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Abstract—This paper presents a coordinated steam, power &
emission economic dispatch (SPEED) model for achieving an
economical operation of a university campus multi-energy
microgrid. The coordinated scheduling of combined heat and
power (CHP) units, as well as high efficiency steam boilers is
implemented to optimize the entire campus energy provision
consisting of both steam and electricity, while considering the
campus emission reduction objective. Impacts of demand charge,
load profiles, and practical operating constraints of the campus
multi-energy microgrid system are modeled and formulated into
the SPEED problem based on recorded campus energy systems’
historical operation data. The effectiveness of the proposed
SPEED model is demonstrated on a simplified campus multi-
energy microgrid system, considering a planned photovoltaic (PV)
farm integration and the utility supply. As demonstrated in the
simulation results, comparing with the conventional operation
solution the university facility is implementing now, the proposed
SPEED was capable of coordinating the optimal provision of
electricity, steam, as well as emission reduction resulting in overall
campus utility monetary savings.

Keywords—microgrid, economic dispatch (ED), combined
heating and power (CHP), photovoltaics (PVs), steam boiler.

NOMENCULTURE
T Total time intervals
t Hour index
S Steam energy output
P Power energy output
i Generation source index
Py, Power utility provision
T Power utility purchase price
Ppy; PV farm energy provision
Pg:and Sk, Excess energy provision
Fi, Cost of unit i at ¢
Ng Number of onsite DERs
Ppand Sp; Power and Steam Demand

1. INTRODUCTION

The traditional electricity network, which passively carries
energy from a few large power generators to consumers, is
evolving to a modernized smart grid, hosting a large number of
heterogeneous  residential, industrial, and commercial
prosumers (such as a campus microgrid), allowing two-way
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flows of electricity and information. As one of the key smart grid
components, microgrids may be connected to the utility power
grid, other microgrids, or may function autonomously
improving system energy resiliency, reliability, sustainability,
and efficiency. While utility-connected, microgrids can
optimize their system assets’ operation, and thus energy flows,
to gain economic benefits through intelligent controls, e.g.,
transactive control which optimizes operation via cost and
power profile signals exchanging [1].

In 2020 alone, the United States experienced a total of 22
unique extreme weather and climate-related disaster events that
brought cumulative costs of $95 billion USD [2]. Paired with
these extreme weather events are often power blackouts leading
to cascading social and economic costs. A growing number of
universities including UC San Diego, MIT, Montclair State,
Princeton, and Santa Clara University have led the initiative to
adopt microgrids or design new incentives in their campus
energy systems, providing valuable research for optimized
energy provision and improved energy resilience [3]-[7].
Specifically, Montclair State University (MSU) in New Jersey,
who enrolls 21,000 students with more than 5,000 living on
campus, converted its existing 5.4 MW combined heat and
power (CHP) cogeneration, on campus renewables, and onsite
boilers to a newly constructed campus microgrid [5]. MSU’s
campus microgrid is currently employing a centralized SCADA
system that includes a load-management system with a built-in
model-predictive controller, providing both campus energy
resiliency and an estimated economic benefit of $4 million
dollars annually. The controller, utilizing the campus’s historical
demand, adjusts electrical, steam, and chilled water loads and
predicts how much energy should be needed from the distributed
energy resources (DERs) to improve load shedding and avoid
ratchets on electric utility demand charges [8].

Besides, the rapid increase in fuel cost over the past decade
has motivated more economic desire to optimize the electricity
generation scheduling in microgrids as accurately as possible to
meet the real demand [9]-[10]. To allow for a more accurate load
following, the time window for intelligent controls of microgrids
is constantly shortening, increasing the number of variables to
be optimized [1]. Thus, intelligent microgrid controls require
complex optimizations to run frequently, further decreasing
system run time. This pursuit encouraged extensive research in
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mathematical programming optimization methods to support
more frequent generation scheduling over shorter lead times in
microgrids [1],[11].

In the modern era, Machine Learning (ML) and Artificial
Intelligence (Al) has greatly gained popularity in research to
build intelligent microgrid controls via genetic algorithms [12],
particle swarm optimization [13], neural networks [14], deep
reinforcement learning [15], and especially hybrid techniques to
solve the increasingly complex problems. The major drawback
in using these methods is that many suffer from specific
parameter selection and behave stochastically, resulting in the
possibility of providing local minima rather than the definite
optimal point of generation.

Growing public awareness of environmental protection
urges a revised power dispatch procedure for energy generation
systems to account for both cost and emission, such as CO,
pollutants. The traditional methods of reducing pollution from
power stations are limited to plant-level remedies, e.g.
smokestack scrubbers, electrostatic precipitators, or by burning
lower-sulfur content fuel. Software techniques can also
minimize impact on the environment during energy generation
while still considering the cost as shown in [16]-[18]. Nash
Negotiation was used in [16], Hybrid NSGA II-MOPSO
Algorithm was proposed in [17], and Genetic Algorithm-II was
implemented in [18], but infinite computation power, local
convergence, and difficulty to implement efficiently and
effectively in the context of spatial multi-objective problems are
all disadvantages of these methods, respectively.

Thus, an efficient and easy to implement microgrid control
method requires fast and reliable dispatch algorithms. In this
study, a Linear Programming (LP)-based dispatch algorithm is
used in providing known convergence properties and high
computation efficiency. The proposed LP-based Steam Power
& Emission Economic Dispatch (SPEED) is formulated as an
extension to conventional Economic Dispatch (ED) models and
determines the optimal generation schedules of campus CHP
units and high efficiency steam boilers while utility-connected
with PV energy supply. As such, the entire campus electrical
and steam demands are coordinately provisioned at minimum
operating costs under various operating constraints. In addition,
the proposed SPEED integrates accurately estimated emission
cost into the operating objective to best use the integrated
renewable resources and pursue a sustainable multi-energy
campus microgrid.

The remainder of this paper is structured as follows: Section
II elaborates the modeling of the multi-energy microgrid
components, loads, etc. In Section III. the SPEED solution is
formulated, and the simulation results are presented in Section
I'V. Finally, concluding remarks are provided in Section V.

II. SYSTEM MODELING

In this section, the detailed modeling of a multi-energy
campus microgrid’s components, and the pricing of different
generation resources are presented. The proposed SPEED is
performed on a simplified utility-tied campus microgrid
neglecting some system operating constraints e.g., DER turn

on/off time and ramp rates that are short compared to hourly
SPEED intervals [19], and line flow limits which are negligible
due to the big capacity margin. The investigated campus multi-
energy microgrid contains the following energy supply sources:
* Dispatchable DER source. E.g., 2 CHP cogenerators, 3 steam
boilers.

» Utility sources. E.g., electricity, natural gas.

* Non-dispatchable DERs. E.g., a solar PV farm.

Cogenerators use a gas turbine to produce energy in the
form of electricity, saving the thermal energy at the bottom part
of the cycle to supply steam to centralized facilities. The ramp
up rate and efficiency of this cycle is higher than a simple
electric utility plant or steam boiler, resulting in an increasingly
attractive solution to campus onsite generation. Furthermore,
electric utility costs are irregular subject to utility’s factors such
as: system demand, operating costs, regulations, etc., proving
to be more expensive in certain regions and fluctuate with time.
The popularity of congenators forces that an efficient campus
energy ED model should consider both electricity and steam
provision optimization, while coordinating with the utility
supply, to cover complete campus economic worth.

A. Dispatchable Units

Dispatchable resources are fueled by the utility and can
be scheduled to adjust their energy productions to achieve
minimum operating cost. Each dispatchable DER unit has an
associated quadratic operating cost curve, showing a changing
unit efficiency (power output over fuel cost input). Natural gas
(NG) fuel price does not fluctuate significantly in short periods
of time (hourly) so a constant fuel price can be considered for
daily SPEED operation purpose. The quadratic cost functions
of a dispatchable resource could be linearized as in [1] using a
piecewise function taking “q” points on a cost curve, starting
from the minimum generation operating point and ending at the
maximum generation operating point. Fig. 1. graphs a
linearization example with just two “g” points chosen on a cost
curve. The linear functions are continuous between the lower

and upper bound.

(S/h)

Quadratic Operating Cost

\4
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Fig. 1. Quadratic Operating Cost Curve

Each of the campus’s 5 dispatchable units (2 CHP, and 3
boilers) are characterized using equations (1) and (2) where
efficiency is changing quadratically depending on the unit’s
dispatch level. A method equivalent to the piecewise function
in [1] was used to linearize the cost curves by using their
maximum and minimum operation points on the curves and
linking them with a continuous linear line, matching the process
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shown in Fig. 1. Steam and power maximum operation points
for each unit are tabulated in Table I. All minimum operation
points are set to 0.

Efficiency = 4011;::55365)7") (1 )
Operating Cost = Output/Efficiency X Price of NG 2)
TABLE L CAMPUS UNIT MAX. GENERATION LIMITS

Source Maximum (MW) M(ei)glsr/r}l:;m
Cogenerator Centaur 35 18,000
Cogenerator Saturn 1.2 9,000
Boiler 1 N/A 26,000
Boiler 2 N/A 40,000
Boiler 3 N/A 40,000

The cogenerators use one fuel source to generate steam with
electricity as a byproduct, thus having maximum generation
limit points for both. Observing historical operation data, the
electric energy and steam outputs from the cogenerators are
essentially linearly correlated so a ratio was calculated for each
cogenerator using equation (3).

Ib of steam
kWh (3)

PowRatio =

Furthermore, a steam to emission ratio was calculated for
each NG fired dispatchable unit, using equation (4) and a NG

to CO, conversion factor provided in [20], 0.12-22<%
cb.ftof NG

. _ ,lbofco; cb.ft.of NG
EmRatio = (cb.ft of NG) (lb.of steam) (4)

B. Utility

1) Electricity
The campus’s local generation constantly competes with the
electric utility to avoid high utility energy cost and demand
charges. During periods when the campus has excess energy
generation, the microgrid should be constrained to meet at least
forecast load and additional power may be net-metered to the
electric utility for “profit”.

The utility’s electricity price estimation was conducted
based on the historical campus gross electric load. Historical
campus electric load consists of both energy and peak power
demands recorded hourly by the campus facility and monthly
by the utility. Fig. 2. illustrates the estimated utility’s hourly
electricity prices for November 16, 2018, a month & day chosen
for its average energy and peak demand over the year. Hourly
electricity cost was calculated by using the monthly billed total
consumption cost from the utility, distributing it evenly to each
hour of the month and scaling it across the campus’s hourly
load curve. The hourly electricity prices depend on various
utility charges e.g., distribution and transmission charges, but
predominantly on campus load consumption profiles.

$0.12
$0.10

$0.08

$0.06
$0.04
$0.02
$0.00

1234567 8 9101112131415161718192021222324
Hours

Price ($/kWh)

Fig. 2. Hourly Utility Electricity Pricing of November 16, 2018

The electricity provided to the campus’s distribution grid is
supplied by the PJM Interconnection (PJM) which reported its
yearly emissions from June 1, 2018 to May 31, 2019, in [21],
disclosing that from its mixed generation, Atlantic City Electric

(ACE), the campus’s electric energy distributor produces 803.6
lbs of CO,
MwWh

2) Natural Gas
Natural gas typically has seasonal cost variations, while
electricity markets are more volatile having a greater hourly
impact on the campus generation units scheduling, forcing them
to operate in utility peak hours. Natural gas price was
considered to stay constant for each operation day but change
monthly due to seasonal price fluctuations. Table IV. in the

Appendix lists the campus’s monthly NG bill costs in fiscal
$

. . MMBTU .
calculate the cogeneration and boiler operational cost in the

study.

C. Non-Dispatchable PV Farm

Non-dispatchable DERs provide intermittent energy that is
not continuously available due to natural factors, e.g., wind and
solar irradiation. Helioscope, a web-based sales and design tool
for solar professionals was used to integrate a 10.2 MW PV
farm into the campus microgrid [22]. Variables from the
simulated model as well as solar irradiation data taken from
NREL’s National Solar Radiation Database were used in
equation (5) to determine the hourly PV energy supply. The PV
farm does not contain any energy storage devices; therefore, it
cannot be dispatched and instead is considered to supply
intermittent energy directly to the campus.

year 2019. November’s gas price, 6.92 , was used to

kWh = Area x Ef ficiency X Solar Irradiation 5)

D. Campus Load Consumption

1) Electricity Load

Fiscal year 2019’s campus electric energy consumption was
monitored and recorded as one 15-minute data point each hour.
Hourly consumption was calculated by multiplying the 15-
minute campus recorded energy consumption by a factor of 4
and scaling by a factor of the utility reported monthly
consumption data over the estimated monthly summation. This
way, over and under estimation could be accounted for.

2) Steam Load
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Unlike the electricity, no hourly campus steam consumption
data was recorded, only daily. Therefore, November 16th’s
steam consumption data was evenly distributed to 24-hours and
scaled using [23] university’s hourly steam curve. Fig. 3. plots
the estimated campus multi-energy microgrid steam and
electric demand curves over a 24-hour window on November
16, 2018. We can find that load patterns often do not coincide,
as shown in Fig. 3., resulting in periods of excessive supply that
is either discharged or sold.
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Fig. 3. Hourly Campus Steam (A.) and Electric (B.) Demand

E. Steam and Electricity Oversupply

Campus facilities are guaranteed that electric utilities will
purchase their excess electricity at a price based on the utilities
“avoided cost” [24]. Avoided cost is the cost that the utility
would incur if it provided the electricity itself, at the time. A
conservative average avoided cost, $0.05/kWh, was considered
to stay constant and the power exported, Pg, from the microgrid
to the utility grid varied based on the hourly optimal SPEED
solution. Equation (6) is used to calculate the profit from selling
electricity back to the utility grid.

Steam on the other hand, quickly loses its thermal energy
and its current distribution systems only circulate the campus,
disallowing excess thermal energy to supply off campus
facilities. Excess steam may be produced but it is discharged
into the environment at the unit's expense.

Fp(Pg) = Pg, X ($0.05) (6)

III. SPEED FORMULATION

In this section, the SPEED model is proposed and
formulated as a LP problem. The objective of the SPEED is to
minimize the total campus energy provision cost over 7 periods
(hours) as shown in (7), considering the NG fuel cost to operate
each dispatchable cogenerator and boiler (F;,), total emission
cost of the dispatchable DERs and electric utility (FE;), the
electricity purchase cost from utility grid (FUy ), and the profit
(Fg.) from excess electricity sold back to utility grid at
$0.05/kWh, all the while complying with the multi-energy
microgrid system components’ physical constraints (10)-(11),
and the campus energy balances (8)-(9) for both steam and
electricity. Certain constraints on the DER resources such as
losses and ramp rates are not implemented for simplification,
although they exist in a real system. The operating cost of each
dispatchable DER unit was modeled using their average
efficiency and NG price with equations (1) and (2).

= Zf]:al (Fi,t(si,t) + FEt(Zlivfl Ei¢ + EU,t) - FE,t(PE,t) + FUU,t(PU,t) (7)

To incorporate the solution’s carbon dioxide (CO,)
environmental impact into the SPEED model, emissions are
considered as an additional cost. Emission cost was based on a
measure in dollars of the long-term damage done by a ton of
CO; emissions in a given year [25]. 2020’s 3% average CO;
emission costs from [25] was used, tabulated in Table II. with
their unit emission ratio.

Energy Balance

The electricity and steam demands.

YN P+ Py =Ppi+Por—Ppyy,  t=12,...,T (3)
N,

21 Sie = Spe + See t=12,....,T ©)

Unit Opertaing Constraints
The generation capacity limits of dispatchable DERs
provide a set of inequality constraints expressed as
Pi,min < Pi,t < Pi,max V(i, t) (10)
Si,min < Si,t = Si,max V(’:: t) (1 1)

where Pjmax, Simax and Pjmin, Simin are the maximum and
minimum generation capacities of resource i, respectively.

Emisssions

Emissions ( w) from on campus DERs depend on the

steam provision and their corresponding emission rates
E;; = EmRatio X S;; v(i,t) (12)

and the emissions from utility energy provision are calculated

. . Ibs of CO
using ACE’s current emission rate of 803.6 %

Cogenerator Power Output

A cogenerator’s power provision is dependent on its steam
provision.
P;; = PowRatio X S;;

V(0 (13)

IV. SIMULATION RESULTS

The performance of the proposed SPEED was demonstrated
on the multi-energy campus utility plant illustrated in the energy
flow diagram, Fig. 4.
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Fig. 4. CUP Energy Flow Diagram
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The modeled DERs, utilities, and loads presented in Section
2 are used in the SPEED model to compare the benefits of the
proposed SPEED solution over the campus’s conventional
operation. The SPEED model optimizes one day’s DER units
operation for T= 24 (hours). The multi-energy microgrid
SPEED model was executed in 0.001 seconds on an Intel Core
i7 1.5 GHz with 16GB RAM. Note that the calculated savings
are based on historical data, therefore, savings may not align
with actual numbers at the time of use.

The energy outputs, P;;and S;, from each DERs in each hour
(7) over the 24-hour time period were optimized to minimize the
total energy and emission costs. Table II denotes all the input
information calculated with models in Section II and used in the
simulation. Tabulated are each source’s emission price, DER
efficiency, emission rate (EmRatio), and power ratio of each
cogenerator (PowRatio).

TABLE II. SIMULATION VARIABLES
Emission DER Power Emission
Source price Efficiency Ratio Ratio
$ (lb.of steam) ( kWh ) ( lb.of CO2 )
(lb of CDZ) cb.ftof NG lb.of steam lb.of steam
Boiler 1 0.019 0.7354 0.00 0.1631
Boiler 2 0.019 0.8984 0.00 0.1335
Boiler 3 0.019 0.8538 0.00 0.1405
Centaur 0.019 0.4164 0.1767 0.2881
Saturn 0.019 0.4752 0.1298 0.2524
0.8036
ACE 0.019 0.00 0.00 b.of CO2
( kWh )
PV 0.00 0.00 0.00 0.00

Operating Boiler 2 and cogenerator Saturn amounted to the
least amount of fuel cost. However, as seen in Table II.,
cogenerator Centaur is more efficient in producing more electric
power with the same amount of steam production, making it the
favorable generator.

The PV farm was assumed to have no operating cost or
emission cost considering the short total time interval. The
simulated PV farm energy output changed with respect to the
area (40 acres) and direct normal irradiance (DNI), graphed in
Fig. 5. Data from NREL’s National Solar Radiation Database,
for hourly DNI on November 16, 2018, the day under study, was
used in the simulation.
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Fig. 5. Solar Irradiation for November 16, 2018, Lat.36.69 N Long.75.42 W

A. Campus 24-hour SPEED Results

The simulation results of the proposed SPEED model for
steam and electricity generation outputs are shown in Figs. 6-7,
respectively. It is observed that a majority of the savings occur
at the hours 12~15 due to the utility electricity price spikes, high
PV production, as well as high campus steam demand. Total
campus energy system cost optimized by SPEED was
$10,912.99.
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Fig. 6 Hourly generation power curves

Steam (thousand Ibs/hr)
5

8
6
4
2
0
172 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hours)
Centaur Saturn Boiler2

Fig. 7 Hourly generation steam curve

B. Comaprison with Conventional Solution Result

For a fair comparison, the currently operating medium/low
voltage campus electricity grid and steam distribution system
with the planned PV farm was considered to simulate the
conventional solution implemented by the campus facility.
November 16th’s historical data was used to calculate the
conventional campus energy system operating and emission
cost. Cogenerator Saturn was scheduled at a constant provision
to meet the campus steam load demand, with electricity as a
byproduct, while two high efficiency boilers, Boiler 2 and 3,
were scheduled to cover peak steam demand. Similar to the
boilers, the utility grid covered remaining electricity demand
after cogenerator and PV supply. Excess electricity was sold
back to the utility grid at $0.05.

Table III. compares the costs of the two operating solutions,
conventional vs. SPEED, to meet the hourly multi-energy load
demands. The total generation and emission cost optimized by
SPEED was $10,912.99 vs. $12,865.73, the total retrospective
operation cost. The SPEED model contributes to a
18.95% saving in energy cost and a 0.18% increase in
emissions compared to the conventional operation. The PIM
system mix relies on a variety of energy sources, with majority
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being gas (39%) and nuclear (35%), which makes it a challenge
for onsite generation to compete with the utility grid emission
efficiency until more renewables are integrated. Although
energy prices vary seasonally and on a day-to-day basis, based
on the one-day’s simulation results, a $710,192.96 yearly total
cost saving could be estimated.

TABLE IIL CoST COMPARISON
Emission Fuel Cost | Electricity | Total Cost
Cost Purchase
Retrospective | $2,568.79 $4,753.06 | $5,536.91 | $12,858.73
SPEED $2,573.40 $6,892.33 | $1,447.26 | $10,912.99

V. CONCLUSION

In this paper, the authors proposed and successfully
implemented a new campus microgrid energy management
approach, SPEED, via optimal scheduling of campus
dispatchable DERs. Multiple energy demands (steam and
electricity) which are naturally coupled, are coordinately
provisioned via the proposed SPEED solution. Simulation
results using practical historical data recorded by the campus
facility and the utilities demonstrated its efficiency in achieving
a big monetary saving for the entire campus over the
conventional operation solution employed by the university
facility. In addition, LP-based problem formulation provides a
stable convergence and quick computation efficiency.

APPENDIX
TABLEIV. ROWAN UNIVERRSITY’S BILLED FY 19 NG PRICES
Month $/MMBTU
Jul-18 $9.86
Aug-18 $5.41
Sep-18 $23.67
Oct-18 $6.48
Nov-18 $6.92
Dec-18 $7.03
Jan-19 $5.80
Feb-19 $5.36
Mar-19 $5.05
Apr-19 $5.21
May-19 $5.76
June-19 $4.82
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