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1. Introduction

Any automorphism of the complex projective plane P2 is a linear projective transformation. If one blows
up sufficiently many points in P2, however, the resulting rational surface X — P? sometimes admits an
automorphism f : X — X with much more interesting dynamics. This was known already in some
sense by [Coble 39], but recent papers ([Bedford and Kim 06, Blanc 08], [Cantat 10, Example 9.4],
[McMullen 07], etc) furnish new constructions and many more examples. Many of these automorphisms
are “real”, in the sense that the points blown up lie in P*(R) C P? and the automorphism
f=fc:X — X restricts to a diffeomorphism fg : X(R) — X(R) of the real two-dimensional
submanifold of X lying over P?(R).

Our purpose in this article is to compare the real and the complex dynamics of such automorphisms.
Since dynamical complexity of a diffeomorphism f is usually quantified by its topological entropy
hiop (f), we consider in particular whether hop(fc) = hiop(fr) for a real automorphism f: X — X
on a blowup X of P2. When this happens we say that fg “has maximal entropy”. While our results are
limited to particular families of examples, they indicate a range of possibilities, give reasonable methods
for verifying or disproving equality of entropy, and raise some interesting questions for further
investigation.

Any quadratic plane birational map has at most three distinct indeterminate points. Here, we restrict
attention to those which are non-degenerate in the sense that they have exactly three such points. That is,
we consider quadratic birational maps of the form f :=T°J, where T € Aut(P?) is linear and
J[x1, 22, 23] = [T223, 321, Z122] is the standard quadratic involution, presented in homogeneous
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coordinates. Because of the second factor, f contracts each of the lines E;j:={z; =0},j=1,2,3,t0a
distinct point in P2, and f is indeterminate at the points p; := [1,0,0], p; := [0, 1,0], ps := [0,0, 1]
where the lines meet pairwise. Suppose that T is somehow chosen so that there are positive integers

n1,M9,ns and a permutation o € X3 for which all points f ! (E;),1 < j < n;, are distinct and

N

f (EJ) =Dy, §=1,2,3. )

Then if 7 : X — P? is the blowup of P2 at all points fk(Ej), j=1,2,3and 1 <k < m; in the
three critical orbits, the birational map f lifts to an automorphism f: X — X. We call ny,n2,ns3,0
orbit data and say that the data is realizable if the linear map T can be chosen so that (1) holds.

Note that if the linear map T is real then so are the critical orbits and the map f. In particular, f restricts
to a  diffeomorphism  fg : X(R) > X(R) of the compact real  surface

X(R) := P?(R)\Crit(r) C X. Our first result is:

Theorem A One can choose a real linear T € Aut(P?) so that the map f =T°J lifts to an
automorphism f : X — X such that hiop (fr) = htop(f) > 0. This happens in particular for some T so
that f realizes one of the following sets of orbit data:

« 0 = (123) is cyclic,ny =ng = landng > 8;
« o0 = (123) is cyclic, ng = 2,9 = ng > 4.

For the first set of orbit data, this theorem was established by Bedford and the second author in [Bedford
and Kim 09]. The methods there were somewhat ad hoc. Our proof here is more systematic and relies on
two important inequalities that bound the entropy of a map in terms of the induced pushforward action on
homology. Specifically, we use the inequalities

log p(.fR,*) < htop(fR) < htop(f) = log p(f*)a

where p denotes spectral radius and (fr),, f« are the induced linear actions on Hy(X(R);R) and
Hy(X;R), respectively. The first and last (in)equalities are due to [Yomdin 87] (see also [Manning 75]
and [Gromov 03]). Together, they imply that fg will have maximal entropy when fgr expands homology
classes of real curves as fast as f+ expands homology classes of complex curves.

It is not difficult to write f+ down explicitly in the present context, but sign issues make it more difficult to
find (fr),- There is no natural orientation for closed curves in X(R) that will be respected by (fr),. To
cope with this we impose an additional condition on f that has proven important in earlier work ([Diller
11, McMullen 07, Uehara 16a]) for guaranteeing that (1) is satisfied. Namely, we require that all critical
orbits of f lie on an f—invariant cubic curve C. This additional condition allows us to resolve
orientation issues and thereby effectively compute (fr),.

While the work devolves into analysis of various cases, we are finally able to compute the action (fr),
for automorphisms arising from essentially any orbit data that can be realized by a non-degenerate
quadratic birational map that fixes the curve C. More often than not, it turns out that p((fr),) < p(f«)
so that the above method does not tell us whether or not fg has maximal entropy. In fact, in some cases
p(f«) > 1 while the real action (fr), is periodic. That is, hip(f) is positive, whereas since
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p((fr),) = 1, we cannot infer the same for hiyp(fr). We do not know whether hiqp(fr) actually does
vanish in any particular case, but we can at least show that htop( fRr) sometimes fails to be maximal.

Theorem B One can choose a real linear T € Aut(P2) so that f = T"J lifts to an automorphism
f: X — X such that huop(f) > hiop(fr). This happens in particular when T is chosen so that 7
realizes the orbit data o = (123),n; = ng = 3,n3 > 1.

Our proof of this theorem relies on a different set of ideas. On the one hand, when hop(f) > 0, it is
known from the work of [Bedford et al. 93] and [Cantat 99] that there is a unique (necessarily ergodic)
f-invariant measure p with maximal metric entropy hy, (f) = hiop(f). It is also known [Cantat 14] that
the support of p includes every saddle periodic point of f whose stable and unstable manifolds are not
algebraic. On the other hand, [Newhouse 89] showed that every real surface diffeomorphism admits
some invariant measure of maximal entropy.

To prove our second theorem, we show that the given orbit data are realized by a map f : X — X with
two saddle fixed points outside the set of real points X(R). The nature of the fixed points is established by
direct computation based on an explicit formula for fg. In joint work with [Bedford et al. 15], we
explained how to find such a formula. Again, our construction of f produces an underlying birational
map f with a (real) invariant cubic curve. The presence of the invariant cubic essentially rules out other
invariant curves, so that in particular the stable and unstable manifolds of the complex saddle points are
transcendental. Since these fixed points must lie in the support of u, any measure of maximal entropy for
fr must differ from p. Uniqueness of p further implies that the entropies of fg and f differ.

Our third result, not included in an earlier version of this article, answers a question posed by the
referee.

Theorem C There exists a rational surface automorphism f : X — X with positive entropy such that
all periodic cycles of f lie in the real locus X(R) C X.

We prove this for the automorphism f associated to orbit data 2, 4, 5, id. As in the cases considered in
Theorem A, the restriction fr : X(R) — X(R) of f has maximum possible homology growth and
therefore maximal entropy. The general strategy is to compare the counts of real and complex periodic
points of f by applying the Lefschetz fixed point formula. The count of real points is more complicated,
because X(R) is non-orientable, which leads us to work on the orientation double cover 7 : X X (R)
rather than directly on X(R).

Sections 1 and 2 of this article present some necessary background about entropy and homology and then
about the quadratic birational maps and associated surface automorphisms of interest here. Section 3
shows how to compute the action (fr), : H1(X(R);R) — H; (X(R); R) for such an automorphism
when it preserves a cuspidal cubic C. The proof of Theorem A is given here. Section 4 gives the proof of
Theorem B, and Section 5 contains the proof of Theorem C.

Clearly there are many interesting questions left open. Not only is the set of automorphisms we consider
very limited, even the underlying real surfaces we allow are rather restricted, omitting not only irrational
surfaces but even many rational surfaces with a natural real structure, e.g. surfaces obtained by blowing
up pairwise conjugate complex points in P? (C). We note in particular some interesting work of [Moncet
12], involving a very different set of ideas, that allows him to compare real vs. complex entropy for real
automorphisms of various irrational surfaces.

There is more to be understand even for the examples we consider here. It is natural, for instance, to seek
a more detailed description of the dynamics of fg when p((fr),) = p(f«). And in the other direction,
we would like to know whether both inequalities in the chain log p((fr),) < htop(fr) < log p(f«)
must be strict whenever one of them is. We discuss these and other interesting open problems at a greater
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length in the concluding Section 6. The appendix gives an exhaustive summary of our computation of
(fr), for arbitrary sets of orbit data.

We thank the referee for an especially thorough reading and many constructive suggestions for
improvements. They have greatly improved this article. We thank Eric Bedford for offering his ideas
about counting periodic points for maximal entropy automorphisms. These were essential to us for
proving Theorem C.

1.1 Entropy and homology

In this section and the next, we give some necessary background. It is standard to quantify the dynamical
complexity of a continuous map F': M — M on a compact metric space M in terms of its topological
entropy hyop(F). Readers unfamiliar with entropy can consult [Katok and Hasselblatt 95] for a precise
definition and a thorough development. For our purposes, however, it will suffice to recall some
important and deep connections between the entropy and homology. The first is due to [Yomdin 87] (see
[Manning 75] for the case of first homology).

Theorem 1.1 Let F': M — M be a C*-smooth self-map of a compact connected differentiable
manifold. Let p(Fy) denote the spectral radius of the pushforward action
F, : H,(M;R) — H,(M;R) on the total real homology of M. Then

htop (F) > log p(Fy),

When M is a real surface and F is a diffeomorphism, we have that F, =id on Hy(M;R) and
Hy (M; R). Hence, p(F.) = p(F. | atmy )

The following complementary result of [Gromov 03] tells us that in the Kéhler setting, the inequality
in Theorem 1.1 is actually an equality.

Theorem 1.2 Let F': M — M be a holomorphic self-map of a compact Kdhler manifold. Then
hiop (F) < log maxyp(F.|my0zm))-

When M is a compact Kdhler surface (i.e. dimgM = 2) and F is an automorphism, we have that
F, =id on Hy(M;R) and Hy(M;R). Hence, p(F,) = p(Fi|mu;r)); i.e. it suffices to consider
only k =1 in Theorem 1.2.

As explained in the introduction, we are interested in M equal to either X or X(R), where w : X — P? s
the blow up of finitely many distinct real points py, . . ., py € P2 (R) C P2, and

X(R) =7 L (P2(R)~{p1,---,pN})

is the set of real points of X. In this case, Ha (X3 Z) (and therefore also Hy(X;R)) is generated by the
homology classes of the exceptional curves E; := w~1(p;) together with the class of w=1(L), where
L c P? is any line disjoint from the points p;.

Since each p; € P2 (R), we have that E; N X(R) is a smooth circle e;, the projectivization of the real
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tangent space T, X; 1r at p;. Again the homology group Hy(X(R);Z) = ZN © (Z2/22Z) is
generated by the circles e; and the class of a generic real line £. Indeed, the e; generate the free part of
the homology and therefore all of Hy(X(R); R). However, in contrast with the complex situation in
which both X and the exceptional curves E;, carry canonical orientations, the real surface X(R) is non-
orientable, and there is no natural way to orient the exceptional circles e; within X(R). Moreover,
different choices of generic real line £ can give rise to different homology classes (see Proposition 1.3
below).

We impose the further condition, whose purpose becomes clearer in the next section, that all p; are
regular points on the cuspidal cubic curve

C:={[z,y,2] € P2yl = ws}. )

If we identify {z = 0} with the line at infinity in P2 and let (z,y) € A® — [x,y,1] denote affine
coordinates on the complement, then the cusp [0,1,0] is the unique point at infinity for C, and the
regular part Cpeg := C'N A? of C is parametrized by v(z) = (z,z3). We identify C and its real slice
C(R) := CNP?(R) with their strict transforms in X and X(R), respectively. The parametrization y
provides an orientation for C(R), and it is convenient to give all circles e; the “clockwise” orientation
relative to dffine coordinates (x, y).

Let £ C P%(R) be a real line in P2(R), and suppose £ is not the line at infinity. If £ is vertical, we
orient £ in the downward direction, and if not, we orient £ from left to right. As with complex curves in

P2, we implicitly identify the real curve £ with its strict transform K\(pj){lgjgN} in X(R). As a curve in
P2(R), the line £ meets C in either 1 or 3 points, counting with multiplicity. The next fact gives us a very
convenient description of the homology class of £ in X(R) in terms of the locations of these intersections.
We will say that p < q for two points p,q € C(R) ifp = y(z),q = y(2') withz < z’.

Proposition 1.3 Let £ C P2 (R) be any real line which is distinct from the line at infinity. The homology
class of £ in Hy (X (R); Q) is given by

L~ (—1)ey,

p; &L
where,

nj=#{pectnC:p=<p;}.

Figure 1 illustrates this proposition in a caricatured style we will use throughout this article. For
emphasis and the sake of keeping things visually separated, we will always draw the cubic C(R) as
horizontal line in daffine space A? (R)). Any real line different from the line at infinity will appear as a
dashed curve intersecting C(R) at various points. In Figure 1, £ N C consists of three (real) points.
None of these precedes p;, one precedes p»> and p3, two precede py4, and all three precede ps. Hence,
L~e —ey—e3+es—es.
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Figure 1. Homology class of a finite real line. The center horizontal line represents the cuspidal cubic C and the
dashed curve represents a real line £ that meets C in three distinct points. Filled circles are points blown up to
create the rational surface X.

Proof. First note that any vertical line in £ C R? is homotopic in X(R) to nearby lines £’ with negative
slope and the same single point of intersection with C. So, we can assume without loss of generality that
£ is not vertical. Next, observe that removing intersections with £ decompose the regular (i.e. finite) part
of C(R) into two or four connected components (the second or third will be empty if £ is tangent to
C’(R) at some point), the leftmost below £, the second above £ and so on. From these observations, one
sees that the proposition is equivalent to showing that

£~ Z e — Z €;. (3)

p; below £ p; above £

To establish this last statement, assume for the moment that £ does not contain any of the points pj. Let
ly C P? (R) denote the line at infinity, oriented so that the “upper” connected component
U+ C A*(R)\/ has boundary U+ = £y, — L. For each p; € U*, let w; C U™ be a small clockwise
circle centered at pj. Let U * denote the region obtained from U™ by removing the disks bounded by the
uj. Then, 80" =t —£— D p Ut U

After we blow up all the pj, the open set U™ lifts to an open set U containing exceptional circles ej in
place of the points pj, and each circle u; is homotopic to 2ej; It follows that
oo ~ boo — £ —2 EijUJr ej ~ 0. Therefore, in X(R), we have that

boo —£~2 ) &

We also have that 24y, is null-homotopic in P?(R). Hence, 2£y, is homotopic to 2) ej in X(R).
Putting these relations together proves (3).

If £ contains a point pj, one argues similarly. The only difference is that, £ bisects the circle uj. Hence,
one of the connected components of U " consists of £ and the upper half of bj, both with coefficient —1.
As the radius of bj tends to zero, the upper half of b; shrinks in X(R) to a single copy of ej. Hence, in the
limit
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0~ T ~lo—L— Y 2¢,— e

p; €U+ pP; €t

Using the further relation £o, ~ Y, €; to eliminate £, also eliminates all ej in the second sum.rJ

2. Automorphisms from quadratic birational maps

As indicated in the introduction, our focus will be on automorphisms f:X — X on blowups
7 : X — P? associated to certain quadratic birational maps of P2. Such automorphisms are explored at
length in [Diller 11] and [Bedford et al. 15]. Let us summarize the notation and results that we need from
those articles.

Let f :P? > P? be a quadratic plane birational map, non-degenerate in the sense that it is

indeterminate at three distinct points in P2. That s,

~

f=T7"0(TY) 7, ©

where, T% € Aut(Pz) are linear and J denotes the standard quadratic involution given in affine
coordinates by (z,y) — (2™, y1). Such fare Zariski dense in the set of all quadratic birational maps.

The map J acts on the triangle with vertices €; := [1,0,0], ez := [0,1,0],e3 := [0,0,1] by
contracting each side to the opposing vertex. However, J is indeterminate (i.e. not continuously defined)
at the vertices themselves, instead blowing up each to the opposite side of the triangle. Away from the
triangle, J is a diffeomorphism. Now let p;t :=T*(e;) and E;': denote the vertices and opposite sides,
respectively, of the images of the critical triangle for J by T" and T~. Then Ej is critical for f with
f(Ef) =p;, and p} is indeterminate for f with f (p) = E; .

Note that here and elsewhere, we employ the convention that for any curve V C P2, the image

f(V):=F(V~ {pf, Py, pa }) omits the images of any indeterminate points on V; i.e. f (V) is the set

of theoretic “strict transform” of V.

We will always assume that the linear maps T* defining f are real, i.e. that they restrict to
automorphisms of P2 (R). For purposes of this article, we call such an f a basic real map. Note that f
can be linearly conjugated to a map of the form T'° J (where T' = (T"’)_1 °T~) used in the introduction.

Let C be the cuspidal cubic curve defined by (2) above. We will say that a birational map f properly
fixes C if f (C) = C and none of the indeterminate points p;t are the cusp of C. Our interest in C begins
with the fact that there are many basic real maps that properly fix C, and that there is an easy way to
characterize them.

Proposition 2.1 ([Diller 11, Theorem 1.3]) Let g : P2 > P2 be a quadratic birational map. Then g

properly fixes C if and only if all indeterminate points of g and g~* are contained in Creg-

When f properly fixes C, it necessarily fixes the cusp of C and therefore also the complement
Creg =7(C). Thus, f restricts to an automorphism fc : Creg = Creg given by

fo(v(x)) = v(6x +7) for constants § # 0 and t. When § is real, then of course 6,7 € R and

f(C’(R)) = C(R). Following [McMullen 07], we call § the determinant of f. This is because

f w = 0w, where w is the unique (up to constant multiple) meromorphic two form on X with divisor
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equal to — C.

Proposition 2.2 Suppose f properly fixes C and that there exist integers ni,nz,n3 >0 and a
permutation o € X3 such that

* forall1 < j < mg, the point p; j := fJ(E;") = fé_l (p;") is not indeterminate for f;
<N;
* Dip; = f (E:— )= p:(i)-

Then f lifts to an automorphism f: X — X, where w: X — P? is the blowup of P2 at the points
pij=f(Bf)eC,1<k<mnjj=123

Note that the hypotheses of the proposition imply that the points p;; are all distinct. We refer to the
positive integers mi,ne,ng and permutation o collectively as orbit data and say that the map f in
Proposition 2.2 realizes this orbit data. From the orbit data, one easily determines the action
fv : Ho(X;R) — Hy(X; R). Specifically, if E;j; C X denotes the exceptional curve obtained by
blowing up the point p; ;, then fx acts by

3
B} » By ... Eip, » Ey, and L—2L-) Ei, ()
i=1

where, L is (the homology class in X of) a general line in P2. This suffices for describing f« because of the
further homology relation E; ~ L — E#i E; 1. This last relation expresses (for f_l) the fact that
each exceptional line of a basic real map contains two of the map’s three indeterminate points.

Because the operator f+ depends only on the orbit data realized by f , it makes sense to talk about the
characteristic polynomial associated to any given orbit data regardless of whether or not it is realized by
some basic map. The characteristic polynomial [Diller and Favre 01] has at most two, necessarily real,
roots 8 > 1 > 6! outside the unit circle. If these roots exist, then ny + ng + ng > 10.

Theorem 2.3 ([Diller 11, McMullen 07]) Let f be a basic real map satisfying the hypothesis of
Proposition 2.2. Then the determinant & of f is a real root of the characteristic polynomial of
f« : Hy(X,R) — Hy(X,R). For real §# +1, there is an dffine change of parameter
5(t) = (ot + B) such that piz, := 7(0) € C N A*(R) is the unique fixed point of fc different from

<—1
the cusp, and the indeterminate points of f = are given by p; = 4(ti) < iz, where

sty = L ifa(d) =i

16"
U C o A : R
t; = —T if o exchanges i and j;
I B R L . . .
ch= T ifo:i— j— kis cyclic.

Conversely, given orbit data ny,mng,ng,o and a real root § # £1 of the associated characteristic
polynomial, suppose that t; are given by the above formula. 1If the parameters
{5jti :1<1<3,0<55< n; — 1} are all distinct, then there is a basic real map, unique up to linear
conjugacy, that properly fixes C and realizes the orbit data ny,ns,ns,c.

We note regarding the second half of this theorem that it is difficult to tell in general when the parameters
of interest are distinct. This issue is discussed at length in [McMullen 07] and [Diller 11]. In fact, even
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when the parameters are not distinct, one can find a (possibly degenerate) quadratic birational map that
properly fixes C with the correct determinant § and whose indeterminate points have forward fc orbits
described by the parameter values t; in Theorem 2.3. For instance, if n; = na = ng = 4, one obtains a

Lo 4 . . . . . g4
quadratic birational map f for which all three indeterminate points coincide and map under f  to the

z—1
lone (triple) indeterminate point for f . The map is in fact independent of the permutation o. However,
in a strict sense, elaborated more fully in the discussion around Theorems 3.5 and 3.6 in [Diller 11], this
map correctly realizes the orbit data only for the case o = id.

3. Homology growth for real automorphisms

Let f : P2 — P? be a basic real map that properly fixes the cuspidal cubic curve C and realizes the
orbit data o,mj,n2,n3 with determinant &§>1. Then by restriction, we have an associated
diffeomorphism fgr : X(R) — X(R) of the real slice of X. Our goal in this section is to give an
effective means to work out the pushforward action (fr), : H1(X(R);R) — H1 (X(R);R).

We begin by making an observation that, while not needed in the remainder of the section, is
interesting in its own right and will be useful to us in Section 5. Recall that a polynomial P(t) is
reciprocal if P(t) = t4°%8 ¥ P(1/t). If P(t) is the characteristic polynomial of an invertible linear operator
T, then ¢deg P P(1/t) is the characteristic polynomial of T~L. Hence, P is reciprocal if T~} is conjugate
to T.

Theorem 3.1 The characteristic polynomial of (fr), is reciprocal, equal to that of ( fil ),-

As is well-known, intersection theory considerations imply that the characteristic polynomial is
reciprocal for the action f,: Hy(X;R) — Ho(X;R) associated to the ambient complex
automorphism. The problem with (fr), is that the real surface X(R) is non-orientable, so that one
cannot employ intersection theory directly.

Proof. Since C is f-invariant, the real map fg restricts to a diffeomorphism on the open set X(R)\C. We
claim  that the inclusion map ¢:X(R)NC — X(R) induces an  isomorphism
Lt HH(X(R)NC;R) — H1(X(R);R). To see this, recall that in dffine coordinates (x, y), the
regular part of C is the set {y = :v?’}. Note that the image of t, includes the class of the proper
transform £; of each real horizontal line {y = :1:?} NP2?(R) that passes through a point (wj,w?)
blown up to obtain X. By Proposition 1.3, the set {¢1,...,€N} of such lines is independent in and
therefore generates Hy (X(R); R). On the other hand, the open set X(R)~.C can be retracted onto the
union of precisely these lines, all of which meet at a single point in X(R)\C. Hence, their classes
generate Hy (X(R)~\C;R), too, which proves the claim.

It now suffices to show the characteristic polynomial is reciprocal for the action of (fm), on
H; (X(R)\C;R). The advantage is that X(R)\C is orientable, with volume form given by the
restriction of the real meromorphic two form w on X with a simple pole along C. Hence, there is a well-
defined and non-degenerate intersection form {-,-) on H;(X(R)N\C;R). Since f*w = dw, the
diffeomorphism fg preserves orientation on X (R)\C and therefore also the intersection form. That is
(fﬁl)* = (fr);" is the intersection adjoint of (fg), on Hy(X(R)~C;R). Linear operators are
conjugate to their adjoints, so (fr ), and ( fﬁl)* have the same characteristic polynomials.C]

Continuing to use the notation from the previous section, we let e; ; := E; j; N X(R) denote the real
slice of each exceptional curve for the blowup X — P2. we give e;; the “clockwise” orientation
described in Section 1. Similarly, we let e;t = Ef N X (R) denote the (strict transforms of the) real

<41
lines obtained by intersecting the critical lines of f~ with X(R). Each of these meets C at two of the
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points p;?. Hence, each intersection e N C' contains three distinct points, all in A? (R). In particular,
ef is neither the line at infinity nor any vertical line. By our convention above, all eii are oriented from
left to right in A%(R).

The hypotheses that f properly fixes C with positive determinant implies that the restriction fc preserves
orientation along Cr. Hence, at any non-indeterminate point p € Cr, we have that f preserves the
two-dimensional orientation on AZ (R) if and only if locally near p, f preserves the two components of
A%(R)~CR. When this happens, we say that f is orientation-preserving at p, even though PZ(R) is
non-orientable.

Proposition 3.2 For each p € C(R) that is not indeterminate or critical for f, we have that f is
orientation preserving at p if

#{i: fo' (i) <p} +#{i: pf <p}

is even and orientation reversing otherwise.
Keep in mind here that there are only six indeterminate points p;r,pi_ in total for f and f_l; also that

') = (f_l‘c)(pi_) € C(R) is a point for each i € {1,2,3}, even though p; is indeterminate
for f

Proof. We claim first that f is orienation preserving at all p € C(R) near the cusp, i.e. near the line at
infinity. This can be seen by employing new affine coordinates (z',y") = (1/y, z/y) identifying the cusp
with (0, 0) and C with (y')® = (z")®. The fact that near (z’,y’) = (0,0), the map f is a local

diffeomophism preserving {(y')3 = (z ')2} means that the differential Dq g £ is diagonal of the form

5 ol
0 o]
Indeed, 1/ac = § is just the determinant of f It follows for all (z’,y’) near (0, 0) that Dy f must

preserve the two components of the complement of {(y')3 = (z ')2 } Conjugating back to our old affine

coordinate, we find that f preserves orientation about any point p € C(R) close enough to infinity.
Moreover, f cannot change from orientation preserving to reversing or vice versa except at points
pE C’(R)’ where Dpf is singular or undefined, so it remains to understand what happens near points
where f is critical or indeterminate.

Let us consider first the case when p moves past a non-indeterminate critical point ¢ € C(R) for f
That is, ¢ = fél (p;’) is the unique non-indeterminate point in e N C' for some i € {1,2,3}. We can
choose local coordinates for source and target that identify q and p; with (0, 0), C(R) with the
horizontal axis oriented from left to right, and e;L with the vertical axis so that points above C(R) in
affine coordinates are above the horizontal axis in local coordinates. Since § > 0, it follows that (1, 0) is
an eigenvector for D4 o) f with positive eigenvalue at all points (x,0) on the horizontal axis. On the
other hand, det D(z,O) f has a simple zero along the vertical axis, so the remaining eigenvalue of
D ;) f changes sign as x passes 0 and the eigenvector for this eigenvalue is transverse to the horizontal

axis. It follows that the effect of f on orientation switches as p € C(R) passes fal (p; ); ie. if the
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differential preserves the upper and lower half planes for x <0, then D, ) f reverses the half planes

when x > 0, and vice versa.

Similarly, the effect of f_l on orientation switches whenever p moves past a point f(;(p:r) But this is
the same as saying that f changes effect on orientation when p moves past an indeterminate point pf.
All told, by decreasing the parameter of p = v(x) to —oo, we see that f preserves orientation at p
precisely when there are even number of indeterminate or critical points pZ', fal (p; ) in between.0O

In order to understand the induced action (fr), on H1(X(R); R) it suffices to know what happens to
the real exceptional curves e; ;. The following result, together with Proposition 1.3 gives a practical

means for extracting this information from given orbit data.
Theorem 3.3. The action (fr), : Hi1(X(R)) — Hi(X(R)) is given on generators e; ; by

. (_)"'R)*e;F = *e;1, where the sign is positive if and only if the unique non-indeterminate point
fEl (p; ) in e NC(R) is preceded (in C(R)) by an odd number of the three indeterminate and
critical points for f in C(R)\¢];

< if 1<j<mn; —1, then (fr),ei; = Le; 11, where the sign is positive if and only if p;; is
preceded by an even number of indeterminate and critical points py, fal (p,) € C(R) for f;

s (fr).€im; = :I:e;(i), where the sign is positive if and only if fo (p:(i)) € C(R) is preceded by an

<1
odd number of the three indeterminate and critical points for f — in C(R)\ea(i).

Proof. We deal with the second item first. Since p;ji1 = f(pi,j) for 1<j<mn;—1, we have
fseij = Le;ji1. As e;j identifies with the projectivization of the tangent space at p;;, the sign is
determined by whether or not f preserves orientation at p; j, i.e. by the criterion in Proposition 3.2.
Hence, the criterion for the sign of ( fR)*ei,j in this theorem follows directly from that one.

The arguments for the first and third items are similar, so we deal only with the first. The real

automorphism fg : X(R) — X(R) maps e; diffeomorphically onto e;1. So (fr),e; = te;1, and

the sign will be determined by the image of the forward tangent vector v to e;r
indeterminate point fal (p; ) ofef NC(R).

Moreover, to understand the image of v it is perhaps easier to consider the image of a parallel translate ¥
originating from a point p € C(R) slightly preceding fal (p;)- If Dpr('T)) points above C(R) at

f (p), then the fp maps ef about e;1 in a clockwise fashion, ie. (fr),e; = e;1. Otherwise

(fr).e = —eia.

Hence, the sign of (fR)*e;" will be positive if and only if we are in one of two cases:

at the unique non-

« 9 itself points above C(R.) and f g is orientation preserving at p;

« or 9 points below C(R) and fR is orientation reversing at p.

Since any non-vertical line passes above all points (z,y) € C(R) with & < 0, we have that ¥ points
above C(R) if and only if f51 (p; ) lies between the other two points pj,pz,j# k#1i in the
intersection e;" N C(R). So one infers the first item in the present theorem from these observations and
Proposition 3.2.00

We now prove Theorem A by applying Theorem 3.3 to the relevant orbit data. Let o be the cyclic

<—1
permutation (123). Using the fact that parameters for the indeterminate points of f = is given by
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rational functions of a root t of the characteristic polynomial and their sum is equal to t — 2, we see the
characteristic polynomial associated to any orbit data of the form ny,ng9,n3, 0 is given by (see Theorem
A.1 in [Bedford and Kim 04] and Equation (2) in [Diller 11])

x(t) =t —tmmt 4 (E—1) (™ +1)(#™ + 1) (¢™ +1). (6)

Proposition 3.4 The characteristic polynomial x(t) has a real root t=4 > 1 if and only if
ny + ng + ng > 10. In fact, this root is increasing in each of the orbit lengths n;.

Proof. One easily computes from (6) that x(1) =0,%x(2) > 1 and x'(1) =9 —n3 —n2 —n3. So
when ny 4+ ng + n3 > 10, it follows from the intermediate value theorem that x has a real root between
1 and 2. On the other hand, it follows from general geometric considerations (see e.g. [Diller 11,
Proposition 2.2]) that all roots of x(t) have magnitude 1 whenever n, + ng +ng < 9.

Since x has at most one root § > 1 (see [Diller and Favre 01, Theorem 0.3]), it follows (when & exists) for
t>1 that x(t) > 0 if and only if t > 8. Thus, it suffices to show that if §> 1 is a root of x(t), then
X (8) < 0, where ¥ is the polynomial obtained from (6) by replacing n; with ny + 1. In fact,

%(8) = %(8) — 6x(8) = (1= 6) — (1= 8) (1 +8™) (L + ™) [(1+6™¥) —6(1 +8™)] =6(1-8) — (1= 6 (1+5™) (14 6%) <0.

O

3.1 The Coxeter case

In this subsection, we deal with the first case of Theorem A. That is, we fix our orbit data to be
ny = ng = 1,n3 = n > 8 and o = (123) cyclic. This situation is of particular interest (see [McMullen
07]) because it corresponds to the so-called Coxeter element in a certain infinite reflection group.
Regardless, the characteristic polynomial (6) specializes to

0=xn(t) =" -t 1)+ +£* -1 7)

Take § = &,, > 1 to be the largest real root of y,.

To obtain a realization f of our orbit data and then understand the action (fg), of the associated
automorphism fgr : X(R) — X(R), we need to understand how the critical orbits of f must be
distributed along C. In this case, these are p;;=p; = p;,pz,l =p, = p;, and

pg = P31 |—>...|—>p3,n=p;'.

Lemma 3.5 When n > 8, there exists a basic map f realizing the orbit data 1,1, n, (123) and properly
fixing the cuspidal cubic C with determinant & > 1. If pfx is the unique (finite) fixed point of fc, then we
may suppose that p;': = Pfig for alli=1, 2, 3. Moreover,

f8(03) <pl < fo(py) = F&(p))-
Proof. Suppose for the moment that f is the realization we seek. Theorem 2.3 tells us that the
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<—1
parametrization 4 of C can be adjusted so that ps;, = 4(0) and the indeterminate points of f = are
given by p; = #(t;), where

t1 =Q (1 +48+6")
ty =Q (146 +48)
ts =Q'(1+4+6%),

for Q =1—6""2 < 0. In particular t; < 0 for each i. Since Pfiz = (0), we see that p; < Dfiz.
Since p:(i) = 5(8™71;), we see that D < pfiz for each i, too.

The formulas for the parameters t; also yield

Q(0%ty —t3) =" (8 —6—-1)+8*+6*-1=0,
Qtf —dtf)=-0"(8-6-1)-8=88-1>0
Q(Pty —tf)=(P -6-1)+51 (B -1)+2=(F-1)(™ ' -1)>0

i—1 ; —
where, t:(i) = 0"t That is, f5(p3) = py and f4(p3) < p{ < fo(py ), as asserted.
Finally, note that these computations show that the parameters t;, t> and &t are distinct for all j € N.

Hence, the last part of Theorem 2.3 ensures the existence of the realization f we have so far taken for
granted.r]

Lemma 3.5 and the fact that f preserves order < along C implies that the (extended) critical orbits of
f are ordered as shown in Figure 2. From the figure, Theorem 3.3, and Proposition 1.3, we can easily
deduce the action (fr),.

........ 62_
pll Pu C
* - & - 2 = & &
. D3n “Ran~1 - P3n—3 P3n-3" " DP3n—4a P3n—5 Tt Py Priz
0 — €3

Figure 2. Critical orbits for the basic map realizing orbit data ny =n, =1, n3=n, g =(123). The center horizontal
line represents the cuspidal cubic C. Dashed curves are the real lines e; = f(p;") i=1, 2, 3. Hollow
circles/squares are points blown up to obtain the surface X. Unlabeled solid circles and rectangles represent the
images f¢ (p:r) and fal (p:) along C of forward and backward indeterminate points.

Corollary 3.6 The action (fr), : H*(X;R) — H'(X;R) is given by

2/12/22, 10:00
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el 1> ey ~ey1t+e3r —...+€n 2 €371 1 E3n,
€21 —€; ~eg1+...+€3n 4 —€3n-3+€3n 2 — €301 — E3n,
€3n > —€ ~ —€32 —...—€3p 4+ €11 +€3n3+...+€E3,.
€3,j+1 ifj=n—-2o0rj=n—4
€3, — .
—e3jr1 forallother1 < j<m3—1

Proof. Since, for instance, m; =1 and o(1) =2, we have that p;1 = p;', and therefore
(fr).e11 = te, . The third item in Theorem 3.3 tells us that the sign is determined by how many of the
three points fc(py ), fo(P3),p; € C(R)~e; precede fc(p;y) = fo(p1,1). In Figure 2, these are the
intersections of ey ,e5 with C(R) away from €3 . Precisely one of them fc(p) precedes fc(p1,1) (the
leftmost point in e; N C(R)), so Theorem 3.3 tells us (fr),e1,1 = e, . From Figure 2 again and
Proposition 1.3 it is further evident that e; ~e3; +e32 +...+ €3, 2 — €3, 1 +€35. This
completes our computation of (fr),e1,1- The images of ez 1 and ez are computed in the same way.

To find (fmr),es; for 1< j<n—1, we note from Figure 2 that there are even number of
critical/indeterminate points in C(R.) preceding p3,j unless j = n — 2 or j = n — 4. So the second item
in Theorem 3.3 implies the formula for (fr),e€s,; given in the present corollary.C]

From Corollary 3.6 one can write down the matrix for (fgr), relative to the generators e;; for
H; (X(R);R) and compute the characteristic polynomial for (fr), directly from that. An important
point, here and elsewhere, is that regardless of n, the matrix is triangular outside of three columns (those
corresponding to ey1, €21, and e3 ). Hence, the same few row operations suffice in all cases to put the
matrix for f, — tid in diagonal form outside these three columns. Comparing with (7), one then verifies
that the characteristic polynomial of (fr), : Hi(X(R);R) — H;(X(R);R) is equal to
(t — 1) xn(t). In particular, the spectral radius p((fg),) is the same as that of the action
f+« : H(X;R) — Hy(X;R). It follows from the entropy bounds of Yomdin and Gromov that
hiop(fR) = htop(f) = log p(f+), i.e. Theorem A holds for Coxeter orbit data.

3.2 The second case of Theorem A

The orbit data o = (123)n; = 2,n2 = ng = n > 4 can be dealt with in the same fashion, so we only
summarize. The characteristic polynomial for this orbit data is given by

(t — 1) (t2 + 1)(t" +1)2 -2 41

Again taking 6> 1 to be the largest root, and letting ps;; € C(R) be the unique finite fixed point of
fc, one deduces the following analog of I.emma 3.5:

Lemma 3.7 There exists a basic map f that properly fixes C and realizes the orbit data 2,n,n, (123)
with determinant 6. If pfix is the unique (finite) fixed point of fc, then pf < pjiz for all i=1, 2, 3.
Moreover,

fo(py) <pf <p; <p5.
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This Lemma allows one to work out the action of (fr), on generators of Hy(X(R);R), and a little
further computation then shows as before that the characteristic polynomials of (fr), and of
f« : H2(X;R) — H,(X;R) differ by a factor of t — 1.00

In the appendix to this article, we give the analogs of Lemma 3.5 for all possible orbit data with
o = (123) cyclic. This leads to a general expression for the characteristic polynomial for (fr), in the
cyclic case. We also comment on the remaining possibilities for the permutation: o = id and o = (12) a
transposition.

4. Real maps with non-maximal entropy

In this section, we prove Theorem B, relying on the following fact. It was proven by [Bedford et al. 93]
for polynomial automorphisms of Cz, but later foundational work of [Cantat 99], [de Thélin 04] and
[Dujardin 04] allows one to easily adapt the proof to real automorphisms of compact complex surfaces.

Theorem 4.1 ([Cantat 14, Corollary 8.3]) Let f : X — X be an automorphism on a blowup X — P?
of the complex projective plane. If f is real, then hiop (fr) = htop(f) if and only if all saddle periodic
points of f are contained in X(R) or in f-invariant algebraic curves.

The theorem proceeds in turn from the existence and uniqueness of a measure of maximal entropy for f on
X, and the additional property that support of the measure contains all the saddle periodic points of f
outside periodic curves. The survey [Cantat 14] gives a good detailed account.

Theorem B is an immediate consequence of Theorem 4.1 and

Theorem 4.2 For every n > 4 and o = (123) cyclic, there exists a basic real map fn, unique up to
linear conjugacy, that properly fixes C with determinant § > 1 and realizes the orbit data 3,3,n, 0. The
associated automorphism fp, : X, — X, has two complex fixed points in X, Xy (R) but no invariant
algebraic curves other than C. When n is large enough the complex fixed points are saddles.

For the orbit data in the Theorem, the characteristic polynomial (6) specializes to

Xn(t) =h(t) —t" -t'h(1/t), where h(t)=1t" —t® +2t* — 26> +2¢t 1. (8)

Proposition 3.4 tells us that when nn > 4 this polynomial has a (necessarily unique) real root § larger
than 1 and that this root increases with n. From the formula for y,,, one sees that the limiting value of § as
n — oo is the largest real root of t7h(1 /t). The monotonicity assertion in Proposition 3.4 therefore
implies that the & lies between the largest roots of x4 and of t"h(1/t), i.e. by finding these roots
numerically, § € (1.431,1.684) for alln € N.

Let us note further that t=1 is always a simple root of x,, since xpn(1) = h(1) — h(1) = 0 and
xa(1) = 2h'(1) — (n+T)h(1) =3 —n < —1.

The existence of the basic map f n in Theorem 4.2 is proved along the same lines as it was for
Coxeter orbit data in Lemma 3.5. This time, the ordering of the critical orbits is determined by the
inequalities

fac(PF) < i <P <PF < Dfiz
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and is displayed in Figure 3. From now on f, : X, — X, will denote the complex surface
automorphism obtained from f by blowing up the critical orbits of f;.

Figure 3. Critical orbits for the basic map realizing orbit data n; = ng = 3,n3 = n,0 = (123). The center

horizontal line represents the cuspidal cubic C. Dashed curves are the real lines e, = f(p:“) i=1, 2, 3.

Hollow circles/triangles/squares are points blown up to obtain the surface X. Unlabeled solid circles and
rectangles represent the images f¢ (pf) and fal (pz_) along C of forward and backward indeterminate points.

Lemma 4.3 The only f, invariant algebraic curve is C. Counting multiplicity, there are four fixed points
for f,, exactly two of which do not lie in C.

Proof. The homology class of any f, invariant curve is also invariant, i.e. it is an eigenvector of
for + Ho (X5 R) — Ho(X,; R) with eigenvalue 1. Let V be an f, invariant algebraic curve. Since C
is invariant and 1 is a simple root of yy, it follows that the homology class of V is a multiple of the
homology class of C. However, the self-intersection of C is 32 — N, where N is the number of points in C
that are blown up. Since N > 10 under the hypotheses of Theorem 4.2, C* < 0. It follows that V itself
(i.e. as a divisor) must be a multiple of C.00

To count fixed points, we appeal to the Lefschetz formula [Griffiths and Harris 94, Chapter 3.4] which
tells us for automorphisms of complex rational surfaces that the number of fixed points of f, counted with
multiplicity, is two more than the trace of fp+ : Ha(X,;R) — Ha(X,;R). This trace is 2, i.e. the
coefficient of t in the polynomial h in the formula for xp. Since f, ¢ has two fixed points and fixed points
for holomorphic maps always have positive multiplicity, this leaves two fixed points in the complement of
C.

Restricting fy, to a diffeomorphism fnr on the real slice X, (R) of Xp, one computes the action on
farr s Hi(X,(R);R) = Hi(X,(R); R) as in Corollary 3.6. Following the method of the previous
section, one finds that the characteristic polynomial ¢y, (t) of fnRe is given by

(t+1)pn(t) =g(t) + (—t)"t"g(1/t)  where  g(t) =1—2t*+2t> —¢® + ¢, (9)

Though it is not necessary for the proof of Theorem 4.2, we include the following by way of contrast to
Theorem A.

Proposition 4.4 For n > 4, the spectral radius of the real homology action of fnr is strictly smaller
than the dynamical degree of f,.
Proof. The proposition can be checked by direct numerical computation for n = 4. When n = 5, one also
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verifies numerically that § > 1.5. From Proposition 3.4, we infer that § > 1.5 for all n > 4. To finish the
proof, we will show that all roots of ¢y, lie inside the disk B := {z € C : |z| < 1.5}
Again, for n =5, 6 this can be verified numerically. When n > 7, we resort to Rouche’s Theorem. For

t € 0B ={z€ C: |z| = 1.5}, we have
lg(8)| < 1+ 20" + 20t +[¢° + ¢ <55
and

(=)"t7g(1/2)] = [t|*|1 — t + 22 — 23 + 7]
> 1" (e =1 - [¢| - 2l¢]* - 2J¢°) > 3.3- (1.5)".

Notice that 3.3 X (1.5)7 > 56. It follows that if n > 7, for t € 8B we have
|(t+1)gn (t) — (—t)"tg(1/2)| = |g(t)| < | (¢t +1)¢n ()| + |(—t)"t"g(1/2)|t € BB.

The polynomial t” g(1/t) has one real root ~ —1.4334 and the moduli of the non-real complex roots of
t'g(1/t) are 0.719,0.980 and 1.185. Thus, every root of (—t)"t"g(1/t) lies in B. Since
deg(t + 1)@, (t) = deg (—t)"t"g(1/t) = n + 7, it then follows from Rouché’s theorem that every root
of ¢n (t) has modulus smaller than 1.5.00

Remark 4.5 Adapting the argument in Section 2 of [Gross et al. 09], one can show for all n > 4 that ¢,
is separable, i.e. all roots are simple, and that the only possible cyclotomic factors of ¢, are
(t—1),(#* + 1) and (t® — t3 + 1). It follows that ¢, has a root outside the unit circle for all n. > 4.
Hence, by Yomdin’s bound, htop (fnr) is strictly positive.

4.1 Complex saddle fixed points

To complete the proof of Theorem 4.2, it remains to show that the two fixed points of f, g that do not lie
on C are actually saddle fixed points outside X, (R). For this, we resort to an explicit formula for f n
The method for obtaining the formula is explained in [Bedford et al. 15]. Here, we record only the result.
Namely, up to real linear conjugacy, f » = L’ o, where J is, as before, the standard quadratic involution

and L = (¢4;;) € GL(3,C) is given by
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by =—0*(1-6+8)(1-6+6%)(1-& +46)

= (148)(1-6+8)"(1-6+6 —¢* +5)
b3=(1-6+)(1-+8)(1-2+8)(-1+6—-B+6*—° -6 +5)
by =—8(1-0+8)1-6+8)(1—-8+6 -6+
lp=(1+8)(1-0+8 —6*+6°)(1—-6+26° — 5 — &° + &%)
by3=(1—-87+8)(1-0+8 -6 +6°)(—1+6—28 + 26" —26° 4 07).

b = —07(1— 8% + 8%)°

by =0(1-0+8)(1+6)

bs=8B(1—8+8)(1—-6+8 -8 +&)(-1+8 — & — 6 + &).

To proceed, let us note that the line at infinity is critical for J and, therefore, also for f, = L. In
particular, f, has no fixed point on the line at infinity. So, we are safe working in affine coordinates

(z,y) — [=,y,1], writing f, = (Fy, Fy).

Lemma 4.6 For n > 4, f, has two fixed points outside P*(R).
Proof. The point (x, y) is fixed by f, if and only if Fy(z,y) — ¢ = 0 = Fy(x,y) — y. Using the above
formulae for the coefficients of L, we find that the first equality reduces to y = €(x) where

b

&(z> _ (® +1)2(No + Niz)

o D0+D1$+D2$2

and the coefficients Nj, D; are the following integral polynomials in &:

No=-8(1-6+6)
N=(1-648-6+85)(1—-0+28 -6 —6° +6%)

Dy =8 (1-8+8)°

Dy =-80-1)(1-8+&)(1—0+38 —26* — 55 +48° — 28" — 8%)
Dy=(1-8+6)(1-6+8 -8 +8)(-1+6—20°+26* —28° 1 67).

So turning our attention to the second equality, we have that (x, y) is a fixed point if and only if y = &(z)
and

=5, (n0) ~u= 11)73(5;)@@) |

where, D(x) is a polynomial with real coefficients, a linear function S(z) = Ay + A and a quadratic
function Q(z) = By + Byx + Bax? with

18 of 30 2/12/22, 10:00



Entropy of Real Rational Surface Automorphisms https://www.tandfonline.com/reader/content/17b162ee71d/10.1080/10...

Bo— 0 (1-6+8)(1— 8 +6%)By — —8(2— 36 - 267 + 108" — 764 — 76 + 168° — 767 — 76° + 108° — 26 — 35 +26%) By — (1- 8 + 8 (1-6+ £ -8 +8) (1-6+8 -6 + &),

Hence,
B} —4ByBy = — (6 — 1)%68 (6 + 1)° (1 88+ 66) (3 _ 45— 48% + 116 — 48 — 485 + 366).

Notice that

3 — 46— 46% + 118° — 46* — 46° + 36°
=858 —-1)+ (6 +1)[3(6* —1)(6—1) —1].

Since 1.4 < § < 1.7, we have
#+1<5, 3(82-1)(6—1)>3x (14> -1)(1.4-1) =1.152
and, therefore, B% —4ByBy < 0. Thus, Q(x) has two complex roots and f, has two complex fixed
points.(]
The proof of Theorem 4.2 is now concluded by

Lemma 4.7 For sufficiently large n, the two complex fixed points of f,, are saddle.

Remark 4.8 It seems plausible that Lemma 4.7, and therefore also Theorem, 4.2 work for all n > 4.
When n is small, one can confirm numerically that the complex fixed points of f, are saddles. For
example if n=4, the two multipliers have modulus ~ 1.43903,0.994417 and if n=>5, the two
multipliers have modulus =~ 1.56666,0.993212. In fact, we observe that the modulus of the smaller
multiplier is decreasing in n for 4 < n < 30 (see Figure 4) and seems to approach 0.99285 ... very
quickly as n grows. Since the product of the two multipliers is §, the modulus of the larger multiplier
easily exceeds 1.

0.992880

0.992875 -
0.992870 -
0.992865 -
0.992860 —

0.992855 - .
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5 10 15 20 25

Figure 4. The modulus of the smaller multiplier vs. n.

Remark 4.9 One might hope that the holomorphic version of the Lefschetz fixed point formula [Griffiths
and Harris 94, Chapter 3.4]

1
f%;p det(id — Df(p)) !

would be useful here and for proving Lemma 5.2 below in a more conceptual fashion. That is, the
multipliers at the two fixed points on C(R) are known (see [Uehara 16b, Lemma 5.2]), and the product
of the multipliers at each of the other two fixed points must equal 6. This leaves us to determine only one
multiplier at each of the latter. The holomorphic fixed point formula gives us one additional relation
between these mutlipliers which is not sufficient to identify them completely.

Proof of Lemma 4.7. Since faw = 8w, where  is the meromorphic two form with a simple pole along
C, and since the complex fixed points of f, do not lie on C, we have that the multipliers uy, g of Dfy, at
either of these points satisfy 1 e = 9.

After a (long) computation using explicit formulae for entries of L, we find that the multipliers also
satisfy

p1 + pz = —1 —{() + n(d)i
where

¢(6) = (5—1) (1 — 6+ & +26° — 557 + 2%
1567 — 8510 + 48' 4 2512 — 363 + 514) /D,

n(8) = (6—1)(1—6+6 — 8 + 6 — 5" +8%)x

x /(1 + 8%+ 8%)(3 — 40 — 462 + 118° — 4% — 45 + 35°)/D,
D,=21-8+6)(1-6+8—-6*+6)(1-6+8 —6*+6).

It follows that the two multipliers are roots of quadratic equation
t? + (L4 ¢(8) —n(8)d)t+6=0.

Equivalently two multipliers are x-coordinates of intersection points of two curves in
A*(C),Ci={y=2+z+1} and Cp={y=(—{(8) +n(8)i)z+1— 6} As noted above,
8 > 1 increases to the largest real root 0o, ~ 1.68384 of t"h(1/t) as n — 00. For § = 8, the
intersections between C; and Cy have modulus =~ 1.69559, 0.99285. Since the intersections between C;
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and C» vary continuously with 8, it follows that the |p1| < 1 < |ug| for n large enough. That is, the
complex fixed points are saddles.C]

5. Automorphisms with all periodic cycles real

In the appendix to this article, we identify some more sets of orbit data that lead to real rational surface
automorphisms with maximal (and positive) entropy. It is known (see e.g. [Cantat 14, Theorem 8.2]) that
nearly all isolated periodic points have saddle type for a positive entropy complex surface automorphism
f : X — X. Together with Theorem 4.1, this implies that when f is real and hyop (fr) = htop (f), nearly
all periodic points of f lie in X(R). The referee for this article asked whether it can happen that all
periodic points of f are real. This section is devoted to answering that question.

Theorem 5.1 The orbit data with critical orbit lengths 2, 4, 5 and permutation o = id is realized by a
basic real map f : P2 — P? that fixes C with determinant §>1. All periodic points for the
corresponding rational surface autmorphism f : X — X are isolated and real, i.e. contained in X(R).
All have saddle type, except for the cusp of C which is attracting.

For the remainder of this section, we fix the orbit data to be 2, 4, 5, id as in this theorem. Certainly,
some of the arguments we will use apply more generally, but we want to keep the focus on the example at
hand. The general strategy is to first rule out non-isolated fixed points for the automorphism f: X — X
associated to this orbit data and then apply the Lefschetz fixed point formula [Katok and Hasselblatt 95,
Theorem 2.8.6.2] to count and compare the numbers of fixed points for f* and fﬁ Since the real surface
X(R) is not orientable, we must first lift everything to the orientation cover 7 : X 5 X (R) to count
real fixed points. We are grateful to Eric Bedford who described this strategy to us.

The characteristic polynomial for the orbit data 2, 4, 5, id can be obtained by specializing (13) in the
appendix to this article:

() =-o7s(0).

where, s(t) = 8 — 5 — t* — 3 + 1 has largest real root § ~ 1.28064 > 1.

It follows from Theorem 2.3 and the fourth row in Table 2 that the orbit data are realized by a real
basic map f : P2 — P2 fixing the cuspidal cubic C with determinant § > 1. We let f : X — X be the
rational surface automorphism obtained by blowing up all the critical orbits of f and continue to use C to
denote the anticanonical curve in X obtained as the proper transform of the cuspidal cubic. As noted in
Section 2, there is a real meromorphic two form « on X with a simple pole along C and no other zeroes
or poles, and w transforms by f according to f*w = dw.

Table 2. o=1d, d > 1. (Table view)

Orbit length (n1, 2, n3) Order in the interval [fo (pd ), p3] C C
(2a3a 7) fC(p;—) < fé(p;j,—) < f52(p;r) = p;
(2,3,8) fo(py) < fo' (0f) < fE®§) < p3
(2a3,n3)’n3 >9 fC(p;) < fg‘(p;) < fEl(Pf) '<p;
(2,4,5) fe(py) < fo' (f) < fe(@f) <Py
(2an2,n3)74 <ng,6 <ng fC(p;) =< fC(p:-’,'_) < fEI(PT) =< p;
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Orbit length (11, m2,m3) Order in the interval [fo (pd ), p3] C C
(nl,n2,n3)a3sn1§n2§n3 fC(p;) <J':C(p;) <pii_ 4?;
nj=n;fori # j Degenerate case

Specializing (12) and (14), one finds that (fr), : Hi(X(R);R) — Hi(X(R);R) has
characteristic polynomial

xr (t) = (1 +1%)s(t),

where, s(t) is as before. Hence, the characteristic polynomials for f+ and (fgr), are the same up to
cyclotomic factors, and it follows as in the proof of Theorem A that hsop (fr) = htop(f) = log 6 > 0.

Using the methods from [Bedford et al. 15], one can compute an explicit formula for the basic map f .
With this formula and some help from Mathematica, one locates the fixed points of f. Two fixed points on
the invariant cubic C are [1, 1, 1], [2.1003, 1.2806, 1] and two fixed points on the complement of C are
[0.040129, 1.2806, 1], [-0.29031, 0.37179, 1].

Lemma 5.2 The fixed points of f consist of

* an attracting fixed point at the cusp of C, with multipliers (i.e. eigenvalues of the derivative Df at
the cusp) 52 and §73;

» a saddle fixed point in Cpey N X(R) with multipliers § and §9; and
* two fixed points in X(R)\.C, one repelling and the other of saddle type.

In particular, all fixed points of f are real.
The formulas for the multiplier at the two fixed points in C were established in much greater generality
by [Uehara 16b].

Lemma 5.3 All fixed points of f are isolated.

Proof. Suppose not. Then there exists an irreducible algebraic curve V. C X and an integer k € N such
that fk (p) =pforallp € V. Since § > 1, the only periodic points in C are the two fixed points, so V can
only meet C at one of these. But f|y has finite order, whereas the multipliers at the two fixed points do
not. SoVnNcC =0.

It follows from the genus formula (as in e.g. the proof of Theorem 3.6 in [Diller et al. 07]) that V is a
smooth rational curve with self-intersection —2 and that V meets any other pointwise periodic curve
V'’ C X for f transversely. So if p € V NV is such a point, the multipliers of Df* at p must have finite
order. This contradicts the fact that det D fk (p) = 8%, which holds because of the transformation
property for the two form w. Thus, any two pointwise periodic curves for f are disjoint. Since they have
negative self-intersection, their homology classes are distinct. By periodicity, the class of V lies in the f+-
invariant subspace corresponding to the factor (t — 1)3 in x(t), i.e £,V =V, and so f(V) = V is actually
f-invariant.

Since V has genus zero, f|V is a rotation of order k, and there is a fixed point p € V for f. By Lemma
5.2, p € X(R). This implies that V = V is real. Otherwise, because f is real, V is a distinct pointwise
periodic curve for f that meets V at p, and we have seen that this cannot happen. Since V is smooth and
real, V' N X(R) contains no isolated points, so V.1 X(R) contains a circle S invariant by fg. The roots
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of xg do not include +1, so the homology class of S in Hy(X;R) must be trivial. In particular, S
separates X(R) into two fg -invariant connected components. One of these U C X(R)\.S is disjoint
from C(R), and so (changing the sign of w if necessary) 0 < wa < 00. This leads us to a

/Uw:/fn(v)w:/uf*w:a/vw'

So S and, therefore, also V do not exist.(C]

contradiction:

The Lefschetz fixed point formula now gives that the number of fixed points of f?, counted with
multiplicity, is

#Fix | f* | =2+ trff Hy | GR ) =243+ ) 17, (10)
s(t)=0

where, the 2 reflects the action of f+ on top and bottom homology groups, and 3 is the multiplicy of 1 as a
root of x(t).

In order to count periodic points of fg, we must lift to the orientation cover 7 : X > X (R). Recall
that X can be defined as the quotient by positive scaling of the determinant bundle det X (R). The
two points in any fiber 7! (p),» € X(R) correspond to the two possible local orientations of X(R) at p,
and the diffeomorphism fr lifts by pushing forward local orientations to an orientation-preserving
diffeomorphism f : X - X.Welett: X — X denote the orientation reversing diffeomorphism that
swaps points in each fiber of 7.

The first homology group Hj(X;R) has dimension twice that of Hy(X(R);R), and the
intersection form on Hj (5(\, R) is skew symmetric and non-degenerate. The involution i negates the
intersection form, ie. (L., tsB) = — (a, B). Hence, H; (X;R) = H; & H_, where the +1 and -1
eigenspaces Hy and H_ of ¢, are isotropic and dual to each other with respect to intersection. In
particular, dim H_ = dim H, = dim H; (X(R);R). Since 7, : H;(X;R) — Hy(X(R);R) is
surjective and 7°¢ = 7, we have ker T, = H_ and 7, projects H. isomorphically onto Hy (X(R); R).

Lemma 5.4 Foreachn € N, a pointp € X is n-periodic for ]? if and only if ®(p) is n-periodic for fg.
Proof. Since T : X = Xis 2-to-1, we see that p € X is periodic for f if and only if 7(p) is periodic
for fr. If the minimal period of 7(p) is n, then the minimal period of p is either n or 2n, depending on
whether fg is locally orientation preserving or reversing at w(p). If 7(p) & C, then the facts that
f*w = éw and § > 0 guarantee that fg is orientation preserving at T(p). On the other hand, we know
from Lemma 5.2 that g is locally orientation preserving at the only two periodic (fixed) points on C. In
both cases, we conclude that 7(p) has the same minimal period as p. O

Lemma 5.5 The characteristic polynomial of f , : Hi(X;R) — Hy(X;R) is (xr (2))%.
Proof. The map f commutes with 1 so the eigenspaces H_ and H are f* -invariant. In particular, T,
conjugates the action of f , on H to that of (fr), on H1(X(R); R), and therefore the characteristic

polynomial of f,|H, is xg, (2).
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Pushforward f . preserves the intersection form, so forany a € H, , 8 € H_, we have
~ ~—1
(0, F.B) = (F. a.8).

That is, the action of f « on H_is congruent, and so conjugate, to that of f*_ ' on H. The characteristic
polynomial of f, acting on H_ is therefore given to be t4xr (1/t), where d = deg xr (t). One checks
from the formulas above that xr (t) = t¥xr (1/t) is a reciprocal polynomial, which finishes the proof.
Now, we use the fixed point formula to count fixed points of fg with the help of the previous two lemmas.
It is important to remember here that, unlike periodic points of f, the index p( fl'{,p) of an n-periodic
point p € X(R) for the real map fg can be either positive or negative. When p is non-degenerate, i.e.
when neither multiplier of D fg, (p) is 1, we have

p(fa,p) = signdet(Df"(p) —id) = +1.

A more general formula in [Eisenbud and Levine 77, Theorem 2.1] implies that the real and complex
multiplicities always satisfy

|H(fﬁ,P)| S l"’(fnap)a

with equality precisely when p is, again, non-degenerate.
Since f*w = dw we infer that p(fg,p) = —1 if and only if p € X(R) has saddle type with both

multipliers positive. In any case, u(fn,P) = pu(fg,m(p)) for any n-periodic point p € X.
Applying the fixed point formula to fn gives

2
2 plfap|= Y w|fp|=D) (Vuf,|H|X;R|=2—tf,|H|X;R
fa(p)=p 7" ()= §=0

From Lemma 5.5 and the formula xr (t) = (t* + 1)s(t), we further have

trfy [Hy | X5R | =4Rei" +2 ) .
3(t)=0
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For n, a multiple of 4, we combine these formulas and obtain

#Fict (o | -#Fix (/2 )= Y wlfgp)=-1-Y (11)
falp)=p s(t)=0

where #Fix" (f&) is the sum of u(f&,p) over those p where the intersection index is positive, and
#Fix™ (fg,p) is the magnitude of the sum over those p where it is negative.
Now #Fix(f™) > #Fix* (f) + #Fix™ (f&), so we see from (10) and (11) that

#Fixt (f2) <2 and #Fix™ (f3) = #Fix* (f8) + #Fix(f") — 4,

for all n divisible by 4. Lemma 5.2 tells us that #Fix" (fr) =2, so we actually have equality
#Fix(f") = #Fix* (f3) + #Fix™ (f) for all n divisible by 4. In particular, all n-periodic points of
f are real. Moreover, except for the repelling and attracting fixed points of f, all satisfy
u(fg,p) = —p(f™,p); i.e. by the discussion above they have saddle type.
As every n periodic point for f is also 4n periodic, the theorem is proved. O

Remark 5.6 The automorphisms associated to the orbit data in Theorem A each have a repelling two
cycle outside X(R). One can, however, repeat the above analysis for these maps to show that all points of
minimal period three and higher are saddles contained in X(R).

6. Concluding observations and questions

In closing, we stress that this work only scratches the surface concerning the general issue of real
dynamics of complex surface automorphisms. Here, we list some further problems of interest to us.

The appendix summarizes an exhaustive case-by-case computation of characteristic polynomials for
(fr), associated to various sets of orbit data. The typical situation seems to be that
(fr), : H1(X,R) — H;(X,R) has an eigenvalue outside the unit circle but none as large as the
maximal eigenvalue § of f, : Ho(X,R) — H(X,R) for the ambient complex automorphism. For
such maps, we may only conclude (using Yomdin’s bound) that hyp(fr) lies in some compact
subinterval of (0, log §].

There are, however, some sets of orbit data beyond those described in Theorem A that give real maps
with maximal homology growth, i.e. p((fr),) = 4, and therefore also maximal entropy. One can check
from the formulas in the appendix that these include the following.

» 0 = id is the identity, ny = 2,9 = 3 and ng > 6;

« o0=1id,ny =2,ny =4andng > 5;

» 0=(12) is a transposition, and n; = 1,2 = 4 and ng > 6;
« 0=(12),n1 =1,n3 = 5andnz > 4;

« 0= (12),n; =1,ny > 8andng = 2.

Problem 1 Are there any other basic real maps as in Proposition 2.2 whose real dynamics have
maximal entropy?
We have experimentally observed, by letting one or more of the orbit lengths tend to infinity in

25 of 30 2/12/22, 10:00



Entropy of Real Rational Surface Automorphisms https://www.tandfonline.com/reader/content/17b162ee71d/10.1080/10...

various ways, a strong tendency for the ratio p(f«)/p((fr),) to approach 2 when orbit lengths become
large. This somewhat supports the idea that at least maximal homology growth is atypical for fg.

It would be natural to try to understand the real dynamics of maximal homology growth
automorphisms in more detail.

Problem 2 Find a topological/combinatorial model for the dynamics of the real map
fr : X(R) — X(R) when it has maximal homology growth.

This has been done in e.g. [Bedford and Diller 05] for certain birational surface maps, but it seems
harder in the present context.

At the other extreme, there are a few cases where fr+ is periodic or, more generally, has spectral
radius one. These include

* 0=(123) is cyclic, n; = 1,n9 = 4,n3 = 8: period= 180

» 0=(123) is cyclic, n; = 2,9 = 3,n3 = 5: period= 84

« 0=(123)is cyclic, n; = 3,n2 = 4,n3 = 5: period= 126

» 0=(123) is cyclic, ny = 3,n9 = 4,n3 = 6: period= 60

* 0=(123) is cyclic, ny = 3,n9 = 5,3 = 5: period= 168

* 0=(123) is cyclic, n; = 1,n9 = 3,13 = 9: homology classes grow linearly under iterated
pushforward.

The lack of homology growth certainly does not imply zero entropy for diffeomorphisms of compact
surfaces generally. Pictures (e.g. [Cantat 14, Figure 1] and [McMullen 02, Figure 2]) of the real dynamics
of automorphisms on K3 surfaces strongly suggest that lack of homology growth can coexist with
positive entropy. In these, the real surface is a sphere, i.e. simply connected, so the action (fr), is
automatically trivial, but orbit portraits clearly indicate complicated dynamics. Computer pictures we
have generated for our maps seem more equivocal.

Problem 3 Are there real rational surface automorphisms with hyep (f) > 0 but hyep (fr) = 0? More
generally, are there instances in which exactly one of the inequalities is strict in the chain

log p((fr).) < hiop(fr) < hiop(f) = log p(fi)?

We point out that on irrational surfaces, it can happen that only one inequality is strict. For instance, if
f: X — X is the complexification of a linear Anosov diffeomorphism on a real torus X(R), then
hiop(fr) = log p((fr).) <log p(f:) = hiop()-

All results in this article depend heavily on restricting attention to automorphisms f : X — X that
properly fix the cuspidal anticanonical curve C. It is known [Bedford and Kim 09] that there are many
basic maps f : P2 — P? that lift to real automorphisms with positive entropy but which have no
invariant curve at all.

Problem 4 Find an alternative to Theorem 3.3 for computing the action fg* on homology in the
absence of an invariant anticanonical curve.

Instead of considering the action of fg on homology, one can consider the action
(fr), : m(X(R)) > 71 (X(R)) on the fundamental group of X(R). If one lets £(vy) denote the
(minimal) word length of an element y € w1 (X(R)) with respect to some set of generators for
1 (X(R)), then one has [Bowen 78]
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n—o0

ey (x(R)) > lim supf((fa)")"/".

The right side is maximized by letting y range through a set of generators, and we denote the
maximum by pr, (fr), even though it is not necessarily the spectral radius of a linear operator. Certainly
pr, (fr) = p((fr),)- We propose in future work to investigate

Problem 5 To what extent can pr, (fr) be computed explicitly? In particular, are there examples

where hyop (f) = log pr, (fr) > log p((fr).)?
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Appendix
More general orbit data

For the sake of completeness, we give here the analogs of Lemma 3.5 for more general orbit data n; , ng, n3, o along
with formulas for the characteristic polynomials of the actions fi : Ho(X;R) — Hp(X;R) and
(fr), : H1(X(R); R) — H1(X(R);R) on the middle homology groups. The characteristic polynomial for f« is
known to be reciprocal, but in fact it turns out in all cases considered here that the characteristic polynomial for
(fm)* is also reciprocal of the form

1

o) o).

where, ¢ is a polynomial that depends on the orbit data.
We consider first the cyclic case o = (123). Recall that the characteristic polynomial for f«, given above in
Equation (6), is

x(t) =t -ttt 4 (E—1) (™ +1)(£™ + 1) (¢™ +1).

Table 1 gives

Table 1. Cyclic permutation, § > 1,n; = min{n;, ny, n3} (Table view)

Orbit length (11, n2,73) Order in the interval [fc(p;'),p;'] cC
ny=ng =1 fo(py) < f5' ) < f2(p3) =3

ny =1,ny =2 fo3) < fo' (0f) < f&(p7) < p3

ny =1,n3 =2 fe(py) < fo' (0f) < f5°(03) < Py
m=1m+1=mng fo(p3) = fo' (0F) < v§ <P
ny=1,3<ny <ng—1 fo3) < fe(3) < f&' (0F) <Py

n; =1,3<n3<mn;—1 fo@) <p§ < f5' (o) < p§
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Orbit length (11, m2,m3) Order in the interval [fo (pd ), p5] C C
2<m <ny <mg foy) < fo(p3) < pf <p§

2<n; <ng<n fef) < pf <ps <p5

ny =ng =n3g,n1 = 1,ny = ng Not realizable by a basic map properly fixing C

ni=n,=2,andny =ng = 2

« all the triples ny,n9,ng for which the orbit data n1 + ng + ng > 10 is realizable by a basic map properly
fixing C with § > 1; and

* (for realizable cases) the analog of Lemma 3.5 which determines how the critical orbits are distributed in C.

From this information, one arrives at the following formula for ¢ in (12), valid for all realizable cases in the table:

_ mpbngdl | (CDMPT (B 41)m
o) = (=)™ 4 =)

(—1)"2*"8 (32 4+-3¢+1) "3 (£B+1)t2
21 L

ny < ng < ng

Now suppose o is the identity permutation. The characteristic polynomial for f« is (see Equation (2) in [Diller 11])
x(t) = (E—1)(gmtmtnme —gm — g — g™ 4 2) — (¢™ —1) (™ — 1) (t™ —1). (13)

Table 2 sums up the situation for fg. Again, case-by-case computation leads to formulas

é(t) =1—2t+3t3 -3t + 15, ifn; =2,ny =3

(14)
$(t) =1+ (~1)™tmt 2™ 4 (1) gty <np <mg

for the polynomial ¢(t) in (12).
Finally, we consider the case when o = (12) is a transposition. The characteristic polynomial for f+ is

x(t) = (E—1)(¢™ (t™ +1) (2™ +1) —t™ —t™ —2) — (t™™ —1)(t™ —1).

The situation for fg is more complicated than before. Results are listed in Table 3. In the transposition case, we
have not found a single formula for the polynomial ¢ that gives the characteristic polynomial (12), so we list the
possibilities case-by-case in Table 4. For the last three cases in Table 3, the parameters ¢t; in Theorem 2.3 are not
distinct, so Theorem 2.3 does not guarantee that there actually is a basic map that realizes the given orbit data.

Table 3. 0=(1, 2) and § > 1. (Table view)

Orbit length (n1,n2,n3) Order in the interval [fo (py ),pa ] C C
(1,8, 2) (pz ) < f64(p:j,—) < sz(PT) =< p;
(1,m2,2),m2 > 9 fo(vg) < f5°®3) < f5° (i) < 3
(1,4,6) folpy) < f&03) < £5' 0F) <3
(1,4,n3),m3 > 7 fo(pg) < fa(pf) < ' () <Py
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Orbit length (11, m2,m3)
(1,m2,n3),n3 >my —1>4
(1,n2,n3),4<ng <ny—3,my >5
2 <’I’I,1<’I’L2 < ngs,

2 <niSngsSny

3<ng <niSny

(n17n272)7n1 >3
(n1,n2) 7é (3a 6)a (31 7)a (3’ 8), (4a 5)

(2,m2,2),n2 > 8
(2,3,6)
(2,3,7)
(2,3,n3),n3 > 8
(2,7,2)

ng = 2, (n17n2) = (3a 6)’ (37 7)) (3a 8)’ (4, 5)

Order in the interval [fo (py ),p5] C C
fo@5) < fe(vy) < fo' (o) < P
fC(p )<p3 <fC (p )*pz
fo(py) < fo(p3) <pi <py
fo(py) <pf <p3 <p;
folpy) <p5 <pf <p3
foy) < f5'(wy) < pf <}

fC(pz)'<fC (p3)<fc (p )<p2
fo(py) <pf < fe(®3) < p;
fo(p3) <fc(p3) <Py <p;
fo(py) <pi < f&(p5) <Py
fC(pz) < fcs(p;—) = fc (p1 ) '<p2
fC(pz) '<p1 < fcz(p ) '<p2

(1,n2,3) fC’(p2) p3 '<fc (pl) '<p2
(1,n2,n2 — 2) fo(py) < fg' () =p§ <p}
ni{=ny Not realizable by a basic map properly fixing C

Table 4. 0= (1, 2). (Table view)

Orbit length ny <ny o(t)
m=3n=4n=3 1—t> —t*+¢°

m=1ln =4n3>6 1 —t—t2 4263 — ¢4

n=lm >5m>n—1 t" + (=1 —t3 +2t"2)/(t - 1)
n=2mny=3n3>6 1—12 4+t —¢5

ns = 2 < ng — 1 1 —|—t3 —m _t1+n1 _|_t2+n1 _ t3+'n1

np=ng<ng—1 14 (=1)"¢™ +¢™m(t—

1) +2(—1)™tm ((—)™ +t)/(t+1)

2<mg Smy— 1 T4 (=1 et 4 enth) 4 (8- 1)gmtm - 2(=1) e (L - ()77 /(E + 1)

ni+1<n3 <mg—1 14 (—1)™ e — gm (14 8)) + £ (& — 1) + 2(=1)" a2 (1 — (=)™ 2) /(£ + 1) + 2(=1)" L (g1+ms — 2+m) /(2 — 1)
ng >ny —1 1+ (—1)™ 872 (1 —¢) + #mtme 4 (—1) ™ gm (1 4 1) 4 2(=1)T™ (—2tm 4 ¢72) /(¢ — 1)
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