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Abstract—This paper presents a coordinated steam, power & 

emission economic dispatch (SPEED) model for achieving an 

economical operation of a university campus multi-energy 

microgrid. The coordinated scheduling of combined heat and 

power (CHP) units, as well as high efficiency steam boilers is 

implemented to optimize the entire campus energy provision 

consisting of both steam and electricity, while considering the 

campus emission reduction objective. Impacts of demand charge, 

load profiles, and practical operating constraints of the campus 

multi-energy microgrid system are modeled and formulated into 

the SPEED problem based on recorded campus energy systems’ 

historical operation data. The effectiveness of the proposed 

SPEED model is demonstrated on a simplified campus multi-

energy microgrid system, considering a planned photovoltaic (PV) 

farm integration and the utility supply. As demonstrated in the 

simulation results, comparing with the conventional operation 

solution the university facility is implementing now, the proposed 

SPEED was capable of coordinating the optimal provision of 

electricity, steam, as well as emission reduction resulting in overall 

campus utility monetary savings.  

Keywords—microgrid, economic dispatch (ED), combined 

heating and power (CHP), photovoltaics (PVs), steam boiler.  

NOMENCULTURE 

T Total time intervals 
t  Hour index 
S Steam energy output 
P Power energy output 
i Generation source index 
PU,t                                           Power utility provision 
τ Power utility purchase price 
PPV,t                    PV farm energy provision 
PE,t and SE,t ,                             Excess energy provision   
Fi,,t, Cost of unit i at t 
NG Number of onsite DERs 
PD,t and  SD,t  Power and Steam Demand 

 

I. INTRODUCTION 

The traditional electricity network, which passively carries 
energy from a few large power generators to consumers, is 
evolving to a modernized smart grid, hosting a large number of 
heterogeneous residential, industrial, and commercial 
prosumers (such as a campus microgrid), allowing two-way 

flows of electricity and information. As one of the key smart grid 
components, microgrids may be connected to the utility power 
grid, other microgrids, or may function autonomously 
improving system energy resiliency, reliability, sustainability, 
and efficiency. While utility-connected, microgrids can 
optimize their system assets’ operation, and thus energy flows, 
to gain economic benefits through intelligent controls, e.g., 
transactive control which optimizes operation via cost and 
power profile signals exchanging [1].  

In 2020 alone, the United States experienced a total of 22 
unique extreme weather and climate-related disaster events that 
brought cumulative costs of $95 billion USD [2]. Paired with 
these extreme weather events are often power blackouts leading 
to cascading social and economic costs. A growing number of 
universities including UC San Diego, MIT, Montclair State, 
Princeton, and Santa Clara University have led the initiative to 
adopt microgrids or design new incentives in their campus 
energy systems, providing valuable research for optimized 
energy provision and improved energy resilience [3]-[7]. 
Specifically, Montclair State University (MSU) in New Jersey, 
who enrolls 21,000 students with more than 5,000 living on 
campus, converted its existing 5.4 MW combined heat and 
power (CHP) cogeneration, on campus renewables, and onsite 
boilers to a newly constructed campus microgrid [5]. MSU’s 
campus microgrid is currently employing a centralized SCADA 
system that includes a load-management system with a built-in 
model-predictive controller, providing both campus energy 
resiliency and an estimated economic benefit of $4 million 
dollars annually. The controller, utilizing the campus’s historical 
demand, adjusts electrical, steam, and chilled water loads and 
predicts how much energy should be needed from the distributed 
energy resources (DERs) to improve load shedding and avoid 
ratchets on electric utility demand charges [8].   

Besides, the rapid increase in fuel cost over the past decade 
has motivated more economic desire to optimize the electricity 
generation scheduling in microgrids as accurately as possible to 
meet the real demand [9]-[10]. To allow for a more accurate load 
following, the time window for intelligent controls of microgrids 
is constantly shortening, increasing the number of variables to 
be optimized [1]. Thus, intelligent microgrid controls require 
complex optimizations to run frequently, further decreasing 
system run time. This pursuit encouraged extensive research in 
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mathematical programming optimization methods to support 
more frequent generation scheduling over shorter lead times in 
microgrids [1],[11].  

In the modern era, Machine Learning (ML) and Artificial 
Intelligence (AI) has greatly gained popularity in research to 
build intelligent microgrid controls via genetic algorithms [12], 
particle swarm optimization [13], neural networks [14], deep 
reinforcement learning [15], and especially hybrid techniques to 
solve the increasingly complex problems. The major drawback 
in using these methods is that many suffer from specific 
parameter selection and behave stochastically, resulting in the 
possibility of providing local minima rather than the definite 
optimal point of generation. 

Growing public awareness of environmental protection 
urges a revised power dispatch procedure for energy generation 
systems to account for both cost and emission, such as CO2 
pollutants. The traditional methods of reducing pollution from 
power stations are limited to plant-level remedies, e.g. 
smokestack scrubbers, electrostatic precipitators, or by burning 
lower-sulfur content fuel. Software techniques can also 
minimize impact on the environment during energy generation 
while still considering the cost as shown in [16]-[18]. Nash 
Negotiation was used in [16], Hybrid NSGA II-MOPSO 
Algorithm was proposed in [17], and Genetic Algorithm-II was 
implemented in [18], but infinite computation power, local 
convergence, and difficulty to implement efficiently and 
effectively in the context of spatial multi-objective problems are 
all disadvantages of these methods, respectively.  

Thus, an efficient and easy to implement microgrid control 
method requires fast and reliable dispatch algorithms. In this 
study, a Linear Programming (LP)-based dispatch algorithm is 
used in providing known convergence properties and high 
computation efficiency. The proposed LP-based Steam Power 
& Emission Economic Dispatch (SPEED) is formulated as an 
extension to conventional Economic Dispatch (ED) models and 
determines the optimal generation schedules of campus CHP 
units and high efficiency steam boilers while utility-connected 
with PV energy supply. As such, the entire campus electrical 
and steam demands are coordinately provisioned at minimum 
operating costs under various operating constraints. In addition, 
the proposed SPEED integrates accurately estimated emission 
cost into the operating objective to best use the integrated 
renewable resources and pursue a sustainable multi-energy 
campus microgrid.  

The remainder of this paper is structured as follows: Section 
Ⅱ elaborates the modeling of the multi-energy microgrid 
components, loads, etc. In Section III. the SPEED solution is 
formulated, and the simulation results are presented in Section 
IV. Finally, concluding remarks are provided in Section V. 

II. SYSTEM MODELING 

In this section, the detailed modeling of a multi-energy 
campus microgrid’s components, and the pricing of different 
generation resources are presented. The proposed SPEED is 
performed on a simplified utility-tied campus microgrid 
neglecting some system operating constraints e.g., DER turn 

on/off time and ramp rates that are short compared to hourly 
SPEED intervals [19], and line flow limits which are negligible 
due to the big capacity margin. The investigated campus multi-
energy microgrid contains the following energy supply sources: 
• Dispatchable DER source. E.g., 2 CHP cogenerators, 3 steam 
boilers. 
• Utility sources. E.g., electricity, natural gas. 
• Non-dispatchable DERs. E.g., a solar PV farm. 

Cogenerators use a gas turbine to produce energy in the 
form of electricity, saving the thermal energy at the bottom part 
of the cycle to supply steam to centralized facilities. The ramp 
up rate and efficiency of this cycle is higher than a simple 
electric utility plant or steam boiler, resulting in an increasingly 
attractive solution to campus onsite generation. Furthermore, 
electric utility costs are irregular subject to utility’s factors such 
as: system demand, operating costs, regulations, etc., proving 
to be more expensive in certain regions and fluctuate with time. 
The popularity of congenators forces that an efficient campus 
energy ED model should consider both electricity and steam 
provision optimization, while coordinating with the utility 
supply, to cover complete campus economic worth. 

A. Dispatchable Units 

Dispatchable resources are fueled by the utility and can 
be scheduled to adjust their energy productions to achieve 
minimum operating cost. Each dispatchable DER unit has an 
associated quadratic operating cost curve, showing a changing 
unit efficiency (power output over fuel cost input). Natural gas 
(NG) fuel price does not fluctuate significantly in short periods 
of time (hourly) so a constant fuel price can be considered for 
daily SPEED operation purpose.  The quadratic cost functions 
of a dispatchable resource could be linearized as in [1] using a 
piecewise function taking “q” points on a cost curve, starting 
from the minimum generation operating point and ending at the 
maximum generation operating point. Fig. 1. graphs a 
linearization example with just two “q” points chosen on a cost 
curve. The linear functions are continuous between the lower 
and upper bound. 

 

Fig. 1.  Quadratic Operating Cost Curve 

Each of the campus’s 5 dispatchable units (2 CHP, and 3 
boilers) are characterized using equations (1) and (2) where 
efficiency is changing quadratically depending on the unit’s 
dispatch level. A method equivalent to the piecewise function 
in [1] was used to linearize the cost curves by using their 
maximum and minimum operation points on the curves and 
linking them with a continuous linear line, matching the process 
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shown in Fig. 1. Steam and power maximum operation points 
for each unit are tabulated in Table I. All minimum operation 
points are set to 0. 

���������� = 	
��
�(�����)

���
�(��)
                                   (1) 

��������� �� � = �!��!�/���������� × $���� �� %&                     (2) 

TABLE I.  CAMPUS UNIT MAX. GENERATION LIMITS 

Source Maximum (MW) 
Maximum 

(lbs/h) 

Cogenerator Centaur 3.5 18,000 

Cogenerator Saturn 1.2 9,000 

Boiler 1 N/A 26,000 

Boiler 2 N/A 40,000 

Boiler 3 N/A 40,000 

  

The cogenerators use one fuel source to generate steam with 
electricity as a byproduct, thus having maximum generation 
limit points for both. Observing historical operation data, the 
electric energy and steam outputs from the cogenerators are 
essentially linearly correlated so a ratio was calculated for each 
cogenerator using equation (3).  

$�'(���� = )* +, -���� 

./0
                                           (3) 

Furthermore, a steam to emission ratio was calculated for 
each NG fired dispatchable unit, using equation (4) and a NG 
to CO2 conversion factor provided in [20], 0.12 )* +, 1	2 

3*.,� +, ��
 .  

�5(���� = ( )* +, 1	2 

3*.,� +, ��
)(3*.,�.+, ��

)*.+, -����
)                                           (4) 

B. Utility  

1) Electricity  

The campus’s local generation constantly competes with the 
electric utility to avoid high utility energy cost and demand 
charges. During periods when the campus has excess energy 
generation, the microgrid should be constrained to meet at least 
forecast load and additional power may be net-metered to the 
electric utility for “profit”. 

 The utility’s electricity price estimation was conducted 
based on the historical campus gross electric load. Historical 
campus electric load consists of both energy and peak power 
demands recorded hourly by the campus facility and monthly 
by the utility. Fig. 2. illustrates the estimated utility’s hourly 
electricity prices for November 16, 2018, a month & day chosen 
for its average energy and peak demand over the year. Hourly 
electricity cost was calculated by using the monthly billed total 
consumption cost from the utility, distributing it evenly to each 
hour of the month and scaling it across the campus’s hourly 
load curve. The hourly electricity prices depend on various 
utility charges e.g., distribution and transmission charges, but 
predominantly on campus load consumption profiles.  

 

Fig. 2. Hourly Utility Electricity Pricing of November 16, 2018 

 The electricity provided to the campus’s distribution grid is 
supplied by the PJM Interconnection (PJM) which reported its 
yearly emissions from June 1, 2018 to May 31, 2019, in [21], 
disclosing that from its mixed generation, Atlantic City Electric 
(ACE), the campus’s electric energy distributor produces 803.6 
)*- +, 1	2

6/0
 . 

2) Natural Gas  

Natural gas typically has seasonal cost variations, while 
electricity markets are more volatile having a greater hourly 
impact on the campus generation units scheduling, forcing them 
to operate in utility peak hours. Natural gas price was 
considered to stay constant for each operation day but change 
monthly due to seasonal price fluctuations. Table IV. in the 
Appendix lists the campus’s monthly NG bill costs in fiscal 

year 2019. November’s gas price, 6.92
$

6689:
, was used to 

calculate the cogeneration and boiler operational cost in the 
study. 

C. Non-Dispatchable PV Farm 

Non-dispatchable DERs provide intermittent energy that is 
not continuously available due to natural factors, e.g., wind and 
solar irradiation. Helioscope, a web-based sales and design tool 
for solar professionals was used to integrate a 10.2 MW PV 
farm into the campus microgrid [22]. Variables from the 
simulated model as well as solar irradiation data taken from 
NREL’s National Solar Radiation Database were used in 
equation (5) to determine the hourly PV energy supply. The PV 
farm does not contain any energy storage devices; therefore, it 
cannot be dispatched and instead is considered to supply 
intermittent energy directly to the campus. 

;<ℎ = >��� × ���������� × ?�@�� A���B������                    (5) 

D. Campus Load Consumption 

1) Electricity Load 

Fiscal year 2019’s campus electric energy consumption was 
monitored and recorded as one 15-minute data point each hour. 
Hourly consumption was calculated by multiplying the 15-
minute campus recorded energy consumption by a factor of 4 
and scaling by a factor of the utility reported monthly 
consumption data over the estimated monthly summation. This 
way, over and under estimation could be accounted for.  

2) Steam Load 
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Unlike the electricity, no hourly campus steam consumption 
data was recorded, only daily. Therefore, November 16th’s 
steam consumption data was evenly distributed to 24-hours and 
scaled using [23] university’s hourly steam curve. Fig. 3. plots 
the estimated campus multi-energy microgrid steam and 
electric demand curves over a 24-hour window on November 
16, 2018. We can find that load patterns often do not coincide, 
as shown in Fig. 3., resulting in periods of excessive supply that 
is either discharged or sold. 

Fig. 3. Hourly Campus Steam (A.) and Electric (B.) Demand  

E. Steam and Electricity Oversupply            

 Campus facilities are guaranteed that electric utilities will 
purchase their excess electricity at a price based on the utilities 
“avoided cost” [24]. Avoided cost is the cost that the utility 
would incur if it provided the electricity itself, at the time. A 
conservative average avoided cost, $0.05/kWh, was considered 
to stay constant and the power exported, PE, from the microgrid 
to the utility grid varied based on the hourly optimal SPEED 
solution. Equation (6) is used to calculate the profit from selling 
electricity back to the utility grid. 

  Steam on the other hand, quickly loses its thermal energy 
and its current distribution systems only circulate the campus, 
disallowing excess thermal energy to supply off campus 
facilities. Excess steam may be produced but it is discharged 
into the environment at the unit's expense.  

CD,�($D,�) = $D,� × ($0.05)                                        (6) 

III. SPEED FORMULATION 

 In this section, the SPEED model is proposed and 
formulated as a LP problem. The objective of the SPEED is to 
minimize the total campus energy provision cost over T periods 
(hours) as shown in (7), considering the NG fuel cost to operate 
each dispatchable cogenerator and boiler (CH,�), total emission 
cost of the dispatchable DERs and electric utility (C�� ), the 
electricity purchase cost from utility grid (CI:,�), and the profit 
( CD,� ) from excess electricity sold back to utility grid at 
$0.05/kWh, all the while complying with the multi-energy 
microgrid system components’ physical constraints (10)-(11), 
and the campus energy balances (8)-(9) for both steam and 
electricity. Certain constraints on the DER resources such as 
losses and ramp rates are not implemented for simplification, 
although they exist in a real system. The operating cost of each 
dispatchable DER unit was modeled using their average 
efficiency and NG price with equations (1) and (2).   

∑ ∑  �K
HLM (CH,�N?H,�O P C��N∑  �K

HLM �H,� P �:,�O Q CD,�N$D,�O P CI:,�N$:,�O               9
�LM  (7) 

 
 To incorporate the solution’s carbon dioxide (CO2) 
environmental impact into the SPEED model, emissions are 
considered as an additional cost. Emission cost was based on a 
measure in dollars of the long-term damage done by a ton of 
CO2 emissions in a given year [25]. 2020’s 3% average CO2 
emission costs from [25] was used, tabulated in Table II. with 
their unit emission ratio. 

Energy Balance 

The electricity and steam demands. 

∑ $H,� P $:,�  = $R.� P $D,� Q�K
HLM $ST,� ,         � = 1,2, … . . , X               (8) 

∑ ?H,� = ?R.� P ?D,�
�K 
HLM ,          � = 1,2, … . . , X                                 (9) 

 

Unit Opertaing Constraints 

The generation capacity limits of dispatchable DERs 
provide a set of inequality constraints expressed as 

  $H,�H� Y $H,� Y $H,��Z              ∀(�, �)                                   (10) 
?H,�H� Y ?H,� Y ?H,��Z              ∀(�, �)                       (11) 

  
where Pi,max, Si,max and Pi,min, Si,min are the maximum and 
minimum generation capacities of resource i, respectively.  
 

Emisssions 

Emissions ( 
)* +, 1	2 

0
) from on campus DERs depend on the 

steam provision and their corresponding emission rates  
�H,� = �5(���� × ?H,�             ∀(�, �)                 (12) 

 
and the emissions from utility energy provision are calculated 

using ACE’s current emission rate of 803.6 
)*- +, 1	\

6/0
. 

Cogenerator Power Output 

        A cogenerator’s power provision is dependent on its steam 
provision. 

$H,� = $�'(���� × ?H,�                             ∀(�, �)        (13) 

IV. SIMULATION RESULTS 

The performance of the proposed SPEED was demonstrated 
on the multi-energy campus utility plant illustrated in the energy 
flow diagram, Fig. 4.  

  

Fig. 4. CUP Energy Flow Diagram 
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 The modeled DERs, utilities, and loads presented in Section 
2 are used in the SPEED model to compare the benefits of the 
proposed SPEED solution over the campus’s conventional 
operation. The SPEED model optimizes one day’s DER units 
operation for T= 24 (hours). The multi-energy microgrid 
SPEED model was executed in 0.001 seconds on an Intel Core 
i7 1.5 GHz with 16GB RAM. Note that the calculated savings 
are based on historical data, therefore, savings may not align 
with actual numbers at the time of use. 

 The energy outputs, Pi,t and Si,t from each DERs in each hour 
(t) over the 24-hour time period were optimized to minimize the 
total energy and emission costs. Table II denotes all the input 
information calculated with models in Section II and used in the 
simulation. Tabulated are each source’s emission price, DER 
efficiency, emission rate (EmRatio), and power ratio of each 
cogenerator (PowRatio). 

TABLE II.  SIMULATION VARIABLES 

Source 

Emission 
price 

(
$

)* +, 1	\
) 

DER 
Efficiency  

()*.+, -����

3*.,�.+, ��
) 

Power 
Ratio  

( ./0

)*.+, -����
) 

Emission 
Ratio

( )*.+, 1	\

)*.+, -����
) 

Boiler 1 0.019 0.7354 0.00 0.1631 

Boiler 2 0.019 0.8984 0.00 0.1335 

Boiler 3 0.019 0.8538 0.00 0.1405 

Centaur 0.019 0.4164 0.1767 0.2881 

Saturn 0.019 0.4752 0.1298 0.2524 

ACE 0.019 0.00 0.00 
0.8036 

()*.+, 1	\

./0
) 

PV 0.00 0.00 0.00 0.00 

 Operating Boiler 2 and cogenerator Saturn amounted to the 
least amount of fuel cost. However, as seen in Table II., 
cogenerator Centaur is more efficient in producing more electric 
power with the same amount of steam production, making it the 
favorable generator.  

The PV farm was assumed to have no operating cost or 
emission cost considering the short total time interval. The 
simulated PV farm energy output changed with respect to the 
area (40 acres) and direct normal irradiance (DNI), graphed in 
Fig. 5. Data from NREL’s National Solar Radiation Database, 
for hourly DNI on November 16, 2018, the day under study, was 
used in the simulation. 

 

Fig. 5. Solar Irradiation for November 16, 2018, Lat.36.69 N Long.75.42 W  

A. Campus 24-hour SPEED Results 

The simulation results of the proposed SPEED model for 
steam and electricity generation outputs are shown in Figs. 6-7, 
respectively. It is observed that a majority of the savings occur 
at the hours 12~15 due to the utility electricity price spikes, high 
PV production, as well as high campus steam demand. Total 
campus energy system cost optimized by SPEED was 
$10,912.99. 

 

Fig. 6 Hourly generation power curves 

 

 
Fig. 7 Hourly generation steam curve 

B. Comaprison with Conventional Solution Result 

 For a fair comparison, the currently operating medium/low 
voltage campus electricity grid and steam distribution system 
with the planned PV farm was considered to simulate the 
conventional solution implemented by the campus facility. 
November 16th’s historical data was used to calculate the 
conventional campus energy system operating and emission 
cost. Cogenerator Saturn was scheduled at a constant provision 
to meet the campus steam load demand, with electricity as a 
byproduct, while two high efficiency boilers, Boiler 2 and 3, 
were scheduled to cover peak steam demand. Similar to the 
boilers, the utility grid covered remaining electricity demand 
after cogenerator and PV supply. Excess electricity was sold 
back to the utility grid at $0.05.  

Table III. compares the costs of the two operating solutions, 
conventional vs. SPEED, to meet the hourly multi-energy load 
demands. The total generation and emission cost optimized by 
SPEED was $10,912.99 vs. $12,865.73, the total retrospective 
operation cost. The SPEED model contributes to a 
18.95%  saving in energy cost and a 0.18%  increase in 
emissions compared to the conventional operation. The PJM 
system mix relies on a variety of energy sources, with majority 
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being gas (39%) and nuclear (35%), which makes it a challenge 
for onsite generation to compete with the utility grid emission 
efficiency until more renewables are integrated. Although 
energy prices vary seasonally and on a day-to-day basis, based 
on the one-day’s simulation results, a $710,192.96 yearly total 
cost saving could be estimated. 

TABLE III.  COST COMPARISON 

 Emission 
Cost 

Fuel Cost Electricity 
Purchase 

Total Cost 

Retrospective $2,568.79 $4,753.06 $5,536.91 $12,858.73 
SPEED $2,573.40 $6,892.33 $1,447.26 $10,912.99 

V. CONCLUSION 

 In this paper, the authors proposed and successfully 
implemented a new campus microgrid energy management  
approach, SPEED, via optimal scheduling of campus 
dispatchable DERs. Multiple energy demands (steam and 
electricity) which are naturally coupled, are coordinately 
provisioned via the proposed SPEED solution. Simulation 
results using practical historical data recorded by the campus 
facility and the utilities demonstrated its efficiency in achieving 
a big monetary saving for the entire campus over the 
conventional operation solution employed by the university 
facility. In addition, LP-based problem formulation provides a 
stable convergence and quick computation efficiency. 

APPENDIX 

TABLE IV.  ROWAN UNIVERRSITY’S BILLED FY19 NG PRICES  

Month $/MMBTU 
Jul-18 $9.86 
Aug-18 $5.41 
Sep-18 $23.67 
Oct-18 $6.48 
Nov-18 $6.92 
Dec-18 $7.03 
Jan-19 $5.80 
Feb-19 $5.36 
Mar-19 $5.05 
Apr-19 $5.21 
May-19 $5.76 
June-19 $4.82 
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