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ABSTRACT

We compare real and complex dynamics for automorphisms of rational surfaces that are obtained by lifting

some quadratic  birational  maps of  the  plane.  In  particular,  we show how to  exploit  the  existence of  an

invariant cubic curve to understand how the real part of an automorphism acts on homology. We apply this

understanding to give examples where the entropy of the full (complex) automorphism is the same as its real

restriction. Conversely and by different methods, we exhibit different examples where the entropy is strictly

decreased by restricting to the real part of the surface. Finally, we give an example of a rational surface

automorphism with positive entropy whose periodic cycles are all real.
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1. Introduction

Any automorphism of the complex projective plane P2 is a linear projective transformation. If one blows

up sufficiently many points in P2, however, the resulting rational surface  sometimes admits an

automorphism  with much more interesting dynamics.  This  was known already in some

sense by [Coble 39], but recent papers ([Bedford and Kim 06, Blanc 08], [Cantat 10,  Example 9.4],

[McMullen 07], etc) furnish new constructions and many more examples. Many of these automorphisms

are  “real”,  in  the  sense  that  the  points  blown  up  lie  in   and  the  automorphism

 restricts  to  a  diffeomorphism  of  the  real  two-dimensional

submanifold of X lying over .

Our purpose in this article is to compare the real and the complex dynamics of such automorphisms.

Since  dynamical  complexity  of  a  diffeomorphism f  is  usually  quantified  by  its  topological  entropy

, we consider in particular whether  for a real automorphism 

on a blowup X of P2. When this happens we say that fR “has maximal entropy”. While our results are

limited to particular families of examples, they indicate a range of possibilities, give reasonable methods

for  verifying  or  disproving  equality  of  entropy,  and  raise  some  interesting  questions  for  further

investigation.

Any quadratic plane birational map has at most three distinct indeterminate points. Here, we restrict

attention to those which are non-degenerate in the sense that they have exactly three such points. That is,

we  consider  quadratic  birational  maps  of  the  form  ,  where   is  linear  and

 is  the  standard  quadratic  involution,  presented  in  homogeneous
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coordinates. Because of the second factor,  contracts each of the lines , j = 1, 2, 3, to a

distinct point in P2, and  is indeterminate at the points 

where the lines meet pairwise. Suppose that T  is somehow chosen so that there are positive integers

 and a permutation  for which all points , are distinct and

(1)

Then if  is the blowup of P2 at all points , j = 1, 2, 3 and  in the

three critical orbits, the birational map  lifts to an automorphism . We call 

orbit data and say that the data is realizable if the linear map T can be chosen so that (1) holds.

Note that if the linear map T is real then so are the critical orbits and the map f. In particular, f restricts

to  a  diffeomorphism   of  the  compact  real  surface

. Our first result is:

Theorem  A One  can  choose  a  real  linear so  that  the  map lifts  to  an

automorphism such that . This happens in particular for some T so

that realizes one of the following sets of orbit data:

• is cyclic, and ;

• is cyclic, .

For the first set of orbit data, this theorem was established by Bedford and the second author in [Bedford

and Kim 09]. The methods there were somewhat ad hoc. Our proof here is more systematic and relies on

two important inequalities that bound the entropy of a map in terms of the induced pushforward action on

homology. Specifically, we use the inequalities

where ρ denotes spectral radius and  are the induced linear actions on  and

, respectively. The first and last (in)equalities are due to [Yomdin 87] (see also [Manning 75]

and [Gromov 03]). Together, they imply that fR will have maximal entropy when  expands homology

classes of real curves as fast as f* expands homology classes of complex curves.

It is not difficult to write f* down explicitly in the present context, but sign issues make it more difficult to

find . There is no natural orientation for closed curves in X(R) that will be respected by . To

cope with this we impose an additional condition on  that has proven important in earlier work ([Diller

11, McMullen 07, Uehara 16a]) for guaranteeing that (1) is satisfied. Namely, we require that all critical

orbits  of   lie  on  an  -invariant  cubic  curve  C.  This  additional  condition  allows  us  to  resolve

orientation issues and thereby effectively compute .

While the work devolves into analysis of various cases, we are finally able to compute the action 

for automorphisms arising from essentially any orbit  data that  can be realized by a non-degenerate

quadratic birational map that fixes the curve C. More often than not, it turns out that 

so that the above method does not tell us whether or not  has maximal entropy. In fact, in some cases

 while  the  real  action   is  periodic.  That  is,   is  positive,  whereas  since
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, we cannot infer the same for . We do not know whether  actually does

vanish in any particular case, but we can at least show that  sometimes fails to be maximal.

Theorem B One can choose a real linear so that lifts to an automorphism

such that .  This happens in particular when T is  chosen so that

realizes the orbit data .

Our proof of this theorem relies on a different set of ideas. On the one hand, when , it is

known from the work of [Bedford et al. 93] and [Cantat 99] that there is a unique (necessarily ergodic)

f-invariant measure μ with maximal metric entropy . It is also known [Cantat 14] that

the support of μ includes every saddle periodic point of f whose stable and unstable manifolds are not

algebraic. On the other hand, [Newhouse 89] showed that every real surface diffeomorphism admits

some invariant measure of maximal entropy.

To prove our second theorem, we show that the given orbit data are realized by a map  with

two saddle fixed points outside the set of real points X(R). The nature of the fixed points is established by

direct  computation based on an explicit  formula for  fR.  In  joint  work  with  [Bedford et  al.  15],  we

explained how to find such a formula. Again, our construction of f produces an underlying birational

map  with a (real) invariant cubic curve. The presence of the invariant cubic essentially rules out other

invariant curves, so that in particular the stable and unstable manifolds of the complex saddle points are

transcendental. Since these fixed points must lie in the support of μ, any measure of maximal entropy for

fR must differ from μ. Uniqueness of μ further implies that the entropies of fR and f differ.

Our third result,  not  included in an earlier version of  this  article,  answers a question posed by the

referee.

Theorem C There exists a rational surface automorphism with positive entropy such that

all periodic cycles of f lie in the real locus .

We prove this for the automorphism f associated to orbit data 2, 4, 5, id. As in the cases considered in

Theorem A,  the  restriction   of  f  has  maximum possible  homology  growth  and

therefore maximal entropy. The general strategy is to compare the counts of real and complex periodic

points of f by applying the Lefschetz fixed point formula. The count of real points is more complicated,

because X(R) is non-orientable, which leads us to work on the orientation double cover 

rather than directly on X(R).

Sections 1 and 2 of this article present some necessary background about entropy and homology and then

about the quadratic birational maps and associated surface automorphisms of interest here. Section 3

shows how to compute the action  for such an automorphism

when it preserves a cuspidal cubic C. The proof of Theorem A is given here. Section 4 gives the proof of

Theorem B, and Section 5 contains the proof of Theorem C.

Clearly there are many interesting questions left open. Not only is the set of automorphisms we consider

very limited, even the underlying real surfaces we allow are rather restricted, omitting not only irrational

surfaces but even many rational surfaces with a natural real structure, e.g. surfaces obtained by blowing

up pairwise conjugate complex points in . We note in particular some interesting work of [Moncet

12], involving a very different set of ideas, that allows him to compare real vs. complex entropy for real

automorphisms of various irrational surfaces.

There is more to be understand even for the examples we consider here. It is natural, for instance, to seek

a more detailed description of the dynamics of fR when . And in the other direction,

we would like to know whether both inequalities in the chain 

must be strict whenever one of them is. We discuss these and other interesting open problems at a greater
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1.1 Entropy and homology

In this section and the next, we give some necessary background. It is standard to quantify the dynamical

complexity of a continuous map  on a compact metric space M in terms of its topological

entropy htop(F). Readers unfamiliar with entropy can consult [Katok and Hasselblatt 95] for a precise

definition  and  a  thorough  development.  For  our  purposes,  however,  it  will  suffice  to  recall  some

important and deep connections between the entropy and homology. The first is due to [Yomdin 87] (see

[Manning 75] for the case of first homology).

The following complementary result of [Gromov 03] tells us that in the Kähler setting, the inequality

in Theorem 1.1 is actually an equality.

length in the concluding Section 6. The appendix gives an exhaustive summary of our computation of

 for arbitrary sets of orbit data.

We  thank  the  referee  for  an  especially  thorough  reading  and  many  constructive  suggestions  for

improvements.  They have greatly improved this article.  We thank Eric Bedford for offering his ideas

about  counting  periodic  points  for  maximal  entropy  automorphisms.  These  were  essential  to  us  for

proving Theorem C.

Theorem  1.1 Let be  a -smooth  self-map  of  a  compact  connected  differentiable

manifold.  Let denote  the  spectral  radius  of  the  pushforward  action

on the total real homology of M. Then

When  M  is  a  real  surface  and  F  is  a  diffeomorphism,  we  have  that on and

. Hence, .

Theorem 1.2 Let be a holomorphic self-map of a compact Kähler manifold. Then

When M is  a compact  Kähler  surface (i.e.  )  and F is  an automorphism,  we have that

 on  and . Hence, ; i.e. it  suffices to consider

only k = 1 in Theorem 1.2.

As explained in the introduction, we are interested in M equal to either X or X(R), where  is

the blow up of finitely many distinct real points , and

is the set of real points of X. In this case,  (and therefore also ) is generated by the

homology classes of the exceptional curves  together with the class of , where

 is any line disjoint from the points pi.

Since each , we have that  is a smooth circle ei, the projectivization of the real
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tangent  space   at  pi.  Again  the  homology  group   is

generated by the circles ei and the class of a generic real line . Indeed, the ei generate the free part of

the homology and therefore all of . However, in contrast with the complex situation in

which both X and the exceptional curves Ei, carry canonical orientations, the real surface X(R) is non-

orientable,  and  there  is  no  natural  way  to  orient  the  exceptional  circles  ei  within  X(R).  Moreover,

different choices of generic real line  can give rise to different homology classes (see Proposition 1.3

below).

We impose the further condition, whose purpose becomes clearer in the next section, that all  pj  are

regular points on the cuspidal cubic curve

(2)

If  we identify   with  the  line  at  infinity  in  P2  and let   denote  affine

coordinates on the complement,  then the cusp  is  the unique point at  infinity for C,  and  the

regular part  of C is parametrized by . We identify C and its real slice

 with their strict transforms in X and X(R), respectively. The parametrization γ
provides an orientation for , and it is convenient to give all circles ej the “clockwise” orientation

relative to affine coordinates (x, y).

Let  be a real line in , and suppose  is not the line at infinity. If  is vertical, we

orient  in the downward direction, and if not, we orient  from left to right. As with complex curves in

P2, we implicitly identify the real curve  with its strict transform  in X(R). As a curve in

, the line  meets C in either 1 or 3 points, counting with multiplicity. The next fact gives us a very

convenient description of the homology class of  in X(R) in terms of the locations of these intersections.

We will say that  for two points  if  with .

Proposition 1.3 Let be any real line which is distinct from the line at infinity. The homology

class of in is given by

where,

Figure  1  illustrates  this  proposition  in  a  caricatured  style  we  will  use  throughout  this  article.  For

emphasis and the sake of keeping things visually separated, we will always draw the cubic  as

horizontal line in affine space . Any real line different from the line at infinity will appear as a

dashed curve intersecting  at various points. In Figure 1,  consists of three (real) points.

None of these precedes p1, one precedes p2 and p3, two precede p4, and all three precede p5. Hence,

.
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Proof. First note that any vertical line in  is homotopic in X(R) to nearby lines  with negative

slope and the same single point of intersection with C. So, we can assume without loss of generality that

 is not vertical. Next, observe that removing intersections with  decompose the regular (i.e. finite) part

of  into two or four connected components (the second or third will be empty if  is tangent to

 at some point), the leftmost below , the second above  and so on. From these observations, one

sees that the proposition is equivalent to showing that

(3)

To establish this last statement, assume for the moment that  does not contain any of the points pj. Let

 denote  the  line  at  infinity,  oriented  so  that  the  “upper”  connected  component

 has boundary . For each , let  be a small clockwise

circle centered at pj. Let  denote the region obtained from U+ by removing the disks bounded by the

uj. Then, .

After we blow up all the pj, the open set U+ lifts to an open set  containing exceptional circles ej in

place  of  the  points  pj,  and  each  circle  uj  is  homotopic  to  .  It  follows  that

. Therefore, in X(R), we have that

We also have that   is  null-homotopic in .  Hence,   is  homotopic to  in X(R).

Putting these relations together proves (3).

If  contains a point pj, one argues similarly. The only difference is that,  bisects the circle uj. Hence,

one of the connected components of  consists of  and the upper half of bj, both with coefficient –1.

As the radius of bj tends to zero, the upper half of bj shrinks in X(R) to a single copy of ej. Hence, in the

limit

Figure 1. Homology class of a finite real line. The center horizontal line represents the cuspidal cubic C and the

dashed curve represents a real line  that meets C in three distinct points. Filled circles are points blown up to

create the rational surface X.
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2. Automorphisms from quadratic birational maps

As  indicated  in  the  introduction,  our  focus  will  be  on  automorphisms   on  blowups

 associated to certain quadratic birational maps of P2. Such automorphisms are explored at

length in [Diller 11] and [Bedford et al. 15]. Let us summarize the notation and results that we need from

those articles.

Let   be  a  quadratic  plane  birational  map,  non-degenerate  in  the  sense  that  it  is

indeterminate at three distinct points in P2. That is,

(4)

where,   are  linear  and  J  denotes  the  standard  quadratic  involution  given  in  affine

coordinates by . Such f are Zariski dense in the set of all quadratic birational maps.

The  map  J  acts  on  the  triangle  with  vertices   by

contracting each side to the opposing vertex. However, J is indeterminate (i.e. not continuously defined)

at the vertices themselves, instead blowing up each to the opposite side of the triangle. Away from the

triangle, J is a diffeomorphism. Now let  and  denote the vertices and opposite sides,

respectively, of the images of the critical triangle for J by T+ and T–. Then  is critical for  with

, and  is indeterminate for  with .

Note that here and elsewhere,  we employ the convention that for any curve ,  the image

 omits the images of any indeterminate points on V; i.e.  is the set

of theoretic “strict transform” of V.

We  will  always  assume  that  the  linear  maps   defining   are  real,  i.e.  that  they  restrict  to

automorphisms of . For purposes of this article, we call such an  a basic real map. Note that 

can be linearly conjugated to a map of the form  (where ) used in the introduction.

Let C be the cuspidal cubic curve defined by (2) above. We will say that a birational map f properly

fixes C if  and none of the indeterminate points  are the cusp of C. Our interest in C begins

with the fact that there are many basic real maps that properly fix C, and that there is an easy way to

characterize them.

Using the further relation  to eliminate  also eliminates all ej in the second sum.□

⤏

Proposition 2.1 ([Diller 11, Theorem 1.3]) Let be a quadratic birational map. Then g

properly fixes C if and only if all indeterminate points of g and are contained in Creg.

When   properly  fixes  C,  it  necessarily  fixes  the  cusp  of  C  and  therefore  also  the  complement

.  Thus,   restricts  to  an  automorphism   given  by

 for  constants   and  τ.  When   is  real,  then  of  course   and

.  Following  [McMullen  07],  we  call  δ  the  determinant  of  .  This  is  because

, where ω is the unique (up to constant multiple) meromorphic two form on X with divisor

⤏
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equal to – C.

Proposition  2.2 Suppose properly  fixes  C  and  that  there  exist  integers and  a

permutation such that

• for all , the point is not indeterminate for ;

• .

Then lifts to an automorphism , where is the blowup of P2 at the points

, j = 1, 2, 3.

Note that the hypotheses of the proposition imply that the points  are all distinct. We refer to the

positive integers  and permutation σ  collectively as orbit  data and say that the map  in

Proposition  2.2  realizes  this  orbit  data.  From  the  orbit  data,  one  easily  determines  the  action

.  Specifically,  if   denotes  the  exceptional  curve  obtained  by

blowing up the point , then f* acts by

(5)

where, L is (the homology class in X of) a general line in P2. This suffices for describing f* because of the

further homology relation . This last relation expresses (for )  the fact  that

each exceptional line of a basic real map contains two of the map’s three indeterminate points.

Because the operator f* depends only on the orbit data realized by , it makes sense to talk about the

characteristic polynomial associated to any given orbit data regardless of whether or not it is realized by

some basic map. The characteristic polynomial [Diller and Favre 01] has at most two, necessarily real,

roots  outside the unit circle. If these roots exist, then .

Theorem 2.3 ([Diller  11,  McMullen  07])  Let be  a  basic  real  map  satisfying  the  hypothesis  of

Proposition  2.2.  Then  the  determinant  δ  of is  a  real  root  of  the  characteristic  polynomial  of

.  For  real ,  there  is  an  affine  change  of  parameter

) such that is the unique fixed point of fC different from

the cusp, and the indeterminate points of are given by where

• if ;

• if σ exchanges i and j;

• if is cyclic.

Conversely,  given orbit  data and a  real  root of  the  associated  characteristic

polynomial,  suppose  that  ti  are  given  by  the  above  formula.  If  the  parameters

are all distinct, then there is a basic real map, unique up to linear

conjugacy, that properly fixes C and realizes the orbit data .

We note regarding the second half of this theorem that it is difficult to tell in general when the parameters

of interest are distinct. This issue is discussed at length in [McMullen 07] and [Diller 11]. In fact, even
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3. Homology growth for real automorphisms

Let  be a basic real map that properly fixes the cuspidal cubic curve C and realizes the

orbit  data   with  determinant  δ > 1.  Then  by  restriction,  we  have  an  associated

diffeomorphism  of  the real  slice  of  X.  Our  goal  in  this  section is  to  give  an

effective means to work out the pushforward action .

We  begin  by  making  an  observation  that,  while  not  needed  in  the  remainder  of  the  section,  is

interesting  in  its  own right  and will  be  useful  to  us  in  Section  5.  Recall  that  a  polynomial  P(t)  is

reciprocal if . If P(t) is the characteristic polynomial of an invertible linear operator

T, then  is the characteristic polynomial of . Hence, P is reciprocal if  is conjugate

to T.

when the parameters are not distinct, one can find a (possibly degenerate) quadratic birational map that

properly fixes C with the correct determinant δ and whose indeterminate points have forward fC orbits

described by the parameter values ti in Theorem 2.3. For instance, if , one obtains a

quadratic birational map  for which all three indeterminate points coincide and map under  to the

lone (triple) indeterminate point for . The map is in fact independent of the permutation σ. However,

in a strict sense, elaborated more fully in the discussion around Theorems 3.5 and 3.6 in [Diller 11], this

map correctly realizes the orbit data only for the case .

Theorem 3.1 The characteristic polynomial of is reciprocal, equal to that of .

As  is  well-known,  intersection  theory  considerations  imply  that  the  characteristic  polynomial  is

reciprocal  for  the  action   associated  to  the  ambient  complex

automorphism. The problem with  is  that the real surface X(R)  is  non-orientable,  so that  one

cannot employ intersection theory directly.

Proof. Since C is f-invariant, the real map fR restricts to a diffeomorphism on the open set . We

claim  that  the  inclusion  map   induces  an  isomorphism

.  To  see  this,  recall  that  in  affine  coordinates  (x,  y),  the

regular  part  of  C is  the  set  .  Note  that  the  image of   includes  the  class  of  the  proper

transform  of  each real horizontal line  that passes through a point 

blown up to obtain X. By Proposition 1.3, the set  of  such lines is  independent in and

therefore generates . On the other hand, the open set  can be retracted onto the

union of precisely these lines, all of which meet at a single point in .  Hence, their classes

generate , too, which proves the claim.

It  now  suffices  to  show  the  characteristic  polynomial  is  reciprocal  for  the  action  of   on

.  The  advantage  is  that   is  orientable,  with  volume form given  by  the

restriction of the real meromorphic two form ω on X with a simple pole along C. Hence, there is a well-

defined  and  non-degenerate  intersection  form   on  .  Since  ,  the

diffeomorphism fR preserves orientation on  and therefore also the intersection form. That is

 is  the intersection adjoint  of   on .  Linear  operators  are

conjugate to their adjoints, so  and  have the same characteristic polynomials.□
Continuing to use the notation from the previous section, we let  denote the real

slice  of  each  exceptional  curve  for  the  blowup .  We give   the  “clockwise”  orientation

described in Section 1. Similarly, we let  denote the (strict transforms of the) real

lines obtained by intersecting the critical lines of  with X(R). Each of these meets C at two of the
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points . Hence, each intersection  contains three distinct points, all in . In particular,

 is neither the line at infinity nor any vertical line. By our convention above, all  are oriented from

left to right in .

The hypotheses that  properly fixes C with positive determinant implies that the restriction fC preserves

orientation along . Hence, at any non-indeterminate point , we have that  preserves the

two-dimensional orientation on  if and only if locally near p,  preserves the two components of

. When this happens, we say that  is orientation-preserving at p, even though  is

non-orientable.

Proposition 3.2 For each that  is  not  indeterminate  or  critical  for  f,  we have that is

orientation preserving at p if

is even and orientation reversing otherwise.

Keep in mind here that there are only six indeterminate points  in total for f and ; also that

 is a point for each , even though  is indeterminate

for .

Proof. We claim first that  is orienation preserving at all  near the cusp, i.e. near the line at

infinity. This can be seen by employing new affine coordinates  identifying the cusp

with  (0,  0)  and  C  with  .  The  fact  that  near  ,  the  map   is  a  local

diffeomophism preserving  means that the differential  is diagonal of the form

Indeed,  is just the determinant of . It follows for all  near (0, 0) that  must

preserve the two components of the complement of . Conjugating back to our old affine

coordinate, we find that  preserves orientation about any point  close enough to infinity.

Moreover,   cannot  change from orientation  preserving to  reversing or  vice  versa  except  at  points

, where  is singular or undefined, so it remains to understand what happens near points

where  is critical or indeterminate.

Let us consider first the case when p moves past a non-indeterminate critical point  for .

That is,  is the unique non-indeterminate point in  for some . We can

choose  local  coordinates  for  source  and target  that  identify  q  and  with  (0,  0),   with  the

horizontal axis oriented from left to right, and  with the vertical axis so that points above  in

affine coordinates are above the horizontal axis in local coordinates. Since , it follows that (1, 0) is

an eigenvector for  with positive eigenvalue at all points  on the horizontal axis. On the

other  hand,   has  a  simple  zero  along  the  vertical  axis,  so  the  remaining  eigenvalue  of

 changes sign as x passes 0 and the eigenvector for this eigenvalue is transverse to the horizontal

axis. It follows that the effect of  on orientation switches as  passes ; i.e. if  the
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differential preserves the upper and lower half planes for x < 0, then  reverses the half planes

when x > 0, and vice versa.

Similarly, the effect of  on orientation switches whenever p moves past a point . But this is

the same as saying that  changes effect on orientation when p moves past an indeterminate point .

All told, by decreasing the parameter of  to , we see that  preserves orientation at p

precisely when there are even number of indeterminate or critical points  in between.□
In order to understand the induced action  on  it suffices to know what happens to

the real exceptional curves . The following result, together with Proposition 1.3 gives a practical

means for extracting this information from given orbit data.

Theorem 3.3. The action is given on generators by

• ,  where the sign is positive if  and only if  the unique non-indeterminate point

in is preceded (in ) by an odd number of the three indeterminate and

critical points for in ;

• if ,  then ,  where  the  sign  is  positive  if  and only  if is

preceded by an even number of indeterminate and critical points for ;

• , where the sign is positive if and only if is preceded by an

odd number of the three indeterminate and critical points for in .

Proof.  We  deal  with  the  second  item  first.  Since   for  ,  we  have

.  As  identifies with the projectivization of  the tangent space at  ,  the  sign  is

determined by whether or not  preserves orientation at , i.e. by the criterion in Proposition 3.2.

Hence, the criterion for the sign of  in this theorem follows directly from that one.

The  arguments  for  the  first  and  third  items  are  similar,  so  we  deal  only  with  the  first.  The  real

automorphism  maps  diffeomorphically onto . So , and

the sign will  be determined by the image of  the forward tangent vector v to  at  the unique non-

indeterminate point  of .

Moreover, to understand the image of v it is perhaps easier to consider the image of a parallel translate 

originating from a point  slightly preceding . If  points above  at

,  then  the  fR  maps   about   in  a  clockwise  fashion,  i.e.  .  Otherwise

.

Hence, the sign of  will be positive if and only if we are in one of two cases:

•  itself points above  and  is orientation preserving at p;

• or  points below  and  is orientation reversing at p.

Since any non-vertical line passes above all points  with , we have that  points

above   if  and  only  if   lies  between  the  other  two  points   in  the

intersection . So one infers the first item in the present theorem from these observations and

Proposition 3.2.□
We now prove  Theorem A by  applying  Theorem 3.3  to  the  relevant  orbit  data.  Let  σ  be  the  cyclic

permutation  (123).  Using the  fact  that  parameters  for  the  indeterminate  points  of   is  given  by
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3.1 The Coxeter case

In  this  subsection,  we  deal  with  the  first  case  of  Theorem A.  That  is,  we  fix  our  orbit  data  to  be

 and  cyclic. This situation is of particular interest (see [McMullen

07])  because  it  corresponds  to  the  so-called  Coxeter  element  in  a  certain  infinite  reflection  group.

Regardless, the characteristic polynomial (6) specializes to

(7)

Take  to be the largest real root of χn.

To obtain a realization  of our orbit data and then understand the action  of the associated

automorphism ,  we  need  to  understand  how the  critical  orbits  of   must  be

distributed  along  C.  In  this  case,  these  are  ,  and

.

rational functions of a root t of the characteristic polynomial and their sum is equal to t – 2, we see the

characteristic polynomial associated to any orbit data of the form  is given by (see Theorem

A.1 in [Bedford and Kim 04] and Equation (2) in [Diller 11])

(6)

Proposition  3.4 The  characteristic  polynomial  χ(t)  has  a  real  root if  and  only  if

. In fact, this root is increasing in each of the orbit lengths nj.

Proof.  One easily  computes  from (6)  that   and .  So

when , it follows from the intermediate value theorem that χ has a real root between

1 and 2.  On the  other  hand,  it  follows  from general  geometric  considerations  (see  e.g.  [Diller  11,

Proposition 2.2]) that all roots of χ(t) have magnitude 1 whenever .

Since χ has at most one root δ > 1 (see [Diller and Favre 01, Theorem 0.3]), it follows (when δ exists) for

t > 1 that  if  and only if .  Thus, it suffices to show that if δ > 1 is a root of χ(t), then

, where  is the polynomial obtained from (6) by replacing n1 with . In fact,

□

Lemma 3.5 When , there exists a basic map realizing the orbit data and properly

fixing the cuspidal cubic C with determinant δ > 1. If pfix is the unique (finite) fixed point of fC, then we

may suppose that for all i = 1, 2, 3. Moreover,

Proof.  Suppose  for  the  moment  that   is  the  realization  we  seek.  Theorem  2.3  tells  us  that  the
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Lemma 3.5 and the fact that fC preserves order  along C implies that the (extended) critical orbits of

f are ordered as shown in Figure 2. From the figure, Theorem 3.3, and Proposition 1.3, we can easily

deduce the action .

parametrization  of C can be adjusted so that  and the indeterminate points of  are

given by , where

for .  In particular  for each i.  Since ,  we see that .

Since , we see that  for each i, too.

The formulas for the parameters ti also yield

where, . That is,  and , as asserted.

Finally, note that these computations show that the parameters t1, t2 and  are distinct for all .

Hence, the last part of Theorem 2.3 ensures the existence of the realization  we have so far taken for

granted.□

Figure 2. Critical orbits for the basic map realizing orbit data n1 = n2 = 1, n3 = n, σ = (123). The center horizontal

line  represents  the  cuspidal  cubic  C.  Dashed  curves  are  the  real  lines  ,  i = 1,  2,  3.  Hollow

circles/squares are points blown up to obtain the surface X. Unlabeled solid circles and rectangles represent the

images  and  along C of forward and backward indeterminate points.

Corollary 3.6 The action is given by
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3.2 The second case of Theorem A

The orbit data  can be dealt with in the same fashion, so we only

summarize. The characteristic polynomial for this orbit data is given by

Again taking δ > 1 to be the largest root, and letting  be the unique finite fixed point of

fC, one deduces the following analog of Lemma 3.5:

Proof.  Since,  for  instance,   and  ,  we  have  that  ,  and  therefore

. The third item in Theorem 3.3 tells us that the sign is determined by how many of the

three points  precede . In Figure 2, these are the

intersections of  with  away from . Precisely one of them  precedes  (the

leftmost  point  in  ),  so  Theorem 3.3 tells  us  .  From Figure 2  again  and

Proposition  1.3  it  is  further  evident  that  .  This

completes our computation of . The images of  and  are computed in the same way.

To  find   for  ,  we  note  from  Figure  2  that  there  are  even  number  of

critical/indeterminate points in  preceding  unless  or . So the second item

in Theorem 3.3 implies the formula for  given in the present corollary.□
From  Corollary  3.6  one  can  write  down  the  matrix  for   relative  to  the  generators   for

 and compute the characteristic polynomial for  directly from that. An important

point, here and elsewhere, is that regardless of n, the matrix is triangular outside of three columns (those

corresponding to , and ). Hence, the same few row operations suffice in all cases to put the

matrix for  in diagonal form outside these three columns. Comparing with (7), one then verifies

that  the  characteristic  polynomial  of   is  equal  to

.  In  particular,  the  spectral  radius   is  the  same  as  that  of  the  action

.  It  follows  from  the  entropy  bounds  of  Yomdin  and  Gromov  that

, i.e. Theorem A holds for Coxeter orbit data.

Lemma 3.7 There exists a basic map that properly fixes C and realizes the orbit data

with determinant δ.  If  pfix  is  the unique (finite) fixed point of fC,  then for all  i = 1, 2, 3.

Moreover,
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4. Real maps with non-maximal entropy

In this section, we prove Theorem B, relying on the following fact. It was proven by [Bedford et al. 93]

for polynomial automorphisms of , but later foundational work of [Cantat 99], [de Thélin 04]  and

[Dujardin 04] allows one to easily adapt the proof to real automorphisms of compact complex surfaces.

Theorem B is an immediate consequence of Theorem 4.1 and

Proposition 3.4 tells us that when  this polynomial has a (necessarily unique) real root δ larger

than 1 and that this root increases with n. From the formula for χn, one sees that the limiting value of δ as

 is the largest real root of . The monotonicity assertion in Proposition 3.4  therefore

implies  that  the  δ  lies  between the  largest  roots  of  χ4  and  of  ,  i.e.  by  finding  these  roots

numerically,  for all .

Let us note further that t = 1 is always a simple root of χn,  since  and

.

The existence of the basic map  in Theorem 4.2 is proved along the same lines as it  was for

Coxeter orbit  data in Lemma 3.5.  This time,  the ordering of the critical  orbits  is  determined by the

inequalities

This Lemma allows one to work out the action of  on generators of , and a little

further  computation  then  shows  as  before  that  the  characteristic  polynomials  of   and  of

 differ by a factor of t – 1.□
In  the  appendix  to  this  article,  we  give  the  analogs  of  Lemma 3.5  for  all  possible  orbit  data  with

 cyclic. This leads to a general expression for the characteristic polynomial for  in the

cyclic case. We also comment on the remaining possibilities for the permutation:  and σ = (12) a

transposition.

Theorem 4.1 ([Cantat 14, Corollary 8.3]) Let be an automorphism on a blowup

of the complex projective plane. If f is real, then if and only if all saddle periodic

points of f are contained in X(R) or in f-invariant algebraic curves.

The theorem proceeds in turn from the existence and uniqueness of a measure of maximal entropy for f on

X, and the additional property that support of the measure contains all the saddle periodic points of f

outside periodic curves. The survey [Cantat 14] gives a good detailed account.

Theorem 4.2 For every and cyclic, there exists a basic real map , unique up to

linear conjugacy, that properly fixes C with determinant and realizes the orbit data . The

associated automorphism has two complex fixed points in but no invariant

algebraic curves other than C. When n is large enough the complex fixed points are saddles.

For the orbit data in the Theorem, the characteristic polynomial (6) specializes to

(8)
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and  is  displayed  in  Figure  3.  From  now  on   will  denote  the  complex  surface

automorphism obtained from  by blowing up the critical orbits of fn.

Figure 3. Critical orbits for the basic map realizing orbit data . The center

horizontal  line represents the cuspidal cubic C.  Dashed curves are the real lines ,  i = 1,  2,  3.

Hollow  circles/triangles/squares  are  points  blown  up  to  obtain  the  surface  X.  Unlabeled  solid  circles  and

rectangles represent the images  and  along C of forward and backward indeterminate points.

Lemma 4.3 The only fn invariant algebraic curve is C. Counting multiplicity, there are four fixed points

for fn, exactly two of which do not lie in C.

Proof.  The  homology  class  of  any  fn  invariant  curve  is  also  invariant,  i.e.  it  is  an  eigenvector  of

 with eigenvalue 1. Let V be an fn invariant algebraic curve. Since C

is invariant and 1 is a simple root of χn, it follows that the homology class of V is a multiple of the

homology class of C. However, the self-intersection of C is , where N is the number of points in C

that are blown up. Since  under the hypotheses of Theorem 4.2, . It follows that V itself

(i.e. as a divisor) must be a multiple of C.□
To count fixed points, we appeal to the Lefschetz formula [Griffiths and Harris 94, Chapter 3.4] which

tells us for automorphisms of complex rational surfaces that the number of fixed points of f, counted with

multiplicity, is two more than the trace of .  This trace is 2, i.e. the

coefficient of t in the polynomial h in the formula for χn. Since  has two fixed points and fixed points

for holomorphic maps always have positive multiplicity, this leaves two fixed points in the complement of

C.

Restricting fn  to a diffeomorphism  on the real slice  of Xn,  one computes the action on

 as in Corollary 3.6. Following the method of the previous

section, one finds that the characteristic polynomial  of  is given by

(9)

Though it is not necessary for the proof of Theorem 4.2, we include the following by way of contrast to

Theorem A.

Proposition 4.4 For , the spectral radius of the real homology action of is strictly smaller

than the dynamical degree of fn.

Proof. The proposition can be checked by direct numerical computation for n = 4. When n = 5, one also
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4.1 Complex saddle fixed points

To complete the proof of Theorem 4.2, it remains to show that the two fixed points of  that do not lie

on C are actually saddle fixed points outside . For this, we resort to an explicit formula for .

The method for obtaining the formula is explained in [Bedford et al. 15]. Here, we record only the result.

Namely, up to real linear conjugacy, , where J is, as before, the standard quadratic involution

and  is given by

verifies numerically that . From Proposition 3.4, we infer that  for all n > 4. To finish the

proof, we will show that all roots of  lie inside the disk 

Again, for n = 5, 6 this can be verified numerically. When , we resort to Rouche’s Theorem. For

, we have

and

Notice that . It follows that if , for  we have

The polynomial  has one real root  and the moduli of the non-real complex roots of

 are   and  1.185.  Thus,  every  root  of   lies  in  B.  Since

, it then follows from Rouché’s theorem that every root

of  has modulus smaller than 1.5.□

Remark 4.5 Adapting the argument in Section 2 of [Gross et al. 09], one can show for all that

is  separable,  i.e.  all  roots  are  simple,  and  that  the  only  possible  cyclotomic  factors  of are

and . It follows that has a root outside the unit circle for all .

Hence, by Yomdin’s bound, is strictly positive.
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To proceed, let us note that the line at infinity is critical for J and, therefore, also for . In

particular, fn  has no fixed point on the line at infinity. So, we are safe working in affine coordinates

, writing .

Lemma 4.6 For , fn has two fixed points outside .

Proof. The point (x, y) is fixed by fn if and only if . Using the above

formulae for the coefficients of L, we find that the first equality reduces to  where

and the coefficients Ni, Di are the following integral polynomials in δ:

So turning our attention to the second equality, we have that (x, y) is a fixed point if and only if 

and

where, D(x) is a polynomial with real coefficients, a linear function  and a quadratic

function  with
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The proof of Theorem 4.2 is now concluded by

Hence,

Notice that

Since , we have

and,  therefore,  .  Thus,  Q(x)  has two complex roots  and fn  has  two complex  fixed

points.□

Lemma 4.7 For sufficiently large n, the two complex fixed points of fn are saddle.

Remark 4.8 It seems plausible that Lemma 4.7, and therefore also Theorem, 4.2 work for all .

When n is  small,  one can confirm numerically  that  the complex fixed points  of  fn  are  saddles.  For

example  if  n = 4,  the  two  multipliers  have  modulus and  if  n = 5,  the  two

multipliers have modulus . In fact,  we observe that the modulus of the smaller

multiplier is decreasing in n for (see Figure 4) and seems to approach very

quickly as n grows. Since the product of the two multipliers is δ, the modulus of the larger multiplier

easily exceeds 1.
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Figure 4. The modulus of the smaller multiplier vs. n.

Remark 4.9 One might hope that the holomorphic version of the Lefschetz fixed point formula [Griffiths

and Harris 94, Chapter 3.4]

would be useful  here and for  proving Lemma 5.2  below in  a  more conceptual  fashion.  That  is,  the

multipliers at the two fixed points on are known (see [Uehara 16b, Lemma 5.2]), and the product

of the multipliers at each of the other two fixed points must equal δ. This leaves us to determine only one

multiplier at each of the latter. The holomorphic fixed point formula gives us one additional relation

between these mutlipliers which is not sufficient to identify them completely.

Proof of Lemma 4.7. Since , where ω is the meromorphic two form with a simple pole along

C, and since the complex fixed points of fn do not lie on C, we have that the multipliers  of Dfn at

either of these points satisfy .

After a (long) computation using explicit  formulae for entries of L,  we find that the multipliers also

satisfy

where

It follows that the two multipliers are roots of quadratic equation

Equivalently  two  multipliers  are  x-coordinates  of  intersection  points  of  two  curves  in

 and  .  As  noted  above,

 increases  to  the  largest  real  root   of   as  .  For  ,  the

intersections between C1 and C2 have modulus . Since the intersections between C1
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5. Automorphisms with all periodic cycles real

In the appendix to this article, we identify some more sets of orbit data that lead to real rational surface

automorphisms with maximal (and positive) entropy. It is known (see e.g. [Cantat 14, Theorem 8.2]) that

nearly all isolated periodic points have saddle type for a positive entropy complex surface automorphism

. Together with Theorem 4.1, this implies that when f is real and , nearly

all  periodic points of f  lie in X(R).  The referee for this article asked whether it  can happen that all

periodic points of f are real. This section is devoted to answering that question.

For the remainder of this section, we fix the orbit data to be 2, 4, 5, id as in this theorem. Certainly,

some of the arguments we will use apply more generally, but we want to keep the focus on the example at

hand. The general strategy is to first rule out non-isolated fixed points for the automorphism 

associated to this orbit data and then apply the Lefschetz fixed point formula [Katok and Hasselblatt 95,

Theorem 2.8.6.2] to count and compare the numbers of fixed points for fn and . Since the real surface

X(R) is not orientable, we must first lift everything to the orientation cover  to count

real fixed points. We are grateful to Eric Bedford who described this strategy to us.

The characteristic polynomial for the orbit data 2, 4, 5, id can be obtained by specializing (13) in the

appendix to this article:

where,  has largest real root .

It follows from Theorem 2.3 and the fourth row in Table 2 that the orbit data are realized by a real

basic map  fixing the cuspidal cubic C with determinant δ > 1. We let  be the

rational surface automorphism obtained by blowing up all the critical orbits of  and continue to use C to

denote the anticanonical curve in X obtained as the proper transform of the cuspidal cubic. As noted in

Section 2, there is a real meromorphic two form ω on X with a simple pole along C and no other zeroes

or poles, and ω transforms by f according to .

and C2 vary continuously with δ, it follows that the  for n large enough. That is, the

complex fixed points are saddles.□

Theorem 5.1 The orbit data with critical orbit lengths 2, 4, 5 and permutation is realized by a

basic  real  map that  fixes  C  with  determinant  δ > 1.  All  periodic  points  for  the

corresponding rational surface autmorphism are isolated and real, i.e. contained in X(R).

All have saddle type, except for the cusp of C which is attracting.

Table 2. σ = Id, δ > 1. (Table view)

Orbit length Order in the interval 
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Specializing  (12)  and  (14),  one  finds  that   has

characteristic polynomial

where,  s(t)  is  as  before.  Hence,  the characteristic  polynomials  for  f*  and  are  the  same up to

cyclotomic factors, and it follows as in the proof of Theorem A that .

Using the methods from [Bedford et al. 15], one can compute an explicit formula for the basic map .

With this formula and some help from Mathematica, one locates the fixed points of f. Two fixed points on

the invariant cubic C are [1, 1, 1], [2.1003, 1.2806, 1] and two fixed points on the complement of C are

[0.040129, 1.2806, 1], [–0.29031, 0.37179, 1].

Orbit length Order in the interval 

ni = nj for Degenerate case

Lemma 5.2 The fixed points of f consist of

• an attracting fixed point at the cusp of C, with multipliers (i.e. eigenvalues of the derivative Df at

the cusp) δ–2 and δ–3;

• a saddle fixed point in with multipliers δ and δ–9; and

• two fixed points in , one repelling and the other of saddle type.

In particular, all fixed points of f are real.

The formulas for the multiplier at the two fixed points in C were established in much greater generality

by [Uehara 16b].

Lemma 5.3 All fixed points of f are isolated.

Proof. Suppose not. Then there exists an irreducible algebraic curve  and an integer  such

that  for all . Since δ > 1, the only periodic points in C are the two fixed points, so V can

only meet C at one of these. But  has finite order, whereas the multipliers at the two fixed points do

not. So .

It follows from the genus formula (as in e.g. the proof of Theorem 3.6 in [Diller et al. 07]) that V is a

smooth rational curve with self-intersection –2 and that V meets any other pointwise periodic curve

 for f transversely. So if  is such a point, the multipliers of Dfk at p must have finite

order.  This  contradicts  the  fact  that  ,  which  holds  because  of  the  transformation

property for the two form ω. Thus, any two pointwise periodic curves for f are disjoint. Since they have

negative self-intersection, their homology classes are distinct. By periodicity, the class of V lies in the f*-

invariant subspace corresponding to the factor (t – 1)3 in χ(t), i.e , and so f(V) = V is actually

f-invariant.

Since V has genus zero,  is a rotation of order k, and there is a fixed point  for f. By Lemma

5.2, . This implies that  is real. Otherwise, because f is real,  is a distinct pointwise

periodic curve for f that meets V at p, and we have seen that this cannot happen. Since V is smooth and

real,  contains no isolated points, so  contains a circle S invariant by fR. The roots
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The Lefschetz fixed point formula now gives that the number of fixed points of fn,  counted with

multiplicity, is

(10)

where, the 2 reflects the action of f* on top and bottom homology groups, and 3 is the multiplicy of 1 as a

root of χ(t).
In order to count periodic points of fR, we must lift to the orientation cover . Recall

that  can be defined as the quotient by positive scaling of the determinant bundle . The

two points in any fiber  correspond to the two possible local orientations of X(R) at p,

and  the  diffeomorphism  fR  lifts  by  pushing  forward  local  orientations  to  an  orientation-preserving

diffeomorphism . We let  denote the orientation reversing diffeomorphism that

swaps points in each fiber of .

The  first  homology  group   has  dimension  twice  that  of  ,  and  the

intersection form on  is skew symmetric and non-degenerate. The involution ι  negates the

intersection form, i.e. . Hence, ,  where the +1 and –1

eigenspaces  H+  and  H–  of   are  isotropic  and  dual  to  each  other  with  respect  to  intersection.  In

particular,  .  Since   is

surjective and , we have  and  projects H+ isomorphically onto .

of χR  do not  include ±1,  so the homology class of  S in  must  be trivial.  In particular,  S

separates X(R) into two fR -invariant connected components. One of these  is disjoint

from  ,  and  so  (changing  the  sign  of  ω  if  necessary)  .  This  leads  us  to  a

contradiction:

So S and, therefore, also V do not exist.□

Lemma 5.4 For each , a point is n-periodic for if and only if is n-periodic for fR.

Proof. Since  is 2-to-1, we see that  is periodic for  if and only if  is periodic

for fR. If the minimal period of  is n, then the minimal period of p is either n or 2n, depending on

whether   is  locally  orientation preserving or  reversing at  .  If  ,  then the  facts  that

 and δ > 0 guarantee that fR is orientation preserving at . On the other hand, we know

from Lemma 5.2 that fR is locally orientation preserving at the only two periodic (fixed) points on C. In

both cases, we conclude that  has the same minimal period as p. □

Lemma 5.5 The characteristic polynomial of is .

Proof. The map  commutes with ι so the eigenspaces H– and H+ are -invariant. In particular, 

conjugates the action of  on H+ to that of  on , and therefore the characteristic

polynomial of  is .
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Pushforward  preserves the intersection form, so for any , we have

That is, the action of  on H– is congruent, and so conjugate, to that of  on H+. The characteristic

polynomial of  acting on H– is therefore given to be , where . One checks

from the formulas above that  is a reciprocal polynomial, which finishes the proof.

Now, we use the fixed point formula to count fixed points of  with the help of the previous two lemmas.

It is important to remember here that, unlike periodic points of f, the index  of an n-periodic

point  for the real map fR can be either positive or negative. When p is non-degenerate, i.e.

when neither multiplier of  is 1, we have

A more general formula in [Eisenbud and Levine 77, Theorem 2.1] implies that the real and complex

multiplicities always satisfy

with equality precisely when p is, again, non-degenerate.

Since  we infer  that   if  and only if   has  saddle  type  with  both

multipliers positive. In any case,  for any n-periodic point .

Applying the fixed point formula to  gives

From Lemma 5.5 and the formula , we further have
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6. Concluding observations and questions

In  closing,  we stress  that  this  work  only  scratches  the  surface  concerning  the  general  issue  of  real

dynamics of complex surface automorphisms. Here, we list some further problems of interest to us.

The appendix summarizes an exhaustive case-by-case computation of characteristic polynomials for

 associated  to  various  sets  of  orbit  data.  The  typical  situation  seems  to  be  that

 has an eigenvalue outside the unit  circle but none as large as the

maximal eigenvalue δ  of  for the ambient complex automorphism. For

such  maps,  we  may  only  conclude  (using  Yomdin’s  bound)  that   lies  in  some  compact

subinterval of .

There are, however, some sets of orbit data beyond those described in Theorem A that give real maps

with maximal homology growth, i.e. , and therefore also maximal entropy. One can check

from the formulas in the appendix that these include the following.

•  is the identity,  and ;

•  and ;

• σ = (12) is a transposition, and  and ;

•  and ;

•  and .

Problem 1  Are there any other basic real maps as in Proposition 2.2 whose real  dynamics have

maximal entropy?

We have experimentally observed,  by letting one or more of the orbit  lengths tend to infinity in

For n, a multiple of 4, we combine these formulas and obtain

(11)

where  is the sum of  over those p where the intersection index is positive, and

 is the magnitude of the sum over those p where it is negative.

Now , so we see from (10) and (11) that

for  all  n  divisible  by  4.  Lemma  5.2  tells  us  that  ,  so  we  actually  have  equality

 for all n divisible by 4. In particular, all n-periodic points of

f  are  real.  Moreover,  except  for  the  repelling  and  attracting  fixed  points  of  f,  all  satisfy

; i.e. by the discussion above they have saddle type.

As every n periodic point for f is also 4n periodic, the theorem is proved. □

Remark 5.6 The automorphisms associated to the orbit data in Theorem A each have a repelling two

cycle outside X(R). One can, however, repeat the above analysis for these maps to show that all points of

minimal period three and higher are saddles contained in X(R).
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various ways, a strong tendency for the ratio  to approach 2 when orbit lengths become

large. This somewhat supports the idea that at least maximal homology growth is atypical for fR.

It  would  be  natural  to  try  to  understand  the  real  dynamics  of  maximal  homology  growth

automorphisms in more detail.

Problem  2  Find  a  topological/combinatorial  model  for  the  dynamics  of  the  real  map

 when it has maximal homology growth.

This has been done in e.g. [Bedford and Diller 05] for certain birational surface maps, but it seems

harder in the present context.

At the other extreme, there are a few cases where  is periodic or, more generally, has spectral

radius one. These include

• σ = (123) is cyclic, : period= 180

• σ = (123) is cyclic, : period= 84

• σ = (123) is cyclic, : period= 126

• σ = (123) is cyclic, : period= 60

• σ = (123) is cyclic, : period= 168

• σ = (123) is  cyclic,  :  homology classes  grow linearly  under  iterated

pushforward.

The lack of homology growth certainly does not imply zero entropy for diffeomorphisms of compact

surfaces generally. Pictures (e.g. [Cantat 14, Figure 1] and [McMullen 02, Figure 2]) of the real dynamics

of  automorphisms  on  K3 surfaces  strongly  suggest  that  lack  of  homology  growth  can  coexist  with

positive entropy. In these, the real surface is a sphere, i.e.  simply connected, so the action  is

automatically trivial,  but orbit portraits clearly indicate complicated dynamics. Computer pictures we

have generated for our maps seem more equivocal.

Problem 3 Are there real rational surface automorphisms with  but ? More

generally, are there instances in which exactly one of the inequalities is strict in the chain

We point out that on irrational surfaces, it can happen that only one inequality is strict. For instance, if

 is  the  complexification  of  a  linear  Anosov  diffeomorphism on  a  real  torus  X(R),  then

.

All results in this article depend heavily on restricting attention to automorphisms  that

properly fix the cuspidal anticanonical curve C. It is known [Bedford and Kim 09] that there are many

basic  maps  that  lift  to  real  automorphisms with  positive  entropy but  which  have  no

invariant curve at all.

Problem 4 Find an alternative to Theorem 3.3 for computing the action  on homology in the

absence of an invariant anticanonical curve.

Instead  of  considering  the  action  of  fR  on  homology,  one  can  consider  the  action

 on  the  fundamental  group  of  X(R).  If  one  lets   denote  the

(minimal)  word  length  of  an  element   with  respect  to  some  set  of  generators  for

, then one has [Bowen 78]
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The right  side  is  maximized  by  letting  γ  range  through  a  set  of  generators,  and  we  denote  the

maximum by , even though it is not necessarily the spectral radius of a linear operator. Certainly

. We propose in future work to investigate

Problem 5 To what extent can  be computed explicitly? In particular, are there examples

where ?

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[Bedford et al. 15] E. Bedford, J. Diller, and K. Kim. “Pseudoautomorphisms with Invariant Curves.” In Complex
Geometry and Dynamics, Vol. 10 of Abel Symp., pp. 1–27. Cham: Springer, 2015. Crossref.

[Bedford and Diller 05] E. Bedford and J. Diller. “Real and Complex Dynamics of a Family of Birational Maps of
the Plane: The Golden Mean Subshift.” Amer J Math. 127 (2005), 595–646. Crossref.

[Bedford  and  Kim  04]  E.  Bedford  and  K.  Kim.  “On  the  Degree  Growth  of  Birational  Mappings  in  Higher
Dimension.” J Geom Anal. 14 (2004), 567–596. Crossref.

[Bedford and Kim 06] E. Bedford and K. Kim. “Periodicities in Linear Fractional Recurrences: Degree Growth of
Birational Surface Maps.” Michigan Math J. 54 (2006), 647–670. Crossref.

[Bedford and Kim 09] E. Bedford and K. Kim. “Dynamics of Rational Surface Automorphisms: Linear Fractional
Recurrences.” J Geom Anal. 19 (2009), 553–583. Crossref.

[Bedford 93] E. Bedford, M. Lyubich, and J. Smillie. “Polynomial Diffeomorphisms of C2.  IV. The Measure of
Maximal Entropy and Laminar Currents.” Invent Math. 112 (1993), 77–125. Crossref.

[Blanc 08] J. Blanc. “On the Inertia Group of Elliptic Curves in the Cremona Group of the Plane.” Michigan Math J.
56 (2008), 315–330. Crossref.

[Bowen 78] R. Bowen. “Entropy and the Fundamental Group.” In The Structure of Attractors in Dynamical Systems
(Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), vol. 668 of Lecture Notes in Math., pp. 21–29.
Berlin: Springer, 1978. Crossref.

[Cantat 99] S. Cantat. “Dynamique des automorphismes des surfaces projectives complexes.” C R Acad Sci Paris Sér
I Math. 328 (1999), 901–906. Crossref.

[Cantat 10] S. Cantat.  “Quelques aspects des systèmes dynamiques polynomiaux: existence, exemples, rigidité.”
Panor. Synthèses 30 (2010), 13–95.

[Cantat  14] S.  Cantat.  “Dynamics of Automorphisms of Compact Complex Surfaces.” In Frontiers  in  Complex
Dynamics, vol. 51 of Princeton Math. Ser., pp. 463–514. Princeton, NJ: Princeton Univ. Press, 2014. Crossref.

[Coble  39]  A.  Coble.  “Cremona  Transformations  with  an  Invariant  Sextic.”  Bull  Amer  Math  Soc.  45  (1939),
285–289. Crossref.

[de Thélin 04] H. de Thélin. “Sur la laminarité de certains courants.” Ann Sci École Norm Sup. 37:4 (2004), 304–311.
Crossref.

[Diller 11] J. Diller. “Cremona transformations, surface automorphisms, and plane cubics.” Michigan Math J.  60
(2011), 409–440. With an appendix by Igor Dolgachev. Crossref.

[Diller and Favre 01] J. Diller and C. Favre. “Dynamics of Bimeromorphic Maps of Surfaces.” Amer J Math. 123
(2001), 1135–1169. Crossref.

[Diller et al. 07] J. Diller, D. Jackson, and A. Sommese. “Invariant Curves for Birational Surface Maps.” Trans Amer
Math Soc. 359 (2007), 2793–2991. Crossref.

[Dujardin 04] R. Dujardin. “Sur l’intersection des courants laminaires.” Publ Mat. 48 (2004), 107–125. Crossref.

[Eisenbud and Levine 77] D. Eisenbud and H. I. Levine. “An Algebraic Formula for the Degree of a  Map Germ.
Ann Math. 106:2 (1977), 19–44. With an appendix by Bernard Teissier, “Sur une inégalité à la Minkowski pour
les multiplicités”. Crossref.

[Griffiths and Harris 94] P. Griffiths and J. Harris. Principles of Algebraic Geometry. New York: Wiley Classics
Library. John Wiley & Sons, Inc., 1994. Reprint of the 1978 original. Crossref.

[Gromov 03] M. l Gromov. “On the Entropy of Holomorphic Maps.” Enseign Math. 49:2 (2003), 217–235.

[Gross et al. 09] B. H. Gross, E. Hironaka, and C. T. McMullen. “Cyclotomic Factors of Coxeter Polynomials.” J

Entropy of Real Rational Surface Automorphisms https://www.tandfonline.com/reader/content/17b162ee71d/10.1080/10...

27 of 30 2/12/22, 10:00



Number Theory 129 (2009), 1034–1043. Crossref.

[Katok and Hasselblatt 95] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems,
Vol. 54 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 1995.
With a supplementary chapter by Katok and Leonardo Mendoza. Crossref.

[Manning 75] A. Manning. “Topological Entropy and the First Homology Group.” In Dynamical systems—Warwick
1974 (Proc. Sympos. Appl. Topology and Dynamical Systems), pp. 185–190, Lecture Notes in Math. 468. Berlin:
Springer, 1975. Crossref.

[McMullen 02] C. T. McMullen. “Dynamics on K3 Surfaces: Salem Numbers and Siegel Disks.” J Reine Angew
Math. 545 (2002), 201–233.

[McMullen 07] C. T. McMullen. “Dynamics on Blowups of the Projective Plane.” Publ Math Inst Hautes Études Sci.
105 (2007), 49–89. Crossref.

[Moncet 12] A. Moncet. “Real Versus Complex Volumes on Real Algebraic Surfaces.” Int Math Res Not.  2012
(2012), 3723–3762. Crossref.

[Newhouse 89] S. E. Newhouse. “Continuity Properties of Entropy.” Ann Math. 129:2 (1989), 215–235. Crossref.

[Uehara 16a] T. Uehara. “Rational Surface Automorphisms with Positive Entropy.” Ann Inst Fourier (Grenoble) 66
(2016a), 377–432. Crossref.

[Uehara 16b] T. Uehara. “Rational Surface Automorphisms Preserving Cuspidal Anticanonical Curves.” Math Ann.
365 (2016b), 635–659. Crossref.

[Yomdin 87] Y. Yomdin. “Volume Growth and Entropy.” Israel J Math. 57 (1987), 285–300. Crossref.

  Appendix

More general orbit data

For the sake of completeness, we give here the analogs of Lemma 3.5 for more general orbit data  along

with  formulas  for  the  characteristic  polynomials  of  the  actions   and

 on the middle homology groups. The characteristic polynomial for f* is

known to be reciprocal, but in fact it turns out in all cases considered here that the characteristic polynomial for

 is also reciprocal of the form

(12)

where, ϕ is a polynomial that depends on the orbit data.

We consider first the cyclic case .  Recall that the characteristic polynomial for f*,  given above in

Equation (6), is

Table 1 gives

Table 1. Cyclic permutation, . (Table view)

Orbit length Order in the interval 
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• all the triples  for which the orbit data  is realizable by a basic map properly

fixing C with ; and

• (for realizable cases) the analog of Lemma 3.5 which determines how the critical orbits are distributed in C.

From this information, one arrives at the following formula for ϕ in (12), valid for all realizable cases in the table:

Now suppose σ is the identity permutation. The characteristic polynomial for f* is (see Equation (2) in [Diller 11])

(13)

Table 2 sums up the situation for fR. Again, case-by-case computation leads to formulas

(14)

for the polynomial ϕ(t) in (12).

Finally, we consider the case when σ = (12) is a transposition. The characteristic polynomial for f* is

The situation for fR is more complicated than before. Results are listed in Table 3. In the transposition case, we

have not found a single formula for the polynomial ϕ that gives the characteristic polynomial (12), so we list the

possibilities case-by-case in Table 4. For the last three cases in Table 3, the parameters ti in Theorem 2.3 are not

distinct, so Theorem 2.3 does not guarantee that there actually is a basic map that realizes the given orbit data.

Orbit length Order in the interval 

Not realizable by a basic map properly fixing C

n1 = n2 = 2, and 

Table 3. σ = (1, 2) and δ > 1. (Table view)

Orbit length Order in the interval 
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Orbit length Order in the interval 

n1 = n2 Not realizable by a basic map properly fixing C

Table 4. σ = (1, 2). (Table view)

Orbit length n1 < n2 ϕ(t)
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