by C (ν;µ,F , πt)
(π[1:T ] is the sequence of policies produced by the algorithm) whereas Theorem 3.1 uses C (ν;µ,F , π)
(π is the baseline policy we compete with). We remark that both of these two measurements are
weaker then traditional density-ratio definitions (e.g., [Munos and Szepesvári, 2008; Chen and Jiang,
2019; Xie and Jiang, 2020]) as we demonstrated before, as the dependence of C on π is relatively
secondary.

Dependence on T . The number of optimization rounds T affects the bound in two opposite ways:
as T increases, the optimization error term decreases, whereas the second term of the on-support
error increases. The latter increase is due to the complexity of the implicit policy class Π growing
exponentially with T , which affects our concentration bounds. To optimize the bound, the optimal
choice is T = O(n2/5), leading to an overall O(n−1/5) rate. While such a rate is relatively slow,
we remark that the complexity bound of Π is conservative, and in certain cases it is possible to
obtain much sharper bounds: for example, in linear function approximation (Section 3.1), ΠSPI are a
priori captured by the space of softmax policies, whose complexity has no dependence on T (up to
mild logarithmic dependence due to norms). That is, the erron(π) term in Theorem 4.1 reduces to
Õ(Vmax

1−γ
3
√
d/n) (εF,F = εF = 0 in linear function approximation), and yields an overall O(n−1/3)

rate.

Bias-variance decomposition. Similar to Theorem 3.1, Theorem 4.1 also allows arbitrary decom-
position of the error bound into on-support and off-support components by setting the concentrability
threshold C2, which serves as a bias-variance tradeoff as before. In fact, the splitting can be done
separately for each πt in 1 ≤ t ≤ T and we omit such flexibility for readability. The optimization
error does not depend on the splitting. Our performance guarantee naturally adapts to the best possible
decomposition as before. As in Theorem 3.1, if the estimation on the off-support region is “high-
quality”, we can further simplify the performance guarantees, but the requirement of “high-quality”
is different from that of Corollary 1. We make it formal in the following corollary.

Corollary 4 (“Double Robustness”). For any π and C2 ≥ 0, erroff(π) = 0 when either (1)
C (dπ;µ,F , πt) ≤ C2 for all t ∈ [T ], or, (2) ft − T πt∆ft ≡ 0 for all t ∈ [T ].

We note that the conditions above depend on the optimization trajectory through their dependence
on πt, but can be made algorithm-independent by instead asserting the stronger requirement that
C (dπ, µ,F , π′) ≤ C2 for all π′ ∈ ΠSPI in the first condition.

Competing with the optimal policy. As before, we can provide a guarantee for competing with
the optimal policy, under coverage assumptions weaker than the typical batch RL literature, albeit
slightly stronger than those of Corollary 2. We state the formal result below.

Corollary 5 (Competing with optimal policy). Under conditions of Theorem 4.1, if
C (dπ? ;µ,F , π) ≤ C2 for all π ∈ ΠSPI, we have

J(π?)− J(π̂) ≤ O

Vmax

√
C2

1− γ

(
log |F|δ log |A|

n

)1/5

+

√
C2(εF,F + εF )

1− γ

 .

Note that the conditions of Corollary 5 are satisfied as before whenever ‖dπ?/µ‖∞ ≤ C2.

Computationally-efficient implementation with linear function approximation We remark
that our algorithm is computationally efficient when the value-function class F is linear, that is,
F := {φ(·, ·)Tθ : θ ∈ Rd}. In this case, the objective of Eq.(4.1) has a closed-form expression
which is quadratic in θ. In addition, under additional matrix invertibility conditions, Eq.(4.1) has a
closed-form solution which generalizes LSTDQ [Lagoudakis and Parr, 2003; Sutton et al., 2009;
Dann et al., 2014]. A similar connection has been made by Antos et al. [2008], but our derivation is
more general. See Appendix Appendix D for further details.

We conclude the section with a proof sketch showing the key insights used in establishing the proof.
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Proof sketch of Theorem 4.1. Our proof constructs a corresponding MDPMt for every ft, πt pair.
EachMt has the same dynamics as the ground-truth MDP, but chooses a different reward function,
such that ft is the Q-function of πt in Mt, QπtMt

(we use the subscript of Mt to denote the
corresponding value or operator in MDPMt). Our proof relies on some key properties ofMt, such
as Qπ − T πMt

Qπ = ft − T πtft. We decompose J(π)− J(π̄) as follows.

J(π)− J(π̄) ≤ 1

T

T∑
t=1

(JMt
(π)− JMt

(πt))︸ ︷︷ ︸
optimization error

+
1

T

T∑
t=1

(J(π)− JMt
(π))︸ ︷︷ ︸

controlled by ‖Qπ−T πMt
Qπ‖2,dπ=‖ft−T πtft‖2,dπ

+ approximation/statistical errors.

The proof is completed by bounding ‖ft−T πtft‖2,dπ on both on-support and off-support regions.

5 Conclusions

This paper investigates sample-efficient offline reinforcement learning without data coverage assump-
tions (e.g., concentrability). To achieve that goal, our paper contributes several crucial improve-
ments to the literature. We introduce the concept of Bellman-consistent pessimism. It enables the
sample-efficient guarantees with only the Bellman-completeness assumption which is standard in the
exploratory setting, whereas the point-wise/bonus-based pessimism popularly adopted in the literature
usually requires stronger and/or extra assumptions. Algorithmically, we demonstrate how to implicitly
infer a policy value lower bound through a version space and provide a tractable implementation. A
particularly important aspect of our results is the ability to adapt to the best bias-variance tradeoff
in the hindsight, which no prior algorithms achieve to the best of our knowledge. When applying
our results in linear function approximation, we attain an O(d) improvement in sample complexity,
compared with the best-known recent work of offline RL in linear MDPs, whenever the action space
is finite and small.

As of limitations and future work, the sample complexity of our practical algorithm is worse than
that of the information-theoretic approach, and it will be interesting to close this gap. Another future
direction is to empirically evaluate PSPI on benchmarks and compare it to existing approaches.
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