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Abstract

With the large multimedia content online, deep hashing
has become a popular method for efficient image retrieval
and storage. However, by inheriting the algorithmic back-
end from softmax classification, these techniques are vul-
nerable to the well-known adversarial examples as well.
The massive collection of online images into the database
also opens up new attack vectors. Attackers can embed ad-
versarial images into the database and target specific cat-
egories to be retrieved by user queries. In this paper, we
start from an adversarial standpoint to explore and enhance
the capacity of targeted black-box transferability attack for
deep hashing. We motivate this work by a series of empiri-
cal studies to see the unique challenges in image retrieval.
We study the relations between adversarial subspace and
black-box transferability via utilizing random noise as a
proxy. Then we develop a new attack that is simultane-
ously adversarial and robust to noise to enhance transfer-
ability. Our experimental results demonstrate about 1.2-3x
improvements of black-box transferability compared with
the state-of-the-art mechanisms. The code is available at:
https://github.com/SugarRuy/CVPR21 _Transferred_Hash.

1. Introduction

With the exponential growth of visual content on the In-
ternet, deep learning to hash (deep hashing) [46, 9, 25] has
emerged as a leading technique in content-based image re-
trieval. By mapping semantically similar images into close
proximity in the Hamming space, it enables efficient nearest
neighbor search and storage of large-scale multimedia data.
Powered by deep hashing, from a photo of a product taken
in the real world, without knowing its name, customers
could extract similar products online. Service providers,
such as search engines (Google [2], Bing [!]), social net-
works (Pinterest [6], e-commerce (Taobao [5]) and fashion
designers([ 1 6]), are investing largely into this technology to
complement the traditional text query.

Unfortunately, by inheriting the backend from classifica-
tion networks, deep hashing is also vulnerable to the well-
known adversarial examples [27, 44, 38, 42], that purposely

crafted perturbations with minimal perceptual difference
can cause misclassification into any other label (untargeted
attack) or a specific label (targeted attack). Targeted attacks
are strictly more difficult given the complex inter-class se-
mantics [8, 26]. While white-box attacks almost guarantee
success, service providers do not reveal their models pub-
licly, which remain a black box to the attacker. Because of
the resemblance of decision boundaries, adversarial exam-
ples can still transfer to the black-box models, but at a much
less chance to accomplish targeted attacks [26].

Rather than causing a wrong decision, system design-
ers face a slightly different attack surface in image re-
trieval systems, in which images from the database are
returned to match user’s query. For better results, a
growing database is typically maintained via automated
crawling, indexing of online images [4] and caching user
queries [3]. However, this may also inadvertently in-
clude private/inappropriate/upsetting content such as pro-
tected copyright, violence, pornography, racism or advertis-
ing spam into the database. By designing adversarial pertur-
bations into the inappropriate images, attackers can launch
targeted attacks against benign search queries, and visually
display those images to the victims. To exploit this vulnera-
bility, competitors can override the product search results in
online shopping; advertisers can make customers view their
advertisements for free; conspirators can divert images of
political banners into racism or violence. Attackers can fur-
ther target the content in the top searching list to reap high
visibility.

The previous works have shown high success rate of un-
targeted white-box attacks for image retrieval [27, 44, 38].
E.g., [44] shows that by maximizing the hamming distance
of a perturbed image to its original category in the hash
space, the network retrieves an irrelevant image. Never-
theless, the most challenging targeted attacks are yet to
be fully explored in the black-box setting and they also
carry higher practical value as attackers can mislead the re-
sults into specific categories. A trivial way to accomplish
black-box transferability is to increase the level of perturba-
tion [26], at the cost of degrading visual quality and being
detected. In fact, our preliminary experiment indicates dras-
tically small transferability under 1%, even the state-of-the-
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art mechanism [42] is implemented for deep hashing. How-
ever, such low transferability does not necessarily translate
into a blessing in security before we fully understand the
attacker’s capacity.

In this paper, we explore and improve targeted transfer-
able attack in deep hashing. Similar to susceptible classes
in classification [32], our first discovery is the existence of
vulnerable pairs that transfer more easily than the rest. They
could be explicitly mined based on the hamming distance
from the white-box model, where attackers can utilize these
pairs to enhance the success rate. Then we look into dif-
ferent attacks to find implications of their transferrable ca-
pacity. We design an algorithm to utilize additive Gaussian
random noise as a proxy to estimate the generated adversar-
ial region, and show that it is indeed related to black-box
transferability, i.e., an adversarial example with higher tol-
erance to random noise is more prone to transfer to black-
box models. Based on this finding, we further devise a new
attack to look for perturbations that are simultaneously ad-
versarial and robust to random noise, i.e., both adversarial
and noise-corrupted adversarial images are retrievable by
querying the target images.

The main contributions are summarized below. First, this
work aims to bridge the two areas of adversarial attacks and
image retrieval. By studying the most challenging targeted
black-box transferability attack, it opens up a new dimen-
sion to realize an array of realistic attacks in image retrieval
systems. Second, we point out useful information from the
white-box model that implies black-box transferability: a)
the existence of vulnerable pairs; b) the relation between
transferability and white-box adversarial region. We pro-
pose an algorithm to estimate the adversarial region by in-
troducing random noise, which is used to assess the capacity
of different attacks. Then we design a new attack to search
for a perturbation for potentially higher transferability. Fi-
nally, we conduct extensive experiments and demonstrate
that the proposed attack can boost the black-box transfer-
ability by 1.2 — 3, compared to PGD [29], and 1.5x com-
pared to the diversity techniques [42]. We also demonstrate
case studies of crafting out-of-distribution images to target
normal queries with high successful rates.

2. Background and Related Work
2.1. Black-Box Adversarial Attacks

Fast Gradient Sign Method (FGSM) [15] and Projected
Gradient Descent (PGD) [29] are the two baseline methods.
FGSM takes a large step in the gradient directions to max-
imize the probability of the target class, by finding a per-
turbed image within the n-norm ball. The PGD attack ini-
tializes the adversarial search from a random point within
the norm ball, and conducts several iterations towards the
target class. The existing works take two directions in a
black-box setting.

Transferability Attack exploits the similarity of deci-
sion boundaries between different models on the same data,

and utilizes the gradients from the source model to generate
adversarial examples, in the hope that they transfer to the
unknown target model. In the worst case, gradient direc-
tions from the source and target models could be orthogonal
to each other [26], which makes the source model less ef-
fective. A handful of studies ascribe the difficulty of black-
box transferability to the overfitting on the source model
and misalignment of decision boundaries [42, 12, 39, 35].
Therefore, enhancing diversity has been taken at different
levels of input image [42, 12], model ensemble [39] and
gradient trajectory [35]. Rather than using a single im-
age, in [42], random affine transformation of the input im-
age is adopted in each iteration to enhance input diversity.
Similarly, an ensemble of shifted images are used to maxi-
mize the loss objectives for better transferability [12]. Both
gradient ascent and descent are combined for more diver-
sity [35]. Another thread of works focus on the feature
level to improve transferability [45, 23]. The intuition is to
induce a similar intermediate feature via perturbing image
pixels, by assuming that different models generate identi-
cal feature-level representations. Intermediate loss is in-
troduced to optimize /o norm between feature maps from
all layers in [45, 23]. Our work taps into this line to en-
hance black-box transferability for image retrieval systems
and will compare with these techniques in Sec. 6.
Query-based Attack. These techniques treat the tar-
geted model as an oracle and adjust the perturbation in itera-
tive steps based on the system output of probability [22, 10]
or decision (label-only) [13, 7, 8]. E.g., [10] utilizes the
changes from the softmax output to estimate the gradients.
[22] adopts the natural evolutionary strategy to estimate the
gradient under the search distribution. [7] only relies on
the final decision of the model, which iteratively draws ran-
dom distribution from a proposed distribution while stay-
ing adversarial and [8] further optimizes such distribution.
Though considerable effort is devoted to enhance query ef-
ficiency, it is still very difficult to estimate the gradient of
high dimensions with limited information: several thou-
sands of queries are typically required to craft an adver-
sarial example. Since the image retrieval system could be
metered by the number of queries, these strategies are less
cost-effective for budget-limited attackers. To this end, we
focus on transferability attacks that the attackers can eco-
nomically generate a large number of adversarial examples
and wait for them to be matched and retrieved by the users.

2.2. Deep Learning to Hash

Similar to metric learning, deep hashing also learns pair-
wise similarity from end-to-end through the maximum like-
lihood estimation, and transforms real-valued inputs into bi-
nary hash codes [46, 9, 25]. Hence, similarity search can
be performed efficiently by calculating the hamming dis-
tance. In addition to the feature extraction layers, a hash
layer is introduced to map input x — h(z) € {—1,+1}¥
into a K-bit binary code (the sign function sgn(-)). To re-
main differentiation with backpropagation, continuous ap-
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proximation for the non-smooth sign function is performed,
e.g., HashNet [9] adopts the hyperbolic tangent function,
sgn(z) = limg_,o tanh(Sz), by tuning 5; the function
converges to the sign function when 5 — oo. As a re-
sult, hashing aggregates similar images into a Hamming
ball. The system typically relies on a retrieval threshold
and any image with smaller hamming distance is returned
as matched results.

Deep hashing inherits the vulnerability to adversarial ex-
amples from the classification model [44, 27, 41], but trig-
gers in a slightly different way. Targeted attacks in classifi-
cation redirect the original label to a target label in a closed
set of discrete classes; targeted attacks in deep hashing push
the adversarial image into the retrieval threshold of the tar-
get class (image), so that whenever an image in the target
class is queried, the adversarial image is matched and re-
turned. [44] fools deep hashing to maximize the distance be-
tween a perturbed image and the original one, such that the
hamming distance exceeds the retrieval threshold for that
category. [27] follows with a similar optimization objective
to design adversarial queries. [41] designs a new optimiza-
tion problem to prevent private images in the database from
queried by curious third parties. [38] crafts adversarial im-
ages to conceal sensitive queries while still retrieving the
targeted images. Most of these works focus on re-designing
the adversarial objectives in a white-box setting, but have
yet to explore the design space of the more challenging tar-
geted black-box attacks.

3. Motivation

In this section, we introduce basic definitions and moti-
vate this work by important observations.
Definition 1. (Hamming Distance) Deep hashing trans-
forms inputs x; and x; into hash codes h(z;), h(z;) €
{~1,+1}*X_ The hamming distance between them,
Dy, (z;, x;) can be computed from the inner product, & (K —
h()h(z;)T).
Definition 2. (Retrieval) For a queried image x;, all x; sat-
isfying Dy, (x;,x;) < Ty, (T}, is the retrieval threshold) are
returned as the results.
Definition 3. (Class) Though deep hashing characterizes
a weak notion of class, samples from the same class often
result high similarity. For targeted attacks, we retain the
concept of class here and define that if an input retrieves
more than N,. samples from a class, the input belongs to that
class. An input with various contents could be mapped to
different classes, resulting the multi-label situation [25, 9].
Definition 4. (Targeted Attack) For an input  and the im-
ages in the targeted class z; € Cq, the attacker’s goal is to
minimize the hamming distance via adjusting z + ¢ = 2’
under the n-norm bound',

min_ Dy (2, x4), (1)

z',x €Cy

I'Since the sign function is non-differentiable, we take the penultimate
output from HashNet instead of directly optimizing on the hashcodes.
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Figure 1: Targeted white-box and black-box attack success
rate (a) Softmax classification; (b) Deep hashing. See sum-
mary in Observation 1.

stz — 2|0 < 1. 2)
Definition S. (Query Symmetry) Hamming distance is sym-
metric: if an image x; can be queried via the adversarial
input 2, then querying x; also returns x’. The attacker can
take advantage of this property to embed x’ in the database.
Once x; € C; is queried by a user, 2’ will be returned and
visualized by the user.
Definition 6. (Black-Box Transferability) Without prior
knowledge and access to the black-box model My, the at-
tacker crafts adversarial examples x’ based on a white-box
source model M,,,.
Definition 7. (Criteria of Successful Attack) Attack success
can be measured by the number of images returned in the
target class C; from model M}, when the adversarial image
2’ is queried. We further define that an attack is successful
if it is larger than a certain number N, e.g., retrieving 10
images from the target class.

3.1. Targeted Black-box Attacks to Image Retrieval

To see the success rate of targeted black-box attacks, we

conduct some preliminary experiments to transfer adversar-
ial examples generated from ResNet152 to ResNet50 on the
ImageNet (other model combinations also indicate similar
numerical gaps). We set the retrieval threshold 7}, = 5 and
iterate four state-of-the-art attacking methods: FGSM [15],
PGD [29], Iterative FGSM with Diversity (DI) [42] and
its momentum integration (DI-Momentum), originally de-
signed for the softmax classification models. The key ob-
servations are summarized below.
Observation 1. There exists a large gap between the tar-
geted white-box and black-box attack success rates (Fig. 1).
Compared with softmax, which delivers around 10% black-
box success, adversarial images rarely transfer with deep
hashing: the overall success rate is below 1%.

Such low transferability is expected: rather than select-
ing arg max from the softmax probabilities, successful re-
trieval requires the hashcode to be mapped into the vicin-
ity of T} in the vast open hash space. This leads to a
large fraction of the adversarial hash codes lying in the non-
retrievable region (away from all the classes) in the black-
box model. The training paradigm with randomized pair-
ing also induces more uncertainty. Different from a closed
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Figure 2: Illustration of vulnerable pairs. (a) Relations of
hamming distance between input and target images in the
white-box source model, and adversarial input to targeted
images (class) in the black-box model; (b) Distribution of
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set of categories in one-hot encoding, deep hashing are
more fluid to map pairwise similarity relations into binary
hash codes. However, the low transferability should not be
treated as a security benefit. We discover an intriguing per-
sistence of vulnerable pairs as illustrated below.
Observation 2. (Vulnerable Pairs V) There exists a large
number of heterogenous input pairs (z,x;) € V, such
that the hamming distance between input x to target x,
T, < D,Zl\/[’” (z, ;) < T, in the white-box model M., (Ty is
a threshold larger than 7},). Then the probability of suc-
cess on the black-box model M,, P{D\"(z + ¢,2;) <
Ty|(x,x¢) € V}, is much higher than the rest of the nor-
mal pairs (z,z;) & V.

To see this, we pretend as if we could access the black-
box model and demonstrate the relations between ham-
ming distance D™ (z, x;) and D" (z+ ¢, ;) for success-
ful and unsuccessful transfers in Fig.2(a). There are two
ways of successful transfers:1) the adversarial image can
directly retrieve the target image; 2) it retrieves similar im-
ages from the targeted class (other than the targeted image
itself), where these images may come from a different intra-
class cluster. It is observed that most of the successful trans-
fers concentrate in a narrow distance range between 10-20
(Fig.2(a), x-axis), though a large number of unsuccessful
transfers are also found for the same range. Fig.2(b) further
compares the distribution between vulnerable and normal
pairs on black-box model. It confirms that the vulnerable
pairs are much closer to the target images with the mean
around 16 vs.25 of the normal pairs.

We also trace the hamming distance vs. PGD iterations
for the vulnerable and normal pairs in Fig.3. For the white-
box setting, there is no doubt that PGD can push the ad-
versarial inputs close to the target under the L., bound,
which corresponds to the adversarial image being driven
away from the original input in hash space. However, the re-
flection on the black-box is divergent - PGD just succeeded
at the end of 30 iterations for vulnerable pairs, whereas
the normal pairs are far from success. The trend of the
slope suggests more iterations for better transferability [26],

Hamming Distance

which also brings higher perturbation and risks of violating
the n-bound. Recall from Fig.2(a), even for the vulnera-
ble pairs, only a minority can succeed, so is there a way to
craft more transferable adversarial examples? We answer
this question by exploring the adversarial subspace that en-
ables transfer between different models.
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Figure 3: Trace of hamming vs. PGD iterations. (a) vulera-
ble pairs; (b) normal pairs.
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4. Explore Adversarial Subspace

In this section, we propose a mechanism to efficiently es-
timate the transferable adversarial subspace given the white-
box model. The adversarial subspace is typically described
as a contiguous multi-dimensional subspace close to the
data manifold [36, 15, 37] and notably difficult when it
comes to quantitative analysis, e.g., some literatures em-
ploy intrinsic dimensionality [28] and orthogonal adversar-
ial directions [40]. Only a few connects adversarial sub-
space with transferability: [40] finds the maximal number
of orthogonal adversarial directions that induce a signifi-
cant increase in loss, and demonstrates that transferability
is proportional to this number on small-scale datasets. Nev-
ertheless, the curse of high dimensionality quickly dampens
such effort for large networks.

We propose an efficient method to utilize random noise
as a proxy, and feedbacks from the white-box model to pre-
dict transferability. Random noise injection finds deep roots
in the defense literatures to certify classifier robustness, e.g.,
learning a smoothed classifier that returns the most probable
class under Gaussian noise [11, 34]. We draw a close con-
nection to adversarial examples, which are found to form a
cone-shape structure surrounded by natural classes [33, 19].
We conjecture their presence in deep hashing has a similar
geometry sketched in Fig.4(a), but with a slight variation:
classes may have minor overlaps due to multi-labeling (A
and B have some overlaps), which are mapped to the vicin-
ity of similar hash codes in the hash space (Fig. 4(b)). For
adversarial image 2’ in class A, it is pushed into the re-
trieval threshold of class B in hash space. Most of the un-
successful transfers to the black-box model are due to sam-
ples being mapped to different sets of hash codes. Out of
the retrieval range, =’ crafted from the source model often
results a hash code with no retrieval results at all from the
black-box model. We formally define the adversarial sphere
below.
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Algorithm 2 Noise-induced Adversarial Generation (NAG)

Input: Target pairs (z,z; € C;), candidate set of noise levels
R, initialize Ao, xo = x, learning rate «.
for each 0 € R do
for iteration k = 1,2,--- do
Sample r; ~ N(0,0%1),i + {1,--- , M}. Update:
@ = projur.c (w1 + - sgn(VaLo(@h 1, Ao, 7))

Ak = Ap—1 +a
end for
Input z}, to Algorithm 1 and output m, M < M + m.
end for
Output 2’ < arg max,c y» M.

OL(w) Ap—1,7)
O .

where
€(0) = argmin Dp(z’,x¢), 4)
e=[lz’ —z[[oo <n
s.t. ,
E,n0,021) [Da(@ +7,20)] < T, )

The inner optimization (4) aims to find the optimal per-
turbation that minimizes the hamming distance between
x' and target ;. (5) stipulates an additional constraint to
keep ' + r targeting at z; as well, where r is drawn from
isotropic Gaussian distribution with the input variance o2
Optimization. We solve the inner optimization (4) first.
This constrained optimization problem can be solved via
Lagrangian relaxation and dual gradient ascent. Denote
9(x") = Byonr(0,021)[Dn (2" + 7, ;)] — Th,. The dual prob-
lem is,

max min (Dh(x', x) + )\Tg(:z:’)). (6)

T

Denote £ as the Lagrangian. z’ can be optimized with pro-
jected gradient descent, and alternatively updating A with
gradient ascent:

T, = DProju. (mﬁc,l + a - sgn(Va L(x)_1, \e—1, T)))

8[’(33;@7 )\k_l, T)

Ak = O\

A1+ (7N
Note that calculating the exact gradient of g(z') in V, L
involves high-dimensional integrals. Thus, we approximate

the gradient with Monte Carlo sampling,

M

Varg(a') Vm/(% > Dp(@ +ri ) 8)

i=1

by taking M samples. For the outer optimization, since
fa, () is unknown, we maximize its expectation based on
Property I in the white-box model. For all 2’ generated by
input noise ¢ € R, we utilize Algorithm 1 to evaluate the
adversarial sphere and keep those 2’ with the largest adver-
sarial sphere. This sanity check is necessary because: 1)
though the Lagrangian relaxation allows the optimization
problem to be efficiently handled in an unconstrained fash-
ion, the penalty only works as a soft constraint and does not
guarantee constraint satisfaction [30]; 2) we only obtain an
approximation of V. g(z"). We cannot increase the number

of samples M indefinitely since each one requires a network
query. In fact, our experiment indicates that M = 1,4, 8 all
work well with great convergence as shown in Sec.6.

6. Evaluation

Experimental Setup. We conduct the experiments on
ImageNet. Following [9], we randomly select 100 cat-
egories and use all the images from these categories in
the training and test set as the database and query, re-
spectively.  Six networks are considered: ResNetlOl,
ResNet152 [17], ResNextl01 [43], SeResNet50 [18],
ResNet34 and DenseNet161 [20]. We develop HashNet
structure into these networks and the result accuracies are:
76.5, 76.1, 77.5, 64.2, 67.3, 64.9% respectively. Though
other networks are also available such as VGG/Inception,
the accuracy of their HashNet-integration is below 50% so
we focus on these six networks.

We set retrieval thresholds 73, = 5, and T,; = 18 for vul-
nerable pairs. For targeted attack, we randomly select 500
images from the test set as the source images (query) to tar-
get all 100 classes (one target image from each class). De-
pending on 7y, we randomly sample 10% vulnerable pairs
from the total 500 x 100 pairs and discard those pairs with
hamming distance already less than 7}, and keep normal
pairs at the same number. An attack is considered to be
successful if it retrieves at least 10 images from the tar-
get class. We set [, to 32, step size « = 1 and 32 it-
erations for crafting the adversarial examples. A is initial-
ized as 1 in Algorithm 2. We compare the proposed Noise-
induced Adversarial Generation (NAG) with four bench-
marks: FGSM [15], PGD [29], Feature-level Activation At-
tack(AA) [23], Diversity Inputs (DI) and Diversity Inputs
with Momentum (DI-Mom) [42] on targeted attacks”.

6.1. Black-Box Transferability

We first demonstrate the attack success rate in Table 2
on the six networks. The vertical and horizontal axes rep-
resent the source and black-box models respectively. The
diagonal blocks are the white-box success rates. For vul-
nerable pairs, NAG can boost the black-box transferabil-
ity by 1.2 — 3%, with an average of 16.85% success com-
pared with the diversity/diversity-momentum method [42]
at 11.33/11.61%, PGD [29] at 11.05% and AA [23] at
9.22%. For normal pairs, NAG generates an average of
1.82% success compared with 0.516%, 0.546%, 0.87% and
0.22% of the four benchmarks respectively. Some model
combinations achieve phenomenal improvements such as
ResNet152 — ResNet101, which yields almost 2 — 3x per-
formance boost.

Note that DI/DI-Mom attempt to reduce overfitting of
the adversarial example to the white-box model via input
diversity. This may undermine their white-box performance

2We do not compare with the Universal Adversarial Perturbation
(UAP) attack here [ ], since it is designed for untargeted attack.
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ResNet101 ResNet152 ResNext101 SeResNet50 ResNet34 DenseNet161
Vul Normal Vul Normal Vul Normal Vul Normal Vul Normal Vul Normal

FGSM 20.6 0.0 8.1 0.0 6.8 0.0 2.5 0.0 5.6 0.0 1.7 0.0
§ PGD 98.0 93.1 12.3 1.6 11.5 0.6 1.5 0.0 14.2 0.4 2.4 0.0
5] AA 99.1 98.5 11.0 0.8 10.2 0.0 0.6 0.0 13.6 0.2 3.8 0.0
% DI 97.2 90.1 13.7 3.0 12.9 0.2 2.3 0.0 15.8 0.4 32 0.0
~ DI-Mom 97.3 88.1 21.7 2.5 11.2 4.0 5.5 1.5 12.1 1.0 4.2 1.2

NAG(ours) 98.7 90.8 22.3 3.1 144 0.6 5.4 0.3 18.2 0.6 4.7 0.0

FGSM 7.6 0.8 28.9 4.6 3.7 0.0 2.3 0.0 9.3 0.0 2.9 0.0
N PGD 13.6 3.6 99.9 100.0 4.9 0.8 3.3 0.1 9.3 0.2 4.9 0.3
E AA 11.6 2.3 99.3 99.9 3.6 0.3 2.5 0.0 8.9 0.1 5.5 0.0
Z DI 14.1 3.8 99.6 98.9 4.0 0.6 2.6 0.0 10.1 0.3 4.9 0.8
&~ DI-Mom 18.3 1.6 99.6 99.5 4.2 1.6 7.2 0.5 10.3 0.3 6.1 1.0

NAG(ours) 24.5 14.4 99.9 99.9 12.5 5.7 6.6 1.5 15.1 3.9 8.4 1.6
_ FGSM 10.1 0.0 11.5 0.0 34.5 0.1 7.2 0.0 13.0 0.0 1.6 0.0
= PGD 11.9 1.2 11.6 0.8 99.9 99.8 9.2 0.1 19.0 0.0 3.6 0.0
% AA 10.3 0.1 10.7 0.0 99.2 99.9 10.4 0.0 21.6 0.33 2.3 0.0
4 DI 10.0 2.1 12.1 1.1 99.1 97.2 9.0 0.0 20.1 0.1 2.8 0.0
~ DI-Mom 12.6 2.1 13.9 0.6 98.7 98.4 9.1 14 17.9 0.4 2.5 0.2

NAG(ours) 21.5 4.0 21.3 4.1 99.9 99.9 15.5 0.3 26.5 2.7 6.1 1.0

FGSM 8.6 0.0 13.2 0.0 11.3 0.0 32.1 0.1 14.2 0.1 5.0 0.0
% PGD 8.4 0.0 9.9 0.0 10.1 0.0 99.5 99.3 15.0 0.0 35 0.0
:2 AA 11.5 0.4 15.6 0.6 14.1 0.0 99.9 99.9 13.9 0.4 6.1 0.0
é DI 8.0 0.0 11.9 0.0 13.3 0.0 99.0 95.6 14.2 0.0 5.0 0.0
3 DI-Mom 5.0 0.0 13.1 0.0 12.0 0.0 99.3 97.0 9.2 0.0 32 0.0

NAG(ours) 11.8 0.0 20.5 0.0 20.1 0.1 99.3 98.5 18.6 0.0 6.2 0.4

FGSM 11.4 0.0 79 0.0 11.3 0.0 7.0 0.0 42.1 32 2.0 0.0
< PGD 12.9 0.0 8.8 1.0 17.8 0.4 5.5 0.1 100.0 100.0 5.7 0.0
E AA 11.5 0.0 6.8 0.0 94 0.0 3.0 0.0 98.9 99.0 33 0.0
@ DI 11.2 0.0 9.3 0.5 17.9 0.4 4.9 0.1 100.0 98.6 5.8 0.0
~ DI-Mom 9.1 0.3 7.8 0.1 21.6 0.5 7.8 0.4 100.0 99.1 4.0 0.0

NAG(ours) 24.1 1.8 22.2 2.4 25.4 1.5 11.0 3.7 100.0 99.1 9.1 0.1
_ FGSM 7.9 0.0 7.3 0.0 7.2 0.0 6.3 0.0 129 0.0 7.9 0.0
o PGD 20.2 04 30.0 0.0 17.5 0.0 9.8 3.9 23.4 0.0 94.8 84.4
E AA 3.8 0.0 9.0 0.0 12.4 0.0 11.6 0.0 18.1 0.0 99.6 99.8
0 DI 26.6 0.0 17.6 0.0 19.0 0.0 10.2 3.0 27.6 0.0 100.0 84.8
5 DI-Mom 26.8 0.0 21.9 0.0 21.7 0.0 8.9 5.0 19.6 0.0 100.0 89.0
A NAG(ours) 32.0 0.0 19.4 0.0 23.2 0.0 11.7 0.8 27.5 0.0 100.0 79.2

Table 2: Attack success rates (%) of vulnerable/normal pairs. The diagonal blocks indicate the white-box success rates.

compared to PGD as observed in the diagonal blocks. Nev-
ertheless, NAG does not generally come with such a sacri-
fice. We also observe that the success rates are essentially
higher under the same family of ResNet. This is expected
and consistent with the previous works [42, 26] because the
cosine similarity of gradient directions is much higher than
that of a different family [26]. Finally, note that we adopt
a strict retrieval threshold of 5. If the application permits
larger T}, the corresponding hamming ball would be pro-
portionally larger, so as the black-box transferability rates.

Convergence of Adversarial Loss. To see how NAG meets
the objectives, we pick a representative model pair and trace
the loss convergence by averaging the generation of all the
adversarial examples shown in Fig.5(a). For clarity, we plot
the normalized ||d(z’, z+)||1 » ||g(2z")||1 and the total loss in
Eq. (6), which are proportional to the hamming distance.
All of them can converge in the white-box source model.
Initially, ||g(z')||1 is larger than 0, indicating that constraint

Convergence of loss functions Trace of Hamming Distance with NAG

— Total Loss
1.2 IldxxIl

lackbox
Adv+noise to tar(blackbox)

190l

Hamming Dist

Widening gap in
black-box model

Loss value

5 10 15 20 25 30 5 10 15 20 25 30
NAG lterations NAG lterations

(a) (b)
Figure 5: Trace of adversarial loss curves and effectiveness
of NAG in white/black box. (a) Trace of loss curves. (b)
Trace hamming distance of successful transfers.

(5) has not been satisfied yet, i.e., r pushes =’ out of the
adversarial region. As learning progresses, the distance be-
tween =’ + r and x; approaches T},. Fig.5(b) shows the
trace of hamming distance of (2, z;) and (2’ + r, z;) in the
white-box and black-box models. As NAG attempts to push
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