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Abstract—The use of sleep score as a measure of fitness and 

wellness is getting popular in Smart Health as it provides an 

objective assessment of sleep quality. However, reliable 

estimation of sleep scores from wearable sensor data only is 

challenging. In this study, we investigated the estimation of sleep 

score using only features available from single-channel ECG or 

single-channel EEG data.  We used partial correlation and 

conditional permutation importance for feature selection; then 

compared extreme gradient boosting, artificial neural network, 

and sequential neural network for developing a regression 

model for sleep score estimation. TabNet- an attention-based 

deep sequential learning model achieved the best performance 

of RMSE = 5.47 and R-squared value of 0.59 in the test set for 

sleep score estimation using only spectral features of single-

channel EEG.  The results pave the way for reliable and 

interpretable sleep score estimation using a wearable device. 

Keywords- Attention Model, Electroencephalography, 

Regression, Sleep Score, Smart Health, TabNet, Wearable Sensor 

I. INTRODUCTION

Sleep is an important biological process and plays a key 
role in restoring energy, solidifying and consolidating 
memories, and repairing body cells. It also helps in 
metabolism and cardiovascular function [1]. The regulation of 
sleep is controlled by the circadian biological clock and 
sleep/wake homeostasis. Good quality sleep is essential for 
good health and improved quality of life. Poor sleep is linked 
to depression, obesity, daytime drowsiness, less productivity, 
and a greater risk of coronary artery disease and stroke [2-4].  

Subjective assessment of sleep quality using standard 
questionnaires is well investigated and is widely used in 
clinical practice. Some of the well-accepted and popular 
methods for subjective sleep quality assessment are- 
Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness 
Scale (ESS), and Functional Outcome of Sleep Questionnaire 
(FOSQ). PSQI uses a 7 component questionnaire and the 
subject assigns a score of 0-3 for each component [5]. The 
components are - subjective sleep quality, sleep latency, sleep 
duration, habitual sleep efficiency, sleep disturbances, use of 
sleep medication, and daytime dysfunction. A global score >5 
indicates poor sleep quality. FOSQ has 21 questions related to 
activity levels, vigilance, intimacy and relationships, general 

productivity, and social outcomes [6]. The potential range of 
scores for each subscale is 1 – 4 with higher scores indicating 
greater insomnia severity. Similarly, in ESS the subject 
assigns a score of 0-3 for 8 questions aimed at assessing 
daytime sleepiness. A total score of 16-24 indicates excessive 
day time sleepiness suggesting the need for medical attention 
[7]. 

Subjective methods suffer from high bias, require active 
user participation, and a longer period (2 weeks - 1 month). 
To overcome these limitations objective sleep assessment 
methods have been developed. The gold standard for objective 
sleep assessment is based on polysomnogram- a complex test 
usually performed in a sleep lab and capture 14 different 
physiological signals during sleep. Polysomnogram is 
expensive, not user friendly, and not readily available 
everywhere.  Hence, there is a growing need for reliable sleep 
assessment using wearables. Kuo et al. developed an 
actigraphy based wearable device for sleep quality assessment 
[8]. Mendonca et al. proposed a method for sleep quality 
estimation using electrocardiogram by cardiopulmonary 
coupling analysis [9]. Azimi et al. reported an objective IoT-
based longitudinal study for sleep quality assessment [10]. 

Recently the concept of sleep score has been introduced. 
A reliable estimation of sleep score is achieved by combining 
sleep efficiency, sleep time in deep sleep stages, frequency of 
arousals, oxygen saturation level, resting heart rate during 
sleep, etc. Sleep score provides valuable information 
regarding the fitness and wellness of a person and may play a 
crucial role in Smart Health as a key health indicator. 
Although, some commercial initiatives e.g. Fitbit Charge 
smart band (Fitbit Inc., USA), Apple Watch (Apple Inc., 
USA), Oura sleep ring (Oura Health Ltd., Finland) as well as 
research studies have attempted the estimation of sleep score 
from non-polysomnographic measures, development of a 
well-accepted standard methodology is yet to achieve and 
needs further investigation [11]. In this work, we investigated 
a method for reliable estimation of sleep score from non-
polysomnographic measures using an attention-based deep 
sequential neural network. Priority has been given to ECG and 
EEG based features so that sleep scores can be estimated using 
user-friendly wearable devices. The developed sleep score has 
been validated against ground truth established from 
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polysomnography measurements. The results pave the way 
for reliable sleep score assessment using single-channel EEG.  

II. MATERIALS AND METHODS 

A. Dataset 

Sleep Health Heart Study (SHHS) is a dataset available 
from the National Sleep Research Resource [12].  SHHS was 
implemented as a multi-center cohort study in two phases by 
the US National Heart Lung & Blood Institute. Unattended 
home polysomnograms were obtained for both the phases of 
SHHS by certified and trained technicians. The 
polysomnogram data was saved in European Data Format 
(EDF). Data processing and initial scoring were done by 
Compumedics software (Compumedics Ltd., Australia). Two 
manual scorings were included to annotate the database with 
sleep duration, sleep efficiency, arousal index, sleep stages, 
oxygen saturation level, etc. A dataset of 500 subjects 
containing good quality data for both ECG and EEG is 
available from the dataset provider and is recommended for 
use in a research study. In our study, for developing the 
regression models we used this dataset of 500 subjects. The 
distribution of records in the dataset is as follows: male- 231, 
female- 269. The age of the subjects ranges from 44 to 89 
years with a mean of 65 years and a standard deviation of 
10.41 years. The body mass index (BMI) of the subjects 
ranges from 18 – 46 with a mean of 27.51 kilograms per 
square meter and a standard deviation of 4.11 kilograms per 
square meter. 

B. Computation of Baseline Sleep Score 

Guidelines for computing a composite sleep health score 
from polysomnographic measures have been developed and 
reported in previous research studies [13-14]. In this study, we 
used a generalized mathematical model for computing the 
baseline sleep score. The model has been described by 
equation (1).  

𝑆𝑙𝑒𝑒𝑝 𝑆𝑐𝑜𝑟𝑒 =  
1

𝑚+𝑛
{∑ 𝑋𝑝𝑜𝑠(𝑖)

𝑚
𝑖=1 +  ∑ (1 − 𝑋𝑛𝑒𝑔(𝑗)

𝑛
𝑗=1 )} (1) 

where Xpos are the sleep attributes that impact sleep score 
positively, i.e. higher is better, Xneg are the sleep attributes that 
impact sleep score negatively, i.e. lower is better. m is the total 

number of positive attributes and n is the total number of 
negative attributes.  
  The positive attributes available from SHHS dataset are as 
follows: 
Sleep time- Duration of entire sleep.  
Sleep efficiency - Percentage of time in bed that was spent 
sleeping, or the ratio of total sleep time to total time in bed, 
expressed as a percentage. 
Time deep sleep (%) - Percent time in sleep stages 3 and 4. 
Time REM sleep (%) - Percent Time in rapid eye movement 
sleep (REM). 
SpO2 (%) - Average oxygen saturation (SpO2) level in sleep. 
  The negative attributes available from SHHS is as follows: 
Sleep Fragmentation Index (SFI)- Total number of arousals 
per hour of sleep i.e. ratio of the count of arousals to total sleep 
time in hours. 

In computing the sleep score, all the attributes have been 
normalized on a scale of 0-1. To achieve a consistent “higher 
is better” rule the value of each negative attribute is subtracted 
from 1. Then, the attribute values have been summed up to 
develop a composite score. The composite score has been 
multiplied by 100 and divided by the total no. of positive and 
negative attributes to obtain the sleep score in the range of 0-
100. 

C. Feature Extraction from Wearable Sensor Data 

The recording montage for polysomnogram consisted of 

data from 14 channels which include- ECG, EEG, 

electrooculogram (EOG), Electromyogram (EMG), nasal 

airflow, thoracic and abdominal movement signal, SpO2, 

sleep hypnogram, etc. Hardware filters have been used for 

preliminary noise reduction. The cutoff frequency for 

hardware filters had been as follows- ECG-0.15 Hz, EOG-

0.15 Hz, EMG-0.15 Hz, EEG-0.15 Hz, Thoracic respiration 

signal-0.05 Hz, Abdominal respiration signal-0.05 Hz. The 

sampling rate is 125 Hz for EEG, ECG, and EMG signals. 

For EOG, the sampling rate is 50 Hz.  In investigating a 

minimalistic approach, we considered the use of features 

from ECG, EEG, SpO2 signals considering the sensors are 

more user-friendly and widely used.  For RR interval 

correction we used maliks rule followed by a cubic 

interpolation for the determination of Normal-to-Normal 

(NN) intervals [15]. 

 
Fig. 1 Method of feature extraction, feature selection and regression for sleep score estimation 
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From the NN interval series time domain and frequency 

domain features have been extracted HRV guidelines using 

HRV Toolkit available from Physionet [16]. For the power 

spectrum estimation, we used Lomb’s periodogram method. 

The entire ECG record has been divided into 5-minute epochs 

to estimate short-term components of HRV. In total 20 HRV 

features have been extracted. From EEG we computed 

spectral features as shown in Fig. 1. The EEG signal was 

collected using two channels from the central region of the 

brain. One of the channels was C4-A1 and the other one was 

C3-A2. The power spectral densities for these two channels 

are very similar. In our study, we have only used the signal 

from the C4 channel as it has been designated as the primary 

EEG channel in SHHS. EEG spectral analysis was performed 

using the SpectralTrainFig App in MATLAB [17]. We have 

extracted 21 spectral band features from the decontaminated 

EEG signal as shown in Table. I which includes rapid eye 

movement (REM) power, Non-rapid eye movement (NREM) 

power, and Total power at each frequency band. Also, 102 

EEG spectral features i.e. REM, N-REM power at single 

frequencies have been computed for 51 frequencies from 0 to 

25 Hz with a 0.5 Hz gap i.e. 0 Hz, 0.5 Hz, 1 Hz, 1.5 Hz, …., 

24.5 Hz, 25 Hz.  
TABLE I.  SPECTRAL FEATURES FROM EEG 

EEG Band 
Frequency 

(Hz) 

Features 

Slow OSC 0.5 -1 Power- REM , NREM, Total  

Delta 0.5 – 4 Power- REM , NREM, Total  

Theta 4 – 8 Power- REM , NREM, Total  

Alpha 8 - 13 Power- REM , NREM, Total  

Sigma 12 – 14 Power- REM , NREM, Total  

Beta 13 – 30 Power- REM , NREM, Total  

Gamma 36 – 90 Power- REM , NREM, Total  

  

D. Feature Selection and Regression for Sleep Score 

Estimation 

Feature selection has been done primarily to compare the 
relative importance of ECG based features with EEG based 
features for sleep score estimation. Permutation importance 
has been used with Random Forest for ranking the feature 
importance [18]. Both ECG and EEG have correlated features 
that introduce the problem of multi-collinearity. To deal with 
this, conditional permutation has been used. party package 
from R has been used for the feature ranking [19].  

For developing the regression model, the entire dataset 
was divided into train and test set in a ratio of 80:20 following 
a random shuffle. We investigated Extreme Gradient Boosting 
(XGBoost), Artificial Neural Network (ANN), and a 
sequential neural network called TabNet for regression. 
TabNet is an attention-based deep neural network optimized 
for tabular data and uses an encoder-decoder architecture [20]. 
The encoder part consists of a feature transformer, an attentive 
transformer, and feature masking at each decision step. The 
decoder part has a feature transformer block at each step. For 
hyper-parameter selection Bayesian search has been used. 

 

  
Fig. 2 Distribution of sleep score Fig. 3 Boxplot comparison for 

male and female sleep scores 
 

  
Fig. 4 Scatterplot of sleep score 

and age 
Fig. 5 Scatterplot of sleep score 

and body mass index. 

 

III. RESULTS 

The probability density plot of sleep score has been shown 
in Fig. 2. The histogram of sleep score follows a Gaussian 
distribution with a mean of 60 (N=500) and a standard 
deviation of 22. A boxplot comparison between the sleep 
scores of males and females has been shown in Fig. 3. No 
significant (p-value>0.05) difference was observed between 
the average sleep score of males with that of females. Sleep 
score shows a moderate (r=-0.35, p=0.0 ) negative correlation 
with age. The scatterplot of age and sleep score with a 
trendline has been visualized in Fig. 4. Similarly, sleep score 
shows a weak (r=-0.21, p=0.0 ) inverse correlation with Body 
Mass Index (BMI). The scatterplot of BMI and sleep score 
with a trendline has been visualized in Fig. 5. The trendline 
shows a downward slope indicating an inverse relationship i.e. 
people with higher BMI tend to have lower sleep scores. The 
partial correlation of sleep score with HRV and EEG features 
have been performed to investigate the relationship of sleep 
score with these features when controlled for age and BMI. 
Features (best 5 from each sensor) showing significant 
correlation has been listed in Table II. 

TABLE II.  PARTIAL CORRELATION OF FEATURES WITH SLEEP SCORE 

HRV Features EEG Features 

Feature r p-value Feature r p-value 

AVNN 0.09 0.04 slowosc_sleep 0.33 0.01 

HR -0.11 0.02 slowosc_nrem 0.39 0.01 

pNN10 0.08 0.04 delta_nrem 0.39 0.01 

VLF -0.11 0.02 delta_sleep 0.29 0.01 

LF/HF -0.13 0.01 theta_rem 0.25 0.01 
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Fig. 6 Top 20 features based on permutation importance 

  
Although both HRV and EEG features show significant 
partial correlation with sleep score, the correlation for EEG 
features is much stronger than HRV features. Since, EEG 
features have relatively higher importance compared to HRV 
features, in developing the regression method only EEG and 
anthropometric measures have been used. The ranking of top 
20 EEG features (log transformed) based on conditional 
permutation importance have been shown in Fig. 6. The 
results of regression performance for estimation of sleep score 
using XGBoost, ANN and TabNet model have been shown in 
Table III. TabNet achieved the best performance with a Room 
Mean Squared Value (RMSE) of 4.65 and R-squared(R2) 
value of 0.64 in the training set, and an RMSE of 5.47 and R2 
value of 0.59 in the test set. The finalized hyper-parameter for 
the TabNet model with bayesian search has been shown in 
Table IV. Adam has been used as the optimizer function and 
the masking function type was ‘sparsemax’. The fit of the 
regression plot for the TabNet model has been shown in Fig. 
7. The dashed line indicates the ideal and the solid line 
indicates the achieved trend line for actual versus predicted 
values.  The histogram of prediction error in Fig. 8 shows 
symmetrically skewed and almost normally distributed 
patterns with a higher frequency in the error bin ± 2.  The 
residual plot in Fig. 9 for the regression analysis shows a 
random scattering around the zero lines. 

TABLE III.  PERFORMANCE OF REGRESSION MODELS 

Model 

Performance 

Train(80%) Test(20%) 

RMSE R2  RMSE R2 

XGBoost 6.56 0.46 7.34 0.35 

ANN 6.59 0.61 7.17 0.49 

TabNet 4.65 0.64 5.47 0.59 

TABLE IV.  PARAMETERS OF TABNET MODEL 

Parameter Value 

Width of the decision prediction layer  10 

Width of the attention embedding for each mask  10 

Number of steps in the architecture 3 

gamma 1.3 

epsilon 1e-15 

 

IV. CONCLUSION 

In this study, we analyzed sleep score and its relationship 
with anthropometric, HRV, and EEG based features.  We 
performed a feature ranking for identifying the most 
informative features for sleep score estimation. Finally, we 
developed a regression method using a TabNet model for 
sleep score estimation from spectral features of single-channel 
EEG. The findings of this study increased the interpretability 
of sleep score and paves way for the usage of sleep score as a 
potential indicator for automated routine health check using 
wearables. In future studies, we aim to investigate the 
relationship of different diseases i.e. sleep apnea, insomnia, 
etc. with sleep score and implement the method in an edge 
device i.e. smartphone for online estimation of sleep scores. 
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Fig. 7 Fit of regression plot for TabNet model Fig. 8 Error Histogram for TabNet model Fig. 9 Residual plot for TabNet model 
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