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Abstract—Respiratory behavior is one of the important pa-
rameters that indicate any physiological changes in human body.
However, using a respiration sensor device for continuous moni-
toring is inconvenient and expensive. In this paper, an approach
to acquire the respiration signal from the wrist electrocardiogram
(ECG) is proposed. An analog front end (AFE) sampled at 100
Hz is used to collect ECG signals from the wrist to compute
and verify the corresponding heart rate (HR) with a commercial
ECG device. Signal processing mechanisms are applied on the
raw data to denoise the ECG signal. The captured ECG signal
is further processed to extract a breathing pattern to calculate a
respiration rate (RR) in breath per minute (BPM). The extracted
BPMs are compared with a commercial respiration monitor to
validate the data by following a protocol at 5 different BPMs
(12, 15, 20, 24 and 30). For each BPM, commercial respiration
monitor is validated at first. Then, data are taken simultaneously
wearing wrist electrodes and commercial respiratory device to
validate the performance of our proposed method at different
BPMs. The results indicate high accuracy of the proposed system
which is low-cost, simpler to implement, can be integrated with a
wearable device and remove the demand of any dedicated sensor
for RR measurements.

Index Terms—wearable, electrocardiogram, respiration rate,
signal processing, cyber physical system, mobile health

I. INTRODUCTION

Respiration signal is one of the important indications for any
physiological changes in human body. Accurate and efficient
estimation of respiration rate (RR) is a great concern in the sec-
tor of medical application. The respiratory system in a human
body delivers oxygen and takes carbon-di-oxide out to main-
tain the partial pressure of oxygen and carbon-di-oxide in the
arterial blood [1]. This breath-in and breath-out phenomenon
is termed as inhale and exhale phase respectively. Normal
breathing consists of a continuous and successive sequence of
inhale and exhale phases and occurs simultaneously with the
movement of thorax and abdomen [2]. There can be change in
RR due to any kind of physical activity or, illness. Normally,
an adult person can have a breathing rate between 12 to 20
breath per minute (bpm) [3]. Abnormality in breathing signal
may occur due to several reasons like, weak performance of
respiratory centers, taking drugs, metabolic inconsistency or
due to muscle weakness [2]. Abnormal breathing can mean
either slowness or fastness of breathing due to several fatal
diseases. Different diseases can result in the abnormal RR

such as obstructive sleep apnea (OSA), Chronic obstructive
pulmonary disease (COPD), bradypnea, hyperpnea, tachypnea.

Screening of respiratory signal without the direct use of any
breathing sensor can decrease the burden from patient’s body.
Extracting breathing signal from the subject’s ECG signal can
serve this purpose. It can be also advantageous in the sector
of mobile health monitoring. ECG signal is a representation
of changes in the physical activity of the heart muscle over
a period of time [4]. Standard placement of ECG electrodes
is already established to ensure accurate recording of bio-
potential activity around the heart muscle [5] - [6]. ECG
signal is generally affected by the electrode movement due
to respiratory and non-respiratory behavior [1]. This incident
is based on the changes in the orientation of the electrical
axis of heart with respect to the electrodes [7], which strongly
suggests the amplitude modulation of ECG signal due to
respiratory changes. Another way of deriving the RR from
ECG is based on the inspecting of frequency modulated ECG
caused by respiration activity [8]. The theory of the frequency
modulated ECG is based on the changes in heart rate (HR)
during the inhalation phase and decrease of the HR at the
time of exhalation phase. After several empirical studies, it is
observed that the variation in HR has followed approximately
the exact RR even after the pulmonary reflexes are removed
[9].

As respiratory changes contain important information of
physiological health, different wearable sensors have already
been developed to estimate RR and detect breathing patterns
[10]. Inertial measurement unit (IMU) is a popular sensor
for capturing the linear and angular motion [11] - [12]. This
feature can be implemented to acquire the breathing pattern by
attaching the IMU sensor on the thorax-abdomen [13].In some
cases, flexible respiration sensor based on inkjet printing (IJP)
technology has been developed that can offer certain amount
of flexibility [14]. Moreover, Doppler radar technique has also
been implemented to capture the breathing pattern remotely
[15]. Different algorithms for detection of breathing rate have
already been developed to capture breathing patterns with high
accuracy [16] - [18]. Several studies have been established to
measure the severity of illness caused by abnormal respiratory
behavior [19]. Application based on mobile health monitoring
has also been developed to find out the respiratory illness [20].
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Non-contact based respiratory analysis have been presented to
measure RR to benefit people specially, subjects with infec-
tious disease and infant [21]. Although, this technique does
not require any contact with patient, it limits the movement
of the subject to a certain area, which might not be practical.
However, wearables have the advantage of unlimited subject
movability. Ubiquitous smart phone based RR measurment
using accelerometer and gyrometer, is constructed where the
mobile device is placed on the subject’s chest [22]. The per-
formance of both accelerometer and gyrometer is affected by
user movements and vibration coming from the environment.
Moreover, placement of the mobile device in chest is less
user friendly for a subject. In [23], RR has been extracted
from chest ECG where the ECG electrodes were placed on a
soft clothing. In another work, a modified lead of precordial
lead V2 is implemented to extract RR from ECG signal
[24]. The modified lead is actually a bipolar surface electrode
which mimic the the analog V2 lead. In [25], RR is derived
from accelerometer attached at the subject’s wrist. We have
previously demonstrated respiration rate can be captured using
a single inertial measurement unit (IMU) [13].

This paper proposes a method to obtain respiratory signal
from an ECG signal using an analog front end. The analog
front end captures the electrical activity through the electrodes
attached at the wrists of right arm (RA) and left arm (LA).
These raw data are applied to a band-pass filter (BPF) to
remove the effect of baseline wandering. The filtered signals
are further processed through a derivative filter to improve
the signal to noise ratio (SNR) of the signal. Afterwards,
signals are squared and averaged. Then, adaptive threshold
based real time QRS detector is applied to locate the R peaks
of ECG signal. Fig. 1 represents a normal ECG signal denoting
different beats. After locations of corresponding R peaks
are detected, an spline interpolated curve fitting technique is
applied to construct a curve with the R peaks. From the fitted
curve, new peaks are detected. These new peaks indicate the
peaks formed due to consecutive inhalation and exhalation
phase of the respiratory system. The proposed method uses
ECG that are coming from wrist, which removes the need of
dedicated sensor for RR measurement. Also, single lead ECG
from wrist, makes the setup more user friendly. The proposed
device is light in weight and low cost. The proposed method
can detect RR over a wide range varying from 12 BPM to 30
BPM. The data are taken through a protocol and are compared
with commercially available devices to validate our result.

The paper organization is designed as follows. The section
2 gives overview of system design and architecture discussing
both the hardware specification and software implementation.
Section 3 discusses how the protocol is applied to validate the
data. In section 4, technical results of the proposed method
are presented. Finally section 5 discusses the conclusion.

II. SYSTEM DESIGN AND ARCHITECTURE

In this section, overall system overview is discussed. Also,
specification of corresponding hardware used along with soft-
ware implementation will be discussed.

Fig. 1. Different Beats of a normal ECG signal [26].

A. System Overview

Fig. 2. System overview of the proposed method (shown on left) and validated
with a respiration signal capture device (shown on right).

As shown in Fig. 2, AD 8232 is used as an analog front end
to capture the ECG signal. Electrodes are connected to RA,
LA and right leg (RL). Here, the RL is used for reference. Data
from AD 8232 is processed in a micro controller (uC). Raw
data from uC is then processed in MATLAB® environment.
The raw data goes through BPF and derivative filtering. Then
data are squared and averaged before locating the R peaks of
the ECG signal. An adaptive QRS detector has been applied
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to get the location of R peak in time domain. After that, spline
interpolation is done over the position of the R peaks. As a
result, there is a newly fitted curve. This curve represents the
breathing signal. To get the respiration rate, location of the
peaks of the newly formed breathing signal is detected. At the
same time, a commercial device Neulog respiration monitor
belt sensor (NUL 236) is used to capture the RR. The extracted
RR from ECG is compared with the RR coming from NUL
236 to validate the result.

B. Hardware Specification

The key hardware used in this work are, AD 8232, nRF
52840, AliveCor® and NUL-236. AD 8232 is used as an
AFE in the proposed work. AD 8232 is a popular AFE used for
ECG signal capturing [27]. It implements an instrumentational
amplifier(IA) to take input from electrodes. In this work,
electrodes were placed on the wrists of RA and LA. To
validate the HR obtained from AD 8232, a commercial ECG
capturing device AliveCor® is used, as shown in Fig. 3. The
user can observe the ECG data and know his HR from a
mobile device using AliveCor® portable device. nRF52840
is a Bluetooth low Energy (BLE) based system on chip(SoC)
solution [28]. It incorporates ARM-4 micro-processor. The
analog to digital converter (ADC) resolution is 12 bit in this
work. The analog signal from AD 8232 is sampled at a rate
of 100 Hz. NUL 236 is a commercially available respiration
monitor belt. It is attached at the abdominal region of the
subject. As consecutive phases of respiration goes on, there
are corresponding movements in the abdominal region. The
pressure of the belt changes with respect to the respiratory
behavior. As a result, NUL 236 gives respiration signal. The
raw data from NUL 236 is accessible in different format.

Fig. 3. Hardware setup of ECG data capture validation of AD 8232 against
AliveCor

As depicted in Fig. 4, NUL 236 is attached to abdominal
region of the subject and wrist electrodes are connected with

AD 8232 at the same time to take the data simultaneously.

Fig. 4. Hardware setup of validation of RR from ECG captured with AD
8232 against NUL 236

C. Software Implementation

A software code was developed and run on nRF 52840
to acquire raw ECG data from AD 8232 AFE. The code is
developed in segger embedded studio (SES). A direct memory
access module named as EASYDMA is implemented to gain
direct access to data RAM. The sampling rate is set as 100
samples per second. Sampling interval is applied through a
timer interrupt based method.

The raw data from nRF 52840 are further processed in
MATLAB® to extract the RR from ECG signal. At first, a
Butterworth BPF of order 3 is applied over the raw signal to
remove the baseline wandering from the data. The lower and
upper cut-off frequency of the BPF is set as 5 Hz and 15 Hz
respectively. Then a derivative filter is applied to improve the
SNR of the ECG signal. Then the filtered data are squared to
enhance the non-linear dominant peaks. After that, a moving
average filter of window size 30 is applied on the squared
data. Then an adaptive threshold based method is used to get
the position of the R peaks. This technique is beased on a
physiological point of view that, no consecutive R to R (RR)
peak can occur in less than 200 ms. The adaptive thresholding
works with set of thresholds which can automatically select
the range of samples where the QRS complex exists. In the
training phase, the initial threshold level of the signal is set
to 0.25 times the maximum amplitude and the threshold level
for the noise is set to 0.50 times the mean of the ECG signal.
For each training phase, a time period of 2s is taken into
account. As a new corresponding peak is detected the heart
rate is updated. The algorithm also checks back for error. The
time duration for check back error is set as 360 ms. If no
QRS complex is detected in 360 ms of the previous QRS
complex, then the method looks for possible T wave. The
condition set for identifying T wave checks whether the slope
of the waveform is less than 0.50 times the mean slope of
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the previous R wave. Consecutive detection phases produces
a pulse for each QRS complex. As soon as the R peaks are
located, the HR in beats per minute (BePM)can be calculated
using the following equation,

HR (BePM) = h Beats / (m /60minutes) (1)

Where, h denotes the number of beats in m seconds.
As the location of R peak is detected, an spline interpolated

curve is fitted over the R peaks of the ECG signal. This
fitted curve forms a breathing pattern. The extracted breathing
pattern is further analysed to detect the peaks. These peaks in-
dicate the peaks formed due to exhalation phase of respiration
system. RR is calculated by the number of peaks observed in
a 1 minute period of time. The following equation is used to
calculate the RR,

RR (BPM) = b Breath / (s /60minutes) (2)

Where, b indicates the number of breaths in s seconds.

III. PROTOCOL FOR DATA VALIDATION

To confirm whether the extracted RR from ECG data is
valid or not, the proposed method is checked through several
validation steps. The process consists of 3 main steps. 1st
step is taken to validate the data obtained by AD 8232 by
comparing it with AliveCor® commercial device. Fig. 5
represents the collected ECG data from AD 8232 for 30 s.

Fig. 5. Collected ECG data from AD 8232, (inset) Zoom in view of two
consecutive ECG beats

Once performance of AD 8232 is validated, 2nd step is
approached where, commercial sensor NUL 236 is validated.
To validate the performance of NUL 236, a specific protocol
has been applied. The purpose of the protocol is to ensure
a specific RR in a controlled fashion. The protocol is made
for a wide range of RR which are, 12, 15, 20, 24, 30 BPM.
To demonstrate how the protocol works, an example for 20
BPM is discussed here. For a RR of 20 BPM, there will be
20 inhalation and 20 exhalation phase during 1 minute time

period. As a result, there will be altogether 40 consecutive
breath-in and breath-out phases over a minute. A timely
controlled power point file is made which contains 40 slides,
where each slide moves to next slide spontaneously after every
1.5 seconds. Moreover, every slide comes with an instruction
whether to breath-in or exhale. A slide for breath-in is followed
by a slide for breath-out until it completes the 1 minute time
period. The same protocol is made for 12, 15, 24 and 30 BPMs
for 1 minute duration. Duration of each slide for 12, 15, 24
and 30 BPMs are set as 2.5 s, 2 s, 1.25 s and 1 s respectively.
Also, the number of total slides for 12, 15, 24 and 30 BPMs
are 24, 30, 48 and 60 slides respectively.

In 3rd step, ECG data from AD 8232 and respiration data
from NUL 236 are taken simultaneously. The same protocol
for 12, 15, 20, 24 and 30 BPMs are also followed in this step.
ECG data from AD 8232 is used to extract respiration signal.
If extracted RR matches with expected RR from protocol and
NUL 236, then data are verified. To make the data statistically
valid, 10 samples of data are taken for each BPMs.

IV. RESULTS

In this section, performance of the extracted RR (ExRR)
from AD 8232 is presented and compared with a commercial
respiration sensor NUL 236. Also, to validate the performance
of AD 8232, a commercial device AliveCor® is used to
compare with.

Fig. 6. Performance comparison of AD 8232 against AliveCor®

Fig. 6 shows the performance comparison of AD 8232 with
AliveCor®. A subject wears the setup as shown in Fig. 3. HR is
calculated by the ECG coming from AD 8232 using equation
(1). At the same time, data from AliveCor® is captured in a
mobile app. If both data matches, then there is no error. The
variation of ECG from AD 8232 over 10 samples of data is
presented in Fig. 6. It is seen that, the HR from AD 8232
ECG either matches exactly or closely matches with the HR
of AliveCor®.

Fig. 7 presents the performance of NUL 236 for different
BPMs. Respiration signal for different BPMs are taken using
the protocol. 10 samples of data are taken for 12, 15, 20, 24
and 30 BPM respectively. The main purpose of this step is
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to validate the performance of NUL 236 itself. The RR is
calculated using equation (2). If RR does not match with the
expected RR from protocol, then an error is considered.

Fig. 7. Respiration signal at different BPMs to validate the performance of
NUL 236

Fig. 8 represents the breathing signal which are obtained
after extraction from ECG of the subject. The similar protocol
is also maintained here for different BPMs. The obtained
breathing signal is processed through equation (2) to determine
the RR of those extracted signal. These RRs are compared with
the RRs obtained from NUL 236.

Fig. 8. Extracted respiration signal from the wrist ECG at different RRs

In Fig. 9, simultaneous acquisition of breathing signal from
NUL 236 and AD 8232 is presented. In this case, simultaneous
acquisition at 24 BPM rate is shown. Similar procedure is
implemented for all other BPMs with 10 samples of data for
each BPM.

Fig. 10 (a) and (b) shows the correlation plot for NUL
236 and simultaneous data acquisition of NUL 236 and ExRR
from AD 8232 respectively. 10 samples of data are taken for
every BPM. For example, for 20 BPM there is 10 samples
of data acquisition by maintaining the protocol. An error is
encountered if the experimental RR is not 20 BPM. The

Fig. 9. Simultaneous respiration signal using NUL 236 (red) compared with
the proposed ECG extracted RR (green).

corresponding errors are then averaged over the 10 samples.
Similar procedure is maintained for other BPMs. After that,
the experimental RR is plotted with respect to the actual RR.
As shown in Fig. 10(a), NUL 236 faces no error in data
acquisition. AS depicted in Fig. 10(b), performance of ExRR
from the the wrist ECG is well enough when data are taken
simultaneously while wearing the NUL 236.

Fig. 10. Correlation plots of (a) NUL-236, and (b) simultaneous data
acquisition of NUL-236 and ECG extracted RR.

Table 1 lists performances and errors for NUL 236 and
ExRR from AD 8232 at different BPMs. Data acquisition
process is completed by following the protocol strictly. For
each BPM, errors in estimated RR are also indicated.

TABLE I
PERFORMANCE OF EXRR FROM WRIST ECG AND NUL-236 FOR

DIFFERENT BPMS

Respiration

Rate

Number of Error (s), N = 10

Using

NUL-236

Simultaneous Data
Using

NUL -236

Using proposed

ExRR method
12 BPM 0 0 1 (13 BPM)
15 BPM 0 0 0
20 BPM 0 0 1 (21 BPM)
24 BPM 0 0 2 (25 & 25 BPM)
30 BPM 0 0 1 (29 BPM)
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V. CONCLUSION

A method to extract the breathing signal and RR from wrist
ECG is implemented in this work. An AFE device AD 8232
is used to capture the ECG signal from wrist. The method
to get ExRR is simple. AD 8232 performance is validated
by a commercial device AliveCor®. Commercial respiration
sensor NUL 236 is also verified by maintaining a protocol.
Finally, data are taken simultaneously by wearing NUL 236
and electrodes attached with AD 8232. ExRR is achieved and
validated with the NUL 236 at the same time. The performance
of the ExRR is promising that the proposed method can
be a convenient option for respiration behavior monitoring,
while eliminating the need for a dedicated respiration sensor.
This work demonstrates the potential of extracting RR from
ECG signals which can be useful for minimalistic modality
deployment for body signal monitoring. In future, we will
explore a flexible wearable ECG device that can compute both
body signals for health status monitoring applicable to Smart
Health (sHealth) framework.
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