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Abstract — A smart and connected communities (S&CC)
will utilize existing and emerging technologies to collect
heterogeneous spatiotemporally distributed data and artificial
intelligence (Al) to seamlessly generate meaningful knowledge
that will benefit both individuals and S&CC. We have
developed a framework for Health and Wellbeing of S&CC
that includes existing and emerging sensors for data collection
from users of the community, a custom smartphone app with
real-time Al algorithms for edge-computing, and a webserver
for spatiotemporal visualization of abstracted information for
community stakeholders. We propose to extend this
framework towards an enhanced Smart Health Integrated
Framework and Topology (SHIFT) through incorporating a
uniform hierarchical layer-based architecture for S&CC. The
proposed concept was simulated to depict data processing and
visualization approach. The proposed framework takes
advantage of evolving topology of smart sensors and devices,
in addition to being transferable and scalable.

Index Terms — Al, Edge computing, Mobile health, Privacy,
Scalable framework, Smart health, Spatiotemporal data.

I. INTRODUCTION

Mobile Health (mHealth) technology in the last few
decades has enabled an unprecedented capability in
individual health monitoring and interventions. This
transformational mHealth technology leverages data from
smartphones to supplement clinical diagnosis. However, by
incorporating new generation wearables, Internet of things
(IoT), and other smart infrastructures including 5G, there is
potential to gain further and novel insights into collective
health patterns and behaviors that can provide substantial
community benefits [1-3]. As communities are tied with
interlocking physical, social, economic, and infrastructural
challenges, the community health challenges need to be
addressed with newer vision and collaborative efforts that
must include stakeholders such as local, state, regional, and
national institutes. In addition to technology aspects, social
science aspects must be carefully considered as well. The
new technology will improve for 21st century smart and
connected community (S&CC), which will utilize existing
and emerging wearables and IoTs to collect heterogeneous
spatiotemporally distributed data and utilize embedded
computing to seamlessly generate meaningful knowledge
to benefit individuals and S&CC [4]. This can lead to
improved health and safety, efficient public infrastructure,
and better access to needed services.

Although mHealth technology is already tapping into

widely used smartphone infrastructure [5-7], the
community benefits of existing systems are severely
limited. Some issues are lack of health sensor modalities in
smartphones, homogeneity of software, ability to curate
heterogenous data, generate useful knowledge from
granular data, effective abstraction, and utilization of
curated data for spatiotemporal visualization and use of this
knowledge in decision making for the community.

In this paper, we propose a new uniform architecture for
smart health (sHealth), named “Smart Health Integrated
Framework and Topology (SHIFT)”. This framework, in
addition to preserving mHealth benefits for individuals to
self-monitor their own health indicators, extends to sHealth
by allowing participants to share individual health severity
data for spatiotemporal visualization for the benefit of the
community and other stakeholders towards sHealth. The
spatiotemporal visualization of community-wide health
data, which will be useful to abstractly and objectively
analyze health trends, disease outbreaks (e.g., COVID-19),
disease progression, and resource allocation.

II. DEVELOPED SHEALTH FRAMEWORK

We have previously developed and reported a S&CC
sHealth framework that includes multiple wearables and
sensors (e.g., inkjet-printed flexible body-wom electronic
sensors, smart wristbands, and smartphones) for data
collection in /iving labs (i.e., at homes of participants) and
real-time edge-computing Al algorithms implemented on a
custom smartphone app to compute a disease severity
metric related to a particular disease of interest [4,8,9]. We
have used the sensors and commercial wearables to collect
target disease related physiological signals, such as core
body temperature, ECG, heart rate, and pulse oximetry [10-
12]. We developed machine learning algorithms for target
diseases using several public-access datasets (e.g.,
PhysioNet, MIT-BIH, and NIH repositories). The
smartphone app (https://github.com/esarplab/) processes
the collected data to compute disease severity in real-time
using edge-computing technique [9]. We have also
developed feature extraction and classification algorithms
for several diseases including Obstructive Sleep Apnea
(OSA), Chronic Obstructive Pulmonary Disease (COPD),
flu, and arrhythmia severity detection algorithms [13-17].
In addition to feature extraction and ranking, we have
explored a variety of algorithms such as Linear Regression,
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Ensemble Regression, Artificial Neural Network (ANN),
Random Forest, Support Vector Machine (SVM),
Quadratic Discriminant Analysis (QDA), and Genetic
Algorithm (GA).

The developed algorithms were implemented on
smartphones to calculate a simple disease severity metrics
(which has a fraction values between 0 to 1 and represent
how well or worse the disease condition is compared to
normal condition of 0). Instead of True/False classification
as performed by most researchers, our algorithms compute
a continuous severity metric between 0 to 1, that represents
severity of the target disease. These severity metrics are
compared and correlated with the clinical severity class
descriptors (e.g., Normal, Mild, Moderate, Severe, Very
Severe). We have implemented the developed Al
algorithms in a custom Android smartphone app for real-
time processing at the edge.

Finally, smartphone-computed abstracted severity
metric can be sent (user elects) to the S&CC database in
JSON (JavaScript Object Notation) format [8]. The
computed severity shared by the participants with the
S&CC sHealth webserver (http:/sccmobilehealth.com/)
were utilized for temporal and spatial visualization of the
abstracted information of community-wide severity
metrices for community stakeholders. These data include
participant’s hash ID, grid code, severity metric, disease
type, date/time, and algorithm name. Data with temporal
(Graph or Flow) or spatial (Static or Animation) plots. A
heat map-like spatial domain visualization via Google Map
overlay with animation capability was also developed to
represent severity of health conditions at various arbitrary
grids of the community over time.

IIT. DESCRIPTION OF PROPOSED SHIFT PLATFORM
A. SHIFT architecture

The proposed framework (Fig. 1) will incorporate health-
related heterogeneous data from users that are naturally
spatially and temporally distributed and synchronous in
nature. It also incorporates hierarchical data abstraction
from users to community while preserving privacy. The
users can share their anonymized health severity data that
will allow community stakeholders to utilize the
spatiotemporal visualization for rapid action or policy
generation. The framework components are dissociated for
transferability and scalability. The composing components
can be categorized in four classes: (1) lightweight smart
devices composed of commercial and custom sensors for
seamlessly collecting health data from users, (2) edge
computing implementation using artificial intelligence (Al)
based algorithms for real-time computation, (3) smartphone
app to directly view current health status of the user, and
(4) a cloud infrastructure for storing, visualizing, and
analyzing shared community data for knowledge creation.
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The framework abstracts user data at the edge to provide
only the needed information (such as severity metric) to the
higher levels (e.g., spatiotemporal visualization), instead of
transmitting all of users' health data to server. This
approach reduces data payload by several orders of
magnitude. Furthermore, this allows ease of user's privacy
incorporation. This also disassociates the community data
pool from individual data processing at the edge, which
provides scope for modular sofiware development and
asynchronous communication similar to Open System
Interconnection (OSI) model of layered architecture used in
operating systems. The framework can incorporate multiple
disease severity algorithms that will be available in the
webserver for download by the users based on their
individual needs. Users at various communities might have
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Technological topologies of SHIFT.
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diverse needs. This will allow a user to download only the
relevant algorithms from the server without overburdening
and resource constraining the app. This topology further
allows periodic update of algorithms in the server and can
be updated by the users when suitable. This leaves options
for user and stakeholder rating of algorithms (similar to
App Store). The framework can be utilized further by
various Al developers to host their algorithms with
objective ratings towards a competitive and trustable Al
algorithm test environment.

The framework will also have visualization for
characterizing the spatiotemporal trends and abnormalities.
The visualization captures the key knowledge from
temporal and spatial heterogenous data that are fused for
meaningful interpretation. The webserver visualization can
highlight mismatches and unusual behavior. Unusual
behavior can be at the individual level, such as the sudden
increase in the severity of a disease, or at the community
level (such as outbreak of flu). The community level trends
are not detectable at individual level, thus depicting the
need for the proposed sHealth framework. Furthermore, the
stakeholders and decision-makers can use their domain
knowledge to identify various worsening health conditions,
abnormal disease explosions, or potentially harmful
episodes.
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B. SHIFT technological topologies

The technological topologies for SHIFT implementation
are shown in Fig. 2. There are four classes of technology
topology required for this implementation, which are: (a)
sensors and wearables, (b) real-time Al analysis at edge, (c)
interaction and intervention for users with a custom
smartphone app, and (d) a webserver for spatiotemporal
analysis and visualization of collected severity data. The
SHIFT platform integrates all of these technological
aspects under one uniform architecture for sHealth.

C. SHIFT deployment scenario

A deployment diagram of the SHIFT platform is given in
Fig. 3. During the Al algorithm development phase for the
target health conditions, we will need to identify suitable
and reliable public repositories with various physiological
datasets (e.g., PhysioNet, MIT-BIH) that closely matches
with the target disease health data. For edge computing
implementation, feature ranking process is recommended,
after which the best top features should be implemented in
the smartphone app. This approach allows reduced
complexity, resource requirement, and real-time execution
for edge computing, while providing satisfactory
classification performance such as accuracy, sensitivity,
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and specificity [17-19]. After the algorithm deployment
process with various Al technique, the best classifier can be
pre-compiled and implemented with optimal parameters.
This porting process can be performed with Tensor Flow,
or AutoML. Performances can be analyzed using cross
validation, accuracy, specificity, sensitivity, and latency.
The algorithm then will be kept available in the webserver
and can be downloaded by the users with the custom
smartphone app for SHIFT deployment. The developed
algorithms can thus be assessed and evaluated by the real-
life users and rated. These Al algorithms will be hosted in
the SHIFT webserver in dex format, which can be
downloaded to the user’s smartphone via the SHIFT
smartphone app as per need basis. This will allow update of
algorithms by various entities in an ongoing basis. In
addition, using various data correlates, episodes, and
identifiers of the targeted health conditions and
demographics, the app can also be used to send users useful
reminders and tips through prompts or notifications.
Finally, users will be allowed to elect to share their severity
data with the SHIFT server. Shared data from the custom
SHIFT smartphone app will be transmitted to the SHIFT
server securely and anonymously. These health data from
community members will be used for visualizations, such
as health trend models, hotspot detection, and behavior
pattern analysis.

IV. SIMULATION AND RESULTS

Simulink® software (Mathworks Inc.) was used for
proof-of-concept simulations of the SHIFT platform. Fig. 4
shows a setup of a user who utilizes a sensor to collect
health individual health data. This raw data is then
converted to disease severity data using an edge
implemented Al algorithm (e.g., in wearables or in
smartphone app). Note that this severity data needs to be
intuitive. We propose to use a fraction number between 0
to 1, where 0 indicates normal and 1 indicates extremely
severe. Through this process of severity computation at the
edge, the amount of data produced by the sensor will be
drastically reduced to the small amount of severity data.
This reduction is typically a few orders of magnitude lower.
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Fig.4.  Simulink SHIFT model of a user with a sensor and a
disease severity detection algorithm.

Fig.5. Simulink SHIFT model of 3 users with their
individual disease severity tracking (as in mHealth).

Thus, instead of transmitting raw data as done in most
mHealth or sHealth platforms, we will be transmitting the
severity data to SHIFT webserver which greatly reduces
data payload of wireless network, while being sufficient for
the higher levels of the proposed SHIFT architecture. In
fact, this abstraction is essential for large-scale deployment
of this type of system with a large number of community
participants using one or more sensor devices. This also
limits the user’s raw data to the edge, which is preferred by
vast amount of community members worried about privacy
and loss of control over personal data.

Fig. 5 shows 3 of these users (shown in Fig. 4) with
various levels of severity for an arbitrary disease within a
community. The severity values range from ~0.0 (User 1 —
indicating normal disease condition or no disease) to ~1.0
(User 3 — indicating severe disease condition). Although
each user has access to their own data and can monitor
individual disease trends over time, but none has access to
other users’ data or trends. Although this is still beneficial
to individuals (like in mHealth framework), this does not
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Fig.6. Simulink SHIFT model of spatiotemporal
visualization of collective community health based on user
shared disease severity data (extending for sHealth) using
temporal and spatial plots for S&CC.
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directly provide ability for community-wide monitoring,
analysis, and decision making required for sHealth. For this
purpose, users can elect to share anonymized severity data
that preserves privacy, but allows SHIFT webserver to track
community health. The effect is show in Fig. 6, that depicts
the aggregated results of these three users by sharing their
severity data (only) with the SHIFT webserver. The data
from the users now can be aggregated and shown in time
domain (like trend lines of all community members who
shared data) or in spatial domain (like heat map showing
which grid has more disease severity and which grid is
doing well). Data visualization over time will allow
monitoring spatiotemporal change of severity throughout
the community. Thus, the proposed framework can lead to
utilization of heterogeneous spatiotemporal data of the
community members for the benefit of the community and
stakeholders such as health-department, hospitals, non-
profit organizations, and policy makers.

V. CONCLUSION

The proposed “SHIFT” platform not only spans the
traditional mHealth domain, but rather extends the scope to
sHealth, enabling study of health impact on the city,
community, and society. It incorporates and integrates
health-related heterogeneous data that are spatially and
temporally distributed, as well as provides a hierarchical
data abstraction to allow community stakeholders to utilize
the visualization for rapid action or policy generation.
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