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Abstract—The use of sleep score as a measure of fitness and
wellness is getting popular in Smart Health as it provides an
objective assessment of sleep quality. However, reliable
estimation of sleep scores from wearable sensor data only is
challenging. In this study, we investigated the estimation of sleep
score using only features available from single-channel ECG or
single-channel EEG data. We used partial correlation and
conditional permutation importance for feature selection; then
compared extreme gradient boosting, artificial neural network,
and sequential neural network for developing a regression
model for sleep score estimation. TabNet- an attention-based
deep sequential learning model achieved the best performance
of RMSE = 5.47 and R-squared value of 0.59 in the test set for
sleep score estimation using only spectral features of single-
channel EEG. The results pave the way for reliable and
interpretable sleep score estimation using a wearable device.

Keywords-  Attention  Model, Electroencephalography,
Regression, Sleep Score, Smart Health, TabNet, Wearable Sensor

I. INTRODUCTION

Sleep is an important biological process and plays a key
role in restoring energy, solidifying and consolidating
memories, and repairing body cells. It also helps in
metabolism and cardiovascular function [1]. The regulation of
sleep is controlled by the circadian biological clock and
sleep/wake homeostasis. Good quality sleep is essential for
good health and improved quality of life. Poor sleep is linked
to depression, obesity, daytime drowsiness, less productivity,
and a greater risk of coronary artery disease and stroke [2-4].

Subjective assessment of sleep quality using standard
questionnaires is well investigated and is widely used in
clinical practice. Some of the well-accepted and popular
methods for subjective sleep quality assessment are-
Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness
Scale (ESS), and Functional Outcome of Sleep Questionnaire
(FOSQ). PSQI uses a 7 component questionnaire and the
subject assigns a score of 0-3 for each component [5]. The
components are - subjective sleep quality, sleep latency, sleep
duration, habitual sleep efficiency, sleep disturbances, use of
sleep medication, and daytime dysfunction. A global score >5
indicates poor sleep quality. FOSQ has 21 questions related to
activity levels, vigilance, intimacy and relationships, general
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productivity, and social outcomes [6]. The potential range of
scores for each subscale is 1 — 4 with higher scores indicating
greater insomnia severity. Similarly, in ESS the subject
assigns a score of 0-3 for 8 questions aimed at assessing
daytime sleepiness. A total score of 16-24 indicates excessive
day time sleepiness suggesting the need for medical attention
[7].

Subjective methods suffer from high bias, require active
user participation, and a longer period (2 weeks - 1 month).
To overcome these limitations objective sleep assessment
methods have been developed. The gold standard for objective
sleep assessment is based on polysomnogram- a complex test
usually performed in a sleep lab and capture 14 different
physiological signals during sleep. Polysomnogram is
expensive, not user friendly, and not readily available
everywhere. Hence, there is a growing need for reliable sleep
assessment using wearables. Kuo et al. developed an
actigraphy based wearable device for sleep quality assessment
[8]. Mendonca et al. proposed a method for sleep quality
estimation using electrocardiogram by cardiopulmonary
coupling analysis [9]. Azimi ef al. reported an objective [oT-
based longitudinal study for sleep quality assessment [10].

Recently the concept of sleep score has been introduced.
A reliable estimation of sleep score is achieved by combining
sleep efficiency, sleep time in deep sleep stages, frequency of
arousals, oxygen saturation level, resting heart rate during
sleep, etc. Sleep score provides valuable information
regarding the fitness and wellness of a person and may play a
crucial role in Smart Health as a key health indicator.
Although, some commercial initiatives e.g. Fitbit Charge
smart band (Fitbit Inc., USA), Apple Watch (Apple Inc.,
USA), Oura sleep ring (Oura Health Ltd., Finland) as well as
research studies have attempted the estimation of sleep score
from non-polysomnographic measures, development of a
well-accepted standard methodology is yet to achieve and
needs further investigation [11]. In this work, we investigated
a method for reliable estimation of sleep score from non-
polysomnographic measures using an attention-based deep
sequential neural network. Priority has been given to ECG and
EEG based features so that sleep scores can be estimated using
user-friendly wearable devices. The developed sleep score has
been validated against ground truth established from
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polysomnography measurements. The results pave the way
for reliable sleep score assessment using single-channel EEG.

II.  MATERIALS AND METHODS

A. Dataset

Sleep Health Heart Study (SHHS) is a dataset available
from the National Sleep Research Resource [12]. SHHS was
implemented as a multi-center cohort study in two phases by
the US National Heart Lung & Blood Institute. Unattended
home polysomnograms were obtained for both the phases of
SHHS by certified and trained technicians. The
polysomnogram data was saved in European Data Format
(EDF). Data processing and initial scoring were done by
Compumedics software (Compumedics Ltd., Australia). Two
manual scorings were included to annotate the database with
sleep duration, sleep efficiency, arousal index, sleep stages,
oxygen saturation level, etc. A dataset of 500 subjects
containing good quality data for both ECG and EEG is
available from the dataset provider and is recommended for
use in a research study. In our study, for developing the
regression models we used this dataset of 500 subjects. The
distribution of records in the dataset is as follows: male- 231,
female- 269. The age of the subjects ranges from 44 to 89
years with a mean of 65 years and a standard deviation of
10.41 years. The body mass index (BMI) of the subjects
ranges from 18 — 46 with a mean of 27.51 kilograms per
square meter and a standard deviation of 4.11 kilograms per
square meter.

B. Computation of Baseline Sleep Score

Guidelines for computing a composite sleep health score
from polysomnographic measures have been developed and
reported in previous research studies [13-14]. In this study, we
used a generalized mathematical model for computing the
baseline sleep score. The model has been described by
equation (1).

1
Sleep Score = E{Z{';IXPOS@ + Z}Ll(l - Xneg(]-))} (1)

where X, are the sleep attributes that impact sleep score
positively, i.e. higher is better, X,..q are the sleep attributes that
impact sleep score negatively, i.e. lower is better. m is the total
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number of positive attributes and n is the total number of
negative attributes.

The positive attributes available from SHHS dataset are as
follows:
Sleep time- Duration of entire sleep.
Sleep efficiency - Percentage of time in bed that was spent
sleeping, or the ratio of total sleep time to total time in bed,
expressed as a percentage.
Time deep sleep (%) - Percent time in sleep stages 3 and 4.
Time REM sleep (%) - Percent Time in rapid eye movement
sleep (REM).

SpO2 (%) - Average oxygen saturation (SpO2) level in sleep.
The negative attributes available from SHHS is as follows:
Sleep Fragmentation Index (SFI)- Total number of arousals
per hour of sleep i.e. ratio of the count of arousals to total sleep

time in hours.

In computing the sleep score, all the attributes have been
normalized on a scale of 0-1. To achieve a consistent “higher
is better” rule the value of each negative attribute is subtracted
from 1. Then, the attribute values have been summed up to
develop a composite score. The composite score has been
multiplied by 100 and divided by the total no. of positive and
negative attributes to obtain the sleep score in the range of 0-
100.

C. Feature Extraction from Wearable Sensor Data

The recording montage for polysomnogram consisted of
data from 14 channels which include- ECG, EEG,
electrooculogram (EOG), Electromyogram (EMG), nasal
airflow, thoracic and abdominal movement signal, SpO2,
sleep hypnogram, etc. Hardware filters have been used for
preliminary noise reduction. The cutoff frequency for
hardware filters had been as follows- ECG-0.15 Hz, EOG-
0.15 Hz, EMG-0.15 Hz, EEG-0.15 Hz, Thoracic respiration
signal-0.05 Hz, Abdominal respiration signal-0.05 Hz. The
sampling rate is 125 Hz for EEG, ECG, and EMG signals.
For EOG, the sampling rate is 50 Hz. In investigating a
minimalistic approach, we considered the use of features
from ECG, EEG, SpO2 signals considering the sensors are
more user-friendly and widely used. For RR interval
correction we used maliks rule followed by a cubic
interpolation for the determination of Normal-to-Normal

(NN) intervals [15].
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Fig. 1 Method of feature extraction, feature selection and regression for sleep score estimation
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From the NN interval series time domain and frequency
domain features have been extracted HRV guidelines using
HRYV Toolkit available from Physionet [16]. For the power
spectrum estimation, we used Lomb’s periodogram method.
The entire ECG record has been divided into 5-minute epochs
to estimate short-term components of HRV. In total 20 HRV
features have been extracted. From EEG we computed
spectral features as shown in Fig. 1. The EEG signal was
collected using two channels from the central region of the
brain. One of the channels was C4-Al and the other one was
C3-A2. The power spectral densities for these two channels
are very similar. In our study, we have only used the signal
from the C4 channel as it has been designated as the primary
EEG channel in SHHS. EEG spectral analysis was performed
using the SpectralTrainFig App in MATLAB [17]. We have
extracted 21 spectral band features from the decontaminated
EEG signal as shown in Table. I which includes rapid eye
movement (REM) power, Non-rapid eye movement (NREM)
power, and Total power at each frequency band. Also, 102
EEG spectral features i.e. REM, N-REM power at single
frequencies have been computed for 51 frequencies from 0 to
25 Hz with a 0.5 Hz gap i.e. 0 Hz, 0.5 Hz, 1 Hz, 1.5 Hz, ....,

24.5 Hz, 25 Hz.
TABLE I. SPECTRAL FEATURES FROM EEG

EEG Band Fre(t};n;ncy Features

Slow OSC 0.5-1 Power- REM , NREM, Total
Delta 05-4 Power- REM , NREM, Total
Theta 4-8 Power- REM , NREM, Total
Alpha 8-13 Power- REM , NREM, Total
Sigma 12-14 Power- REM , NREM, Total
Beta 13-30 Power- REM , NREM, Total
Gamma 36-90 Power- REM , NREM, Total

D. Feature Selection and Regression for Sleep Score
Estimation

Feature selection has been done primarily to compare the
relative importance of ECG based features with EEG based
features for sleep score estimation. Permutation importance
has been used with Random Forest for ranking the feature
importance [18]. Both ECG and EEG have correlated features
that introduce the problem of multi-collinearity. To deal with
this, conditional permutation has been used. party package
from R has been used for the feature ranking [19].

For developing the regression model, the entire dataset
was divided into train and test set in a ratio of 80:20 following
arandom shuffle. We investigated Extreme Gradient Boosting
(XGBoost), Artificial Neural Network (ANN), and a
sequential neural network called TabNet for regression.
TabNet is an attention-based deep neural network optimized
for tabular data and uses an encoder-decoder architecture [20].
The encoder part consists of a feature transformer, an attentive
transformer, and feature masking at each decision step. The
decoder part has a feature transformer block at each step. For
hyper-parameter selection Bayesian search has been used.
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III. RESULTS

The probability density plot of sleep score has been shown
in Fig. 2. The histogram of sleep score follows a Gaussian
distribution with a mean of 60 (N=500) and a standard
deviation of 22. A boxplot comparison between the sleep
scores of males and females has been shown in Fig. 3. No
significant (p-value>0.05) difference was observed between
the average sleep score of males with that of females. Sleep
score shows a moderate (r=-0.35, p=0.0 ) negative correlation
with age. The scatterplot of age and sleep score with a
trendline has been visualized in Fig. 4. Similarly, sleep score
shows a weak (r=-0.21, p=0.0) inverse correlation with Body
Mass Index (BMI). The scatterplot of BMI and sleep score
with a trendline has been visualized in Fig. 5. The trendline
shows a downward slope indicating an inverse relationship i.e.
people with higher BMI tend to have lower sleep scores. The
partial correlation of sleep score with HRV and EEG features
have been performed to investigate the relationship of sleep
score with these features when controlled for age and BMI.
Features (best 5 from each sensor) showing significant
correlation has been listed in Table II.

TABLE II. PARTIAL CORRELATION OF FEATURES WITH SLEEP SCORE

HRYV Features EEG Features
Feature r p-value Feature r p-value
AVNN 0.09 0.04 slowosc_sleep 0.33 0.01
HR -0.11 0.02 slowosc_nrem 0.39 0.01
pNNI10 0.08 0.04 delta nrem 0.39 0.01
VLF -0.11 0.02 delta_sleep 0.29 0.01
LF/HF -0.13 0.01 theta_rem 0.25 0.01
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Fig. 6 Top 20 features based on permutation importance

Although both HRV and EEG features show significant
partial correlation with sleep score, the correlation for EEG
features is much stronger than HRV features. Since, EEG
features have relatively higher importance compared to HRV
features, in developing the regression method only EEG and
anthropometric measures have been used. The ranking of top
20 EEG features (log transformed) based on conditional
permutation importance have been shown in Fig. 6. The
results of regression performance for estimation of sleep score
using XGBoost, ANN and TabNet model have been shown in
Table III. TabNet achieved the best performance with a Room
Mean Squared Value (RMSE) of 4.65 and R-squared(R2)
value of 0.64 in the training set, and an RMSE of 5.47 and R2
value of 0.59 in the test set. The finalized hyper-parameter for
the TabNet model with bayesian search has been shown in
Table IV. Adam has been used as the optimizer function and
the masking function type was ‘sparsemax’. The fit of the
regression plot for the TabNet model has been shown in Fig.
7. The dashed line indicates the ideal and the solid line
indicates the achieved trend line for actual versus predicted
values. The histogram of prediction error in Fig. 8 shows
symmetrically skewed and almost normally distributed
patterns with a higher frequency in the error bin + 2. The
residual plot in Fig. 9 for the regression analysis shows a
random scattering around the zero lines.
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Fig. 7 Fit of regression plot for TabNet model
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Fig. 8 Error Histogram for TabNet model

TABLE III. PERFORMANCE OF REGRESSION MODELS
Performance
Model Train(80%) Test(20%)
RMSE R? RMSE R?
XGBoost 6.56 0.46 7.34 0.35
ANN 6.59 0.61 7.17 0.49
TabNet 4.65 0.64 5.47 0.59
TABLE IV. PARAMETERS OF TABNET MODEL

Parameter Value
Width of the decision prediction layer 10
Width of the attention embedding for each mask 10
Number of steps in the architecture 3
gamma 1.3
epsilon le-15

IV. CONCLUSION

In this study, we analyzed sleep score and its relationship
with anthropometric, HRV, and EEG based features. We
performed a feature ranking for identifying the most
informative features for sleep score estimation. Finally, we
developed a regression method using a TabNet model for
sleep score estimation from spectral features of single-channel
EEG. The findings of this study increased the interpretability
of sleep score and paves way for the usage of sleep score as a
potential indicator for automated routine health check using
wearables. In future studies, we aim to investigate the
relationship of different diseases i.e. sleep apnea, insomnia,
etc. with sleep score and implement the method in an edge
device i.e. smartphone for online estimation of sleep scores.
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