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ABSTRACT

Recently the long standing problem of optimal construction of quan-
tile sketches was resolved by Karnin, Lang, and Liberty using the
KLL sketch (FOCS 2016). The algorithm for KLL is restricted to on-
line insert operations and no delete operations. For many real-world
applications, it is necessary to support delete operations. When the
data set is updated dynamically, i.e., when data elements are inserted
and deleted, the quantile sketch should reflect the changes. In this
paper, we propose KLL*, the first quantile approximation algorithm
to operate in the bounded deletion model to account for both inserts
and deletes in a given data stream. KLL* extends the functionality
of KLL sketches to support arbitrary updates with small space over-

head. The space bound for KLL* is O(% logzlog(é)), where €
and § are constants that determine precision and failure probabil-
ity, and o bounds the number of deletions with respect to insert
operations. The experimental evaluation of KLL* highlights that
with minimal space overhead, KLL* achieves comparable accuracy
in quantile approximation to KLL.
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1 INTRODUCTION

With the rise of big data in companies such as Google, Amazon,
and Facebook, managing hundreds of terabytes to petabytes of
data has become a necessity for day to day operations. To make
use of this data, it is crucial to develop a deeper understanding of
the underlying distributions of the data in real datasets. In particu-
lar, techniques such as quantile approximations, a non-parametric
representation, are widely used to characterize data distributions.
For large amounts of data, one-pass' algorithms are desirable, and
many well-known data sketches are based on one-pass algorithms.
For instance, the HyperLogLog [11] sketch? is a one-pass algorithm
for the count-distinct problem; the Bloom Filter [4] data sketch is a
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!Where input data is read only once.
2The term sketch refers to the algorithm and data structures that can extract valuable
information through one pass of the data.
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one-pass algorithm for the set membership problem. Several one-
pass quantile approximation algorithms [9, 12, 13, 20, 21, 27] have
been proposed to guarantee high precision with small memory
footprints. Since one-pass algorithms only read each element from
the input once, these one-pass algorithms are both useful for large
databases, and naturally applicable in the streaming data settings.

Approximate quantile problems are developed for a variety of
settings. For example, approximate quantiles are considered in the
streaming data settings [20, 21], sliding window settings [3], and
distributed settings [27]. Moreover, approximate quantile sketches
operate mainly within the insertion-only model and the turnstile
model. The insertion-only model, also referred as the cash register
model, consists of a stream of only insert operations; whereas the
turnstile model consists of a stream of insert and delete operations
such that deletes are performed on previously inserted items [28].
Quantile sketches such as the GK sketch [13] and Q-digest [27]
operate in the insertion-only model; and quantile sketches such as
Range Subset Sum [12], Dyadic Count-Min [9], and Dyadic Count
Sketch [28] operate in the turnstile model. Turnstile model quan-
tile summaries have significant usage in database and networking
applications, and are used in most Database Management Systems
(DBMSs) which monitor and maintain a variety of order statistics
such as quantiles over the contents of database relations [25]; in
value range partitioning for parallel database [26]; and in financial
services [17]. Sketches proposed for the turnstile model assume
a fixed universe in order to tolerate an arbitrary number of dele-
tions and thus incur higher space and update complexity compared
to data-driven sketch. The additional challenge of tolerating an
arbitrary amount of deletion for the turnstile model is arguably
an infeasible task for data-driven sketches which stores a subset
of items chosen from the input. Several researchers [12, 28] have
noted that if one first inserts n elements and then deletes all but one
element, the data-driven sketch has no information about which el-
ement will survive since the data-driven sketch only keeps a subset
of items. Wang et al. [28] conjecture the impossibility of any data-
driven sketch to support the turnstile model where all elements
can be deleted. Therefore, we focus on developing a data-driven
sketch in the context of the bounded deletion model.

Recently, Jayaram et al. [19] observed that in practice many turn-
stile models only incur a fraction of deletions and thus proposed
an intermediate model, called the bounded deletions model, which
naturally lies in between the insertion-only stream model and the
turnstile model. The authors [19] use parameter « to denote differ-
ent degrees of deletions such that at most 1 — é of prior insertions
are deleted; when a = 1 the input dataset is in the insertion-only
model. The authors [19] show significant space improvements for
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many fundamental streaming problems within the bounded dele-
tion model over the turnstile model, such as heavy hitters and inner
product estimation, and identify the bounded deletion model as
being particularly useful for applications such as computing differ-
ences between network traffic patterns, Ly estimation of moving
sensors (monitoring wildlife or water flow pattern), and completing
synchronization in database analytical context.

Furthermore the bounded deletion model is important for main-
taining approximate quantiles in real-world applications such as
summarizing product sales in electronic commerce platforms and
ranking in standardized testings. Many companies need accurate
quantile information to identify current status and forecast future
demands [15]. After customers purchase some products, a certain
percentage of the customers may return the product and submit
refund requests, hence the quantile summaries should reflect these
changes. However, it is highly unlikely that the majority of these
customers will return their purchases and in most cases a bounded
deletion model can be assumed. In the context of standardized
testing such as SAT, GRE, and LSAT, quantiles are seen as a more
descriptive measurement compared to the test scores, since the
difficulty of the exam varies. In these standardized testing settings,
students may request to regrade their exam only once to verify any
machine errors in scanning answers or human errors in grading
the essay. The updated grades may change the underlying score
distribution. Thus, a quantile summary with a = 2, is sufficient to
reflect all changes even if all students require a regrade®. In Section
4.3, we also show how to leverage KLL* with @ = 2 to maintain
fixed-size sliding window quantile approximation over datasets.

In this paper, we extend the original optimal quantile sketch
KLL [20], which operates in the insertion-only model, and present
KLL* quantile sketch that supports bounded deletions in which the
total number of deleted items are less than a certain threshold of the
total inserted items, and the deleted items are previously inserted
into the data set. The KLL algorithm is online updatable for insert
operations, but not for delete operations. Without delete operations,
a KLL sketch cannot be maintained for a dynamic dataset that is
constantly updated as an expensive scan operation will be needed to
recompute the KLL-sketch, when deletions are applied. Our KLL*
expands the functionality of the original KLL sketch by supporting
bounded deletions; and if the administrator of the big data, knows
a priori that deletions are not insensitively large compared to the
insertions, such as some corrections or adjustments on previously
inserted items, then KLL* can approximate quantiles with small
space and high accuracy. In summary, the main contributions in
this paper are: (i) Presenting the KLL* sketch, the first data-driven
quantile sketch that operates in the bounded deletion model; (ii)
Providing thorough mathematical proofs and analysis to guarantee
the correctness of KLL* sketches; (iii) Applying the KLL* sketches
over datasets to maintain approximate quantile estimations in the
fixed-size sliding window; (iv) Evaluating KLL* and comparing it
with KLL, two parallel KLL strategy, and DCS sketch [28] through
various experiments; and (v) Incorporating several optimization
strategies [18] proposed for the original KLL sketch [20], such as
implementing the algorithm with fixed memory size.

3https://collegereadiness.collegeboard.org/sat/scores/verifying-scores
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This paper is structured as follows: Section 2 discusses back-
ground information of quantile sketches, and gives an overview
of previous algorithms. Section 3 introduces the KLL* quantile
sketch for datasets with an incoming input stream in the bounded
deletion model, and along with the proposed algorithm for com-
paction referred to as Conditional Compaction algorithm. Section 4
analyzes the space complexity of our sketch, and demonstrates a
potential use case of KLL* to maintain fixed-size sliding window
quantile approximation over datasets. Section 5 presents the exper-
iment results of an evaluation conducted using synthetic and real
world datasets and compares KLL* with the state of the art KLL
sketch (insertion-only) [20] and DCS sketch (turnstile) [28]. Finally,
Section 6 summarizes our contributions and concludes this work.

2 BACKGROUND

Given a multiset of n elements S = {s1, ..., s }, the rank of an ele-
ment s; € S is the number of elements in S that are less than or
equal to s;, and R(s;) is the function specific to a set S that takes as
input an element s; and returns its rank. The quantile of an element
si € S is defined as R(s;)/n. Equivalently, the ¢-quantile of set S,
Q(¢) returns the element s; such that Q(R(s;)/n) = s;. Typically,
quantile is represented as a fraction ¢ € (0, 1]. The relationship
between the rank and quantile of an element can be represented as:
R(si) = ¢ - n, where ¢ is a non-zero fraction less than or equal to
one and n is the number of elements in the dataset. Equivalently, ¢
elements are less than or equal to s; and (1 — @) X n elements are
greater than s;. The most familiar quantile value is ¢ = 0.5 which
is referred to as the median of the dataset.

2.1 Deterministic and Randomized algorithms

Computing the true median value for large data sets, is memory
intensive. Munro and Paterson [24] proved that to find the true me-
dian of a set of size n with p sequential passes of the input requires
at least Q(nl/ P memory. Thus, to determine the true median using
a one-pass algorithm requires memory linear to the size of the set.
With limited memory and for large data sets, calculating the exact
quantiles is infeasible. An alternate and more practical approach
to the problem is to approximate the quantiles, represented as e
approximation ¢ quantile, where € is the precision value.

The deterministic € approximation ¢ quantile algorithms take
as input a quantile query ¢ and a precision value € and output an
answer x such that x’s quantile is in the range [¢ — €, ¢ + €]. An
alternative approach proposes a family of randomized algorithms
where the output answer x is within the [§ — €, ¢ + €] range with a
high probability [18, 20, 21]. These algorithms provide guarantees
by bounding the failure probability to at most § such that the user
has 1 — § confidence that the sketch’s output is € approximation.

2.2 Quantile Sketch: Insertion-only Model

Greenwald and Khanna [13] developed the GK sketch that tracks
a sorted subset of elements in the input data stream such that
these elements provide lower and upper bounds for each quantile
individually instead of maintaining a single bound over all quantiles.
The GK sketch is deterministic and requires O(1/e log (eN)) space
in the worst case. It is conjectured [2], however, that the GK sketch
is not fully mergeable — the property of merging two sketches on



Sketch Space Update Time Randomization Model Framework
GK Sketch [13] O(%log(en)) O(log% +loglog(en)) | Deterministic | Insertion-Only Data-Driven
Q-digest [27] O(%logU) O(log% + loglogU) Deterministic | Insertion-Only | Universe-Driven
MRL99 [22] O(%logz(%)) O(log(%)) Randomized | Insertion-Only Data-Driven
Mergeable KLL [20] O( % log?log( %)) O( é) Randomized | Insertion-Only Data-Driven
O(log(¢))[18]
RSS [12] O( élog2 Uloglo%U) O( élog2 Uloglo%U) Randomized Turnstile Universe-Driven
DCM [9] O(%log2 Uloglo%U) O(logUlog lOZU) Randomized Turnstile Universe-Driven
DCS [28] O(%logl‘sUlogl‘sla%U) O(logUlog(lo%U)) Randomized Turnstile Universe-Driven
Mergeable KLL* O( % log? logé) O( %) Randomized Bounded Data-Driven
st.D < (1-1/a)l 0(log(%£>))[18] Deletions

Table 1: Comparison between different quantile sketches

two different datasets is to create one combined or merged sketch
that can then be used for quantile computation over the union of
the two datasets. Mergeability allows users to compute sketches
over multiple data partitions independently and to combine them
in parallel to compute the summaries. The merged sketch should
be as accurate as a single sketch over the entire data set. This is
a crucial requirement in distributed settings, where data is often
stored distributedly across different machines. Creating sketches
independently and then merging them avoids the communication
costs and large latency of transferring large amounts of data to
a central repository. Furthermore, this also makes the quantile
computation highly scalable in the context of very large datasets.
Karnin et al. [20] extended the GK sketch and presented the
KLL sketch, an asymptotically optimal but non-mergeable sketch
with O(1/e loglog(1/8€)) space. Karnin et al. also presented a
mergeable KLL sketch with O(1/¢ log? log (1/8¢)) space bounds.
The core building block for the KLL quantile sketch is called the
compactor, first introduced in [21]. KLL can be seen as an array of H
compactors as depicted in Figure 1. One of the main contributions
by Karnin et al. [20] is to obtain the optimal sketch size by having
different capacity compactors at different heights and exponentially
decreasing the capacity of compactors at lower heights.

When a compactor[h]’s size reaches its capacity, i.e., k, = cp, the
compactor performs a compaction process, in which it pushes ky, /2
elements from compactor[h] to compactor[h + 1]. Hence, these
kj,/2 elements update their weight to 2wy, i.e., 2. The compaction
process introduces error since each compaction pushes only half of
the elements to the next level. For example, consider a compaction
of two elements A, B with weight wy, = 1 in which rank(A)=1 and
rank(B)=2. A compaction pushes either A or B, and the compacted
element’s weight becomes wy,,; = 2.If element A is chosen then the
sketch loses the information about element B and believes element
A appeared twice, hence rank(A)=2 and rank(B)=2 in which case
we introduced +1 (+wpy) error for rank A. If element B is chosen
then the sketch loses the information about element A and believes
element B appeared twice, hence rank(A)=0 and rank(B)=2 in which
case we introduced -1 (—wp) error for rank A. In both cases, we
introduce no error for rank B. Therefore the rank estimation before
and after a compaction process differs by at most wy, as shown in
Figure 2. Agarwal et al. [2] suggested that by removing the odd or
even indexed elements with equal probability, the expected error
becomes zero. This ensures that the total error is bounded by & for
O(1/e) quantiles.

In summary, Karnin et al. [20] (i) exponentially decrease the com-
pactor capacity; (ii) replace compactors of capacity 2 with a sampler,

which randomly selects one element from 2™ ~logy/c K elements;

Capacity Weight (iii) keep the size of the top O(loglog 1/8) compactors fixed (similar

H ‘ k ‘ 2fH to the MRL sketch [21]); (iv) replace the top O(loglog1/§) com-

‘ o ‘ oH2 pactors with a GK sketch [13]. Recently, Ivkin et al. [18] extended

the theoretical development of Karnin et al. [20] to achieve practical

% improvements for implementing KLL sketches. In summary the
(] contributions are: (i) Implementing the algorithm with memory
* ¢k 2 limit parameter, denoted by k, as opposed to J (failure probability)
and e (precision) parameters; (ii) extending the functionality to han-

dle weighted data streams; and (iii) various optimization strategies

to reduce memory footprint and update time. These optimization

1 E 20 strategies are orthogonaﬁ)to our WorIl)<, and in the technicgl report [1]

Figure 1: An illustration of a set of compactors. As the height
decreases from H to 1, the capacity of the compactor de-
creases from k to c~k. k is a constant given by the user,
and c is a constant between 0.5 and 1.

1217

we show how to integrate our work with the Sweep Compactor
[18] to improve the worst case update time.



Compactor[h]

R(1) R() Wweight=w, R(5) R(6)
1 2 . { 4 5 6
Compaction Compactor[h+1]
j/‘ weight = 2w,
Keep
Odd 1 3 5
Term
Keep
Even 2 4 6
Term
w, 0 w +0

Figure 2: Compactor[h] reaches its capacity of 6 and performs
a compaction. If the odd indexed terms are chosen then the
compaction contributes +wy, error to R(1), R(3), and R(5). If
the even indexed terms are chosen then the compaction con-
tributes —wy, error to R(1), R(3), and R(5). In both cases the
compaction contributes no error to R(2), R(4), and R(6).

2.3 Quantile Sketch: Turnstile Model

In the turnstile model, the input data stream consists of both inser-
tions and deletions and a deletion cannot delete an element that
does not exist. This is also known as the strict definition for the
turnstile model. Gilbert et al. [12] were the first to propose quantile
sketches for the turnstile model and introduced quantile sketches to
support both insertions and deletions in database management sys-
tems (DBMSs). The authors [12] presented the novel Random Subset
Sums (RSS) sketch, which breaks down the universe U into dyadic
intervals and maintains the frequency estimations of elements for
each layer, using total space of O(ﬁ log? U log logU
time O(e—lzlog2 Ulog( )). The dyadic structure decomposes the
universe into log U layers such that in each i layer the universe is
partitioned into U/2! intervals of size 2!. The top most layer repre-
sents the interval: [1, U], the second top most layer represents two
intervals: [1,U/2], [U/2+1,U], the third top most layer represents
four intervals: [1,U/4], [U/4+1,U/2], [U/2+1,3U /4], [3U /4+1,U]
and so on until the bottom layer representing all the elements in
U. Thus, to find the rank estimate of an element x € U, we can
decompose the interval [1, x] into log x number of disjoint dyadic
intervals, and query each of these intervals to the frequency esti-
mation sketch of their corresponding layers and then sum all the
estimations to obtain the rank estimation.

Later Cormode et al. [9] proposed the DCM (Dyadic Count Min)
logU
€

), with update
logU
€

sketch with overall space O(% log? U log ( ))) and update time

O(log U log (IOgEU )). DCM sketch replaced the frequency estima-
tion sketch in each layer with a Count Min Sketch, in which Count
Min sketch uses small space to output the frequency estimation
of each element with an additive factor of € in high probability.
Recently, Wang et al. [28] proposed DCS (Dyadic Count Sketch)
sketch which replaced the Count Min sketch with Count sketch [6].
Count sketch is similar to Count Min sketch as it has small space
overhead to output frequency estimation for each element with an
additive factor of € in high probability. While Count Min sketch’s
estimation is biased toward overestimation, Count sketch gives an
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unbiased frequency estimation by reporting the median. Wang et
al. [28] point out that the property of unbiased frequency estima-
tion from the Count sketch is appealing to the quantile problem.
Estimations, by sketches for each dyadic layers, may give positive
errors or negative errors, and these errors may cancel out each
other. Thus, DCS sketches further improve the space bound to

O(é log!”® Ulog!- (I%TU))) with the same update time complexity
as DCM sketches.

These three sketches (RSS, DCM, DCS) guarantee that deleting
a previously inserted element has no impact on the space or ac-
curacy of the sketch. In fact, Gilbert et al. [12] compared the RSS
sketch with 2-parallel GK sketches (one for insertions and one for
deletions), and found that when deletions are relatively small, the
simple 2-parallel GK sketches exceed the accuracy of RSS by two or-
ders of magnitude. When the number of deletions are significantly
large, RSS is more accurate than the 2-parallel GK sketches.

During the past three decades of research, various quantile sum-
maries have been developed through a variety of models and frame-
works. In Table 1, we compare the difference and similarity among
several different sketches. Quantile sketches algorithms can be
categorized by data-driven or universe-driven framework [8]. Al-
gorithms in the data-driven framework keep a subset of items
appeared in the stream and maintain their statistics. On the other
hand, algorithms in the universe-driven framework maintain at-
tributes over the universe, and have update time and space bounds
depend on the universe size U. For instance, Shrivastava et al. [27]
proposed a novel quantile sketch for the insertion-only model and
universe-driven framework with O(% log U) space. Our algorithm
uses the bounded deletion model and data-driven framework, more
precisely the comparison framework?. The benefit for sketches in
the data-driven framework is that these sketches make no assump-
tions on the universe size, hence can handle dataset with attributes
involving variable-length strings while their space and update time
are independent from the universe size; Recent surveys by Wang
et al. [28], Greenwald et al. [14], Chen et al. [7], and Cormode et
al. [10] provide comprehensive background on quantile sketches.

3 KLL* QUANTILE SKETCH

The challenges for supporting arbitrary number of delete operations
in the turnstile model motivated researchers [9, 12, 28] to explore
universe-driven algorithms which necessitate the sketch size and
update time to be dependent on the size of the universe, which can
be quite large. Our main goal is to extend data-driven algorithms to
the bounded deletion model where the input consists of I insertions
and at most (1 — 1/a) x I deletions. We propose the KLL* Quantile
Sketch, a generalization of the KLL sketch to maintain quantile
information in the bounded deletion model using as small of a
memory footprint as possible.

3.1 Basic Structure

Similar to MRL [21] and KLL [20], KLL* can be seen as an array
of H compactors where H denote the total height. Each compactor
is identified by its height, denoted as compactor[h]. The topmost
compactor and the bottom compactor have height H and 1, respec-
tively. Each compactor[h] has a limited capacity cj, = ¢/ “hk where

4Only comparisons are applied on elements.



k is the capacity of compactor[H|. Each compactor[h] contains ky,
elements such that k, < ¢j, and each element in compactor[h] has
weight wy, = 2h=1 Once a compactor is full, kj, = cp, the compactor
will go thorough a compaction to free spaces for new elements.

3.2 Differentiating Inserts & Deletes

In the insertion-only model, the incoming data stream consists
only insertions. To extend this model to contain both insert and
delete operations, we first differentiate between insert and delete
operations by using one additional bit (representing the sign) with
the data value. We assume that deletions are negative numbers
with negative weights and insertions are positive numbers with
positive weights.Let function sign(item) return 1 for insertions and
return -1 for deletions. The weight of an item is defined based on
the sign function and the height of the compactor. For any element
in compactor[h]: weight(item) = sign(item) * 2P=1 Hence, the
deleted items are recorded with negative weights and inserted
items with positive weights.

3.3 Conditional Compaction

Once a compactor is full, i.e, kj, = cp, the compactor needs to be
compacted to free space for new incoming elements. The pres-
ence of inserted and deleted elements requires a new compaction
algorithm. This section presents a novel compaction algorithm,
Conditional Compaction, described in Algorithm 1. In the condi-
tional compaction algorithm we assume that the capacity of the
input compactor is even. If the capacity of the compactor is odd
then the first or the last element is randomly kept to ensure that an
even sized number of elements are compacted.

Before compacting each compactor[h], the elements inside the
compactor[h] are sorted (the sorting order does not matter), line 1
of Algorithm 1, After sorting, Conditional Compaction Algorithm
follows the following compaction process:

Discard(—ej, €j): For every element —e;, if there is a matching e;,
then Discard(—e;, e;). This is because an insert e; and a delete e;
operation cancel each other and any such matching pairs of in-
serts and deletes are discarded in the compaction process. Since
the compactor is sorted’, a classical two-pointer technique®, can
be used to find all matching pairs of (delete(e;), insert(e;)). If such
pairs exist then Discard(—e;, ;) results in the removal of matched
pairs which in turn creates free space in the compactor and hence
the algorithm skips the rest of the compaction process. A crucial
property of compaction is to push elements to the compactor at the
next level. Since in this case a compactor will not push any elements
to the compactor at the next level, this is not a full compaction.

Push(ej, ej+1): If no (delete(e;), insert(e;)) pairs are found and dis-
carded, then the algorithm performs the push operation. For every
pair of adjacent elements, e; and e;4+1 with the same sign (i.e., they
are both inserts or deletes) at level h, the algorithm decides on a
random offset (line 6) whether the first or the second element of the

STf compactor is not sorted, we need to keep a map while scanning the compactor to
find all matching pairs.

Put one pointer at beginning and one at the end, increments or decrements the
pointers to find all matching pairs in a single scan.
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pair is pushed to the next level, C[h +1].

Keep(ej, ej+1): If the pair of adjacent elements, e; and e;41, have
different signs (i.e., e; is deleted and e;;; is inserted), then both
elements are retained in the compactor at level h. Note that there
will be at most one such mismatched pair with different signs.

The rationale for keeping adjacent elements with different signs
is based on the following observation. Assume in compactor[h]
there is a (delete(B), insert(A)) pair. This information implies that
the input contains wy, insertions and at least one of these insertions
is element A, and also wy, deletions and at least one of these dele-
tions is element B. If we randomly push either insert A or delete B
into compactor[h+1] which contains elements with weight of 2wy,
then the sketch not only lost the information about wy, deletions
or wy, insertions respectively, but also introduce false information
on the total number of insertions and deletions.

Algorithm 1: Conditional Compaction in KLL*

1 sort(C[h]);
2 Discarded = discard((—x, x) pairs € C[h]);
3 if Discarded then

// No compaction needed

return;

offset = random(0, 1);

fori=0; i < C[h].length; i=i+2do

if sign(C[h][i]) == sign(C[h][i + 1]) then
‘ push(C[h][i + offset]) to C[h+1];

else
| keep(C[R][i].C[R][i +1]) in TEMP;

10

11

end
Cl[h].clear();
C[h] « TEMP;
return;

12

13

14

15

Two main distinctions that arise in the compaction process of
KLL* are: (i) discarding matching pairs to free space before the push
operations, and (ii) changing the minimum capacity of a compactor
to at least three (from two in KLL). The first modification reduces
the number of push operations by removing matched pairs which
cancel each other. Later, we prove that discard operations do not
introduce error and push operations can introduce at most wy, error.

The second modification changes the minimal capacity of a ca-
pacitor to three. This modification is necessary because if the min-
imum capacity of a compactor is two and these elements neither
have the same operation nor are a matched pair, then the Condi-
tional Compaction would retain both elements in the compactor;
and hence the compactor remains full even after the compaction
process. Increasing the minimum capacity of a compactor to three
guarantees a reduction in size after a compaction, when the com-
pactor becomes full. If the compactor contains matched pairs, then
the discarded operation can be applied to free space. If there is no
matched pair, then a full compactor with capacity three can have
four possible cases in the compaction process, as shown in Table 2.
Table 2 also describes the compaction strategy for each of these



Table 2: Compaction for a full compactor of size 3 consisting
of sorted elements ey, ez, and e3 and no matched pair.

3 Inserts 50%: push(e; or ez) and keep(es)
+++ 50%: keep(e1) and push(e or e3)
2 Inserts and 1 Delete | keep(e;) and push(e; or e3)
—++
1 Insert and 2 Deletes | push(e; or ez) and keep(es)
- —+
3 Deletes 50%: push(e; or ez) and keep(es)
-—- 50%: keep(e1) and push(ey or e3)

cases, assuming elements are in the sorted order and no matching
pairs. When the compactor is full, one element out of two elements
with the same operations is randomly chosen and pushed to the
next level, and the element not been pushed is removed.

3.4 Estimating Ranks and Quantiles

The Output Operation in Algorithm 2, summarizes the current
snapshot of the sketch. It uses all the compactors inside the sketch
to obtain the quantile information. First, the total weight of the
sketch is calculated by summing the weights of all elements, where
h is the height of the compactor and ky, is the number of elements
in compactor[h] (line 9): TotalWeight = Zle ijlweight(eh)i)
Second, a map ItemWeightSortedMap of < item, weights > pairs
is created to contain the final aggregate weights of each element in
the sketch. For each element, the aggregated weights is calculated by
incrementing or decrementing the corresponding weights, based on
the height of the compactor in which the element was encountered,
and whether the corresponding operation was an insert or a delete.
Third, since ItemW eightSortedMap is sorted in ascending order
by item, map Result calculates the estimated rank of each item by
summing through all weights of items whose values are less than
or equal to itself. To transform the rank of an item into the quantile
of an item, the rank information is divided by the total weight.
The output operation returns a map that contains the quantile
information for each item in the sketch. To estimate the rank of item,
x, that is not in the output, we can use the rank of the largest element
that is less than x as the estimation. For items with estimate rank
less than zero or larger than the total weight, we treat their rank
as zero or as the total weight since all deleted items are previously
inserted and hence all ranks should be with in [0, TotalWeight].

3.5 An Illustrative Example

Assume a KLL* sketch with k = 6, ¢ = %, the topmost compactor
has capacity 6 i.e, k, and the second topmost compactor has capacity
41ie, ck. Items 1 through 8 are inserted and then items 7, 3, 2, and 1
are deleted. After the deletions, the multiset is left with {4,5,6,8} and
their respective ranks are R(4)=1, R(5)=2, R(6)=3, R(8)=4. As illus-
trated in in Figure 3, the sketch needs to be compacted three times.
Assume the first compaction has offset of 1; the second compaction
has offset of 0; the third compaction again has offset of 1. The first
conditional compaction occurs after item 6 is inserted, and pushes
the 2, 4, and 6 from compactor[1] to compactor[2]. Compactor[2]
maintains full capacity of 6, while the capacity of compactor[1]
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Algorithm 2: Output Operation in KLL*

Result = map();
// A map sorted in ascending Item Order
ItemWeightSortedMap = OrderedMap< item, weights >;
TotalWeight = 0;
for all compactor[h] in Sketch do
for item in compactor[h] do
weight = sign(item) 2771;
ItemWeightSortedMap[(abs(item)] += weight;
TotalWeight += weight;
end

[

[- S B N )

=

©

10

end

PrevW = 0;

//traverse ItemWeightSortedMap in ascending order;

for < item, weights > in ItemWeightSortedMap do
Result[item] = (weights+PrevW)/TotalWeight;
PrevW += weights;

11

12

13

14
1

«

16
17 end
18 //result contains the quantile info for each item.

19 return Result;
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Figure 3: Items from 1 to 8 are inserted and then items 7,3,2,1
are deleted. The resulting dataset is {4,5,6,8}; KLL* estimate
R(4) =1,R(5) =1,R(6) =3,R(8) =4.

is now reduced to 4. The second conditional compaction occurs
after elements 7, 8, -7 and -3 are added. This compaction finds a
matching pair of -7 and 7 and hence discards the pair, leaving com-
pactor[1] with -3 and 8. The third conditional compaction occurs
after elements -2 and -1 are added. This compaction pushes -2 to
compactor[2], and -1 and 8 are both kept in compactor[1] since they
have different signs. Based on the current sketch, the original data
set are now represented as {-1, 4, 4, 6, 6, 8}. Finally, to estimate ranks,
KLL* computes the weight of all {abs(element), weight (element))
pairs. Then sort based on the element’s value: (1, -1), (2, 0), (4, 2), (6,
2), (8, 1), and compute their corresponding ranks: R(1) = R(2) =0,
R(4) =1, R(6) = 3, and R(8) = 4. To report R(5), we use the rank
of largest element that is less than 5, i.e. R(5) = R(4) = 1, differs



from true R(5) by 1. As a result, the output of the sketch in term of
rank is: R(4) = R(5) = 1, R(6) = 3, R(8) = 4.

3.6 Error in Compaction

This section discusses the error introduced by Conditional Com-
paction. Essentially, the algorithm introduces errors when pushing
one out of two elements and does not introduce any error when dis-
carding matched elements or when retaining a pair of non-matching
elements. Consider the Push(e;,ez) operation in compactor[h] with
weight wy,: at random, either e; or ey is pushed into compactor|[h+1]
with weight wy ;. Pushing elements to higher weight results in
+wy, 0, or -wy, error. By removing the odd or even items with equal
probability, the expected error becomes zero [2].

LEMMA 1. Hoeffding’s Inequality. Let X3, - - - , Xy, be independent
random variables such that —w; < X; < w; and the expected value
EXi)=0fori=1,2,...,n. Then for anyt > 0 we have:

2

n
t
Pr{| lel >t] < ZexP(_zlew?
= i

i=1

)

In Condition Compaction, Algorithm 1 discards matched pairs of
inserted and deleted elements. We need to establish that this does
not impact the overall error and make sure the expected error in one
compaction is still zero in order to apply Hoeffding’s inequality [16]
to bound the total errors. Proof of Proposition 1 is presented in the
extended technical report[1]

PROPOSITION 1. Discarding matched inserted and deleted elements
within a compactor at level h during a compaction cycle does not
introduce any error to the sketch’s total error.

The Conditional Compaction algorithm has three main compo-
nents that can potentially introduce error: (i) Push(e; or e;j41), (ii)
Keep(e; and e;j1), and (iii) Discard(-e; and e;). Pushing one of two
elements from compactor[h] introduces +wy, 0, -w}, error; keeping
elements in their own compactor introduces no error; discarding
the matched pairs of inserted and deleted elements introduces no
error (proved in Proposition 1). Thus we can assert the expected
error is still 0 when pushing even or odd index terms with equal
probability, and we can apply Hoeffding’s inequality to bound the
probability of total error exceeding € - (I — D), where € is the desired
precision and I — D is the size of the dataset after the deletions.

To show that the KLL* sketch ensures that the probability of
the total error exceeding € - (I — D) is less than a small constant
probability, 8. Let random variable X; j, denote the error introduced
by the ith compaction in compactor|h] and let my, be the number
of compactions that occurred at compactor[h]. Note X; j, can be 1,
0, or -1. Therefore, the total error is computed as:

H my

Err = Z Z WhXi,h
h

=1 i=1

)

Since we know that E(Xj, h) = 0 by keeping even and odd terms
with equal probability, Hoeffding’s inequality can be applied:
€?(I-D)?

P(|Err| > e(I- D)) < Zexp(—H—m2
2y ity v,
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Where § is a small constant probability. § denotes the maximum
failure probability; hence, when ¢ is small, the algorithm has high
confidence for success.

3.7 Space Bound

In this section, we analyze the space bound and approximation
guarantees for KLL* with an array of H compactors. The minimum
capacity of compactors is three to handle both insert and delete
operations. To guarantee any compactor will have capacity greater
than or equal to three, a compactor at height h has capacity of

max( {cH_th, 3). Hence, as the total height H increases, there will
be a stack of bottom compactors with capacity three. In particular,
for compactors with small A such that {CH _th < 3,the compactors

will have capacity of three.

Figure 4: H' denotes the height of the bottom compactors
with size 3, and H is the height at the highest level.

Assume the KLL* sketch has k > 4 and ¢ € (0.5,1) with ¢j, =

max( {CH_th, 3), and the incoming data have I insertions and D

deletions such that D < (1 — 1/a)l. Let r % be the rate of
deletions such that r < (1 - é) ensuring that the incoming updates
have bounded deletions compared to insertions. H is the height of
the compactor at the highest level; H' is the height of the bottom
compactors with capacity three (see Figure 4) such that H” < H — 1.
Because each compactor will undergo compaction when it be-
comes full, every compactor of capacity three contains at most two
items, and hence the total weight of these bottom compactors is:

H H
Whottom < 2wy = »_ 2h < 2™
h=1 h=1
The total weights of the top compactors is:
H
Wiop < ) (kp = Dwp < (k= 12"
h=H’+1

Combining the total weights of the bottom H’ and top H — H’
compactors results in an upper bound on the number of items in
the dataset: I — D < 2H'*1 4 (k - 1)2H < k2H. We can then bound
the total number of items:

1+
n:I+D:(1+r)I§k2H1—_: @)



Since topmost compactor [ H] exists, it implies that compactor[H —

1] has been compacted. Thus, n > cgr_ywr—; > ck2H=2 = k2H (¢/4).

By moving H to the left hand side and n to the right hand side:
H < logz(4n/ck) = loga(n/ck) + 2

The keep and discard operation introduce no error as shown in
Proposition 1, and only the push operation will introduce at most
+wy, error. Also, because the conditional compaction Algorithm 1
will perform no compaction if there are any discard operations,
the push operations are performed on compactor[h] that contains
kp, = cp, elements. Then let mj, denote the number of compactions
occurred for compactor at height h, and the total error introduced in
the sketch is upper bounded by the number of compactions: Err =
Zle Zﬁ’i wpX; p where X; j, is a random variable denote the error
introduced by the i*# compaction in which E(X;p) =0and |[X;p| <
1, shown in Equation 1. We can bound the number of compactions,
my,, at height h, where each compaction is performed on kj, = ¢y,

Ch?"’h < kzz—"H(Z/c)H_h and by

substituting in Equation 2, my, < 2% (2/c)H=". Note in this upper
bound, we did not consider discard operations; discard operations
only reduce the number of compactions. We now apply Hoeffding’s
inequality to bound the probability for compactors to introduce
more than € - (I — D) error:

elements with weight wy, as my, <

207 _ 12
P(|Err| > e(I - D)) < 2exp(-— L= D) o) <

H ~mp
22 Zim1 Wy,

mp
i=1

2

The denominator can be expanded to Zle D Y

2 _vH
wy = 2o MW

2 2c—1
_%c(;f#,whererzgS(l—l/a).LetC=%,
1-r 1-r
P(|Err| > < 2exp(—(——)3Ce?k? 3
(1B > (i) < 2exp(-(10)°CR) )

> %, and hence
> 1

L > Lo Setting k = (2a — 1)/(eVC)y/In(2/5) suffices to
bound the failure probability by §, and the total space used is:

: 1 1
Since0 <r < (1-4),1+r<2-,,1-r
1-r

H

2

h=1

H
¢y, <3H+ kZ Hh = O(k +log(n/k))
h=1

4

THEOREM 1. In the bounded deletion model D < (1 —1/a)I, there
exists a data sketch that computes an € approximation for the rank
of a single item with probability 1 — § whose space complexity is

0(%2 \log(1/8) + log(-<%)).

In order to have e approximations for all items, the failure proba-
bility need to be decreased into €4, bounding the failure probability
for approximating a set of O(1/¢) items. Thus, to solve all quantile
approximation, the space complexity becomes:

en

P

1.5

at en
O(T log(1/€d) + log(ﬁ

Note that the space complexity includes log(en) term and this is
due to the stack of compactors with size 3. We can further reduce
the space complexity by replacing the bottom compactors with
samplers as discussed in the next section.
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4 SAMPLER AND MERGEABILITY

In this section, we describe how to incorporate the sampler from
the original KLL [20] to further reduce the space bound while still
maintaining full mergeability. We also discuss the merge operation
between two KLL* sketches to construct a combined sketch over
the union of the underlying datasets, and, in the end, propose a
new algorithm that leverages KLL* sketches to maintain quantile
approximations in fixed-size sliding window.

4.1 Sampler-based Bottom Compactors

From the Conditional Compaction Algorithm, when a bottom com-
pactor is full, an inserted item or a deleted item is randomly cho-
sen out of two insertions or two deletions. This is equivalent to
replacing the bottom H’ compactors with two samplers (one for
insertions and one for deletions) to simulate the bottom compactors
and consume O(1) space. Karnin et al. [20] introduced the merge-
able sampler and prove the correctness of the sampling schema.The
sampler has an associated height h, and h increases over more and
more inputs. The sampler outputs an item with weight 2" as input
to the compactor of level i + 1. Therefore, the sketch only contains
compactors with heights greater than H’ (from H’ + 1 to H).

More precisely [20], the sampler has an associated height h and
stores one item with weight at most 2h=1 An update is processed
as follows: Let Wiy zernar be the weight of the internal item stored
in the sampler and wpe,, be the weight of the newly arriving item.
This wpew is 1 for items from the input; However, when merg-
ing two sketches (as in Section 4.2), wpeqy may represent the item
weight from another sampler. If Wiy ;ernal + Wnew < 2k the sampler
stores the new item with probability Wpew/(Winternal + Wnew)- If
Winternal + Wnew = 2", the sampler pushes the stored item into
compactor[h+1] and resets Wipsernal t0 zero. If Wipsernal + Wnew >
2" the sampler pushes the item that has larger weight with probabil-
ity max(Winsernal, Wnew)/2"; the sampler also updates the stored
item to the item that has smaller weight and resets wip,;epnar to
min(Winsernals Wnew)- The last case is necessary to support merge
operations. For a sampler at height h, this approach takes an in-
put of W items where 2"~1 < W < 2", With probability W /2", it
pushes one of the observed items chosen at random and otherwise
pushes nothing. Lemma 2 in [20] establishes that the sampler’s
push operation introduces an unbiased error of 2h Yy ; where Yy, ; is
a random variable with E(Yy,;) = 0 and |Y;| < 1.

In KLL*, the bottom compactors of capacity 3 are replaced by
two samplers, one for insertions and one for deletions. The insert
and delete samplers share the same height thus ensuring that when
an item is output to the compactor, the item will have the same
weight independent of whether it is an insertion or a deletion. Since
there are total I insertions and D deletions, as the shared samplers’
height increase the insert sampler at height h at most pushes zih

elements of weight 2h to the first compactor and similarly the
delete sampler of height h at most pushes 22,1 elements of weight

2" to the first compactor. Hence there are at most 2—',11 elements
pushed for sampler height h. The total errors introduced are the
sum of all the errors produced by the push operations from both
of these two samplers. Given the probability of the samplers total
error exceeding €(I — D) should be less than or equal to J, setting



k = (2a — 1)1 /eqflog(1/€d) is sufficient. The proof is presented
in the extended technical report [1].

THEOREM 2. In the bounded deletion model, there exists a data
sketch that computes an € approximation for the rank of a single item

with probability 1-8 whose space complexity is O(al'S/em).

The total sketch size becomes ZZIZH, cp = Zf:H, Hhp <
1= = 0(k),c € (0.5,1), and O(k) = O(a'® /e /log(1/6)). More-
over, fixing the capacity of the top O(loglog(1/5)) compactors to
k as in KLL[20] can be applied to reduce the KLL* sketch size to
O( %ﬁlogzlogé) and still remain mergeable. In KLL* with input
size of I + D, the probability of total error in rank estimation ex-
ceeding ¢(I — D) should be less than or equal to §. The proof is
presented in the extended technical report [1]. Lastly, Karnin et
al. [20] suggest to replace the top compactors by the GK sketch
to obtain an asymptotically optimal space bound while sacrific-
ing mergeability. However, since the GK sketch does not support
deletes, this optimization is not applicable in KLL*,

k

4.2 Mergeability

KLL* sketches with the same deletion upper bound « are fully
mergeable, and the merge operation is described in Algorithm 3.
The mergeability of KLL* sketches is desirable for distributed set-
tings. The samplers in Section 4.1 are designed to support merge
operations by supporting weighted updates. To merge two sketches
< S4,Sp >, first combine the samplers from both sketches. As-
sume S4’s samplers have height h4 and Sg’s samplers have height
hp such that hy > hg. Sg feeds its stored insert and delete items
from its insert and delete samplers, respectively, with their internal
weights into S4’s samplers, and then all compactors with height
less than or equal to hy in Sg feed their items into the appropriate
sampler in S4 with proper weights, calculated using their height
(wp, = 2P~1). Compactors with height larger than h4 are appended
to the same height compactors in S4. Lastly, each compactor that
contains elements more than its capacity is compacted and the new
maximal H is computed after all compactions are completed i.e.,
using the combined length of these two sketches.

4.3 Fixed-Size Sliding Window

We consider a potential use-case for KLL* sketch to maintain e-
approximate quantiles in a fixed-size sliding window over append
only datasets, e.g., transaction logs. In the fixed-size sliding window,
the window boundary synchronously shifts over the data, and the
sketch reports the quantile information for the most recent w items.
In the fixed-size sliding window, the input items are insertions, and
the expired elements (elements except the recent w items) need to
be deleted. Since the KLL* sketch only tolerates bounded deletions,
it cannot directly support such a sliding window setting as the ratio
between deletions and insertions will eventually approach to one.
However, we observe that by partitioning the input data into three
overlapping blocks, we can ensure the deletions are bounded for
each block. The three blocks or data partitions are termed as active,
under-construction, and backup sketches as shown in Figure 5. Each
block can be represented by one KLL* sketch.

Initially all sketches contain no elements. When the active sketch
has inserted ¥ elements, new incoming elements are inserted
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Algorithm 3: Merge Two KLL* Sketches

1 if Sp.SamplerHeight < Sg.SamplerHeight then
2 ‘ swap(Sa, Sg)
3 SA,InsertSampler~update(SB,Insert5ampler);
4 SA,DeleteSampler~update(sB,DeleteSampler)§
5 for all compactor[h] in Sp do
if h < Ss.SamplerHeight then
for item in compactor[h] do
if insert(item) then
‘ SA,InsertSampler~update(item: 2h_1)§
if delete(item) then
‘ SA,DeleteSampler~update(items 2h_1)§
end

6
7
8
9

10

1

12

else

‘ S4.compactor[h].concatenate(compactor[h])

13

5

14
15 end

16 S4.compaction();
17 return Su;

Figure 5: Grey blocks are expired sketches; yellow block is
the current active sketch; blue block is the current under-
construction sketch; green block is the current backup
sketch.

into both the active sketch and backup sketch. Once the active
sketch contains w elements and the backup sketch contains 3
elements, incoming elements are inserted into the backup and
under-construction sketches and the outdated (oldest) elements
are deleted from the active sketch. When the backup sketch has
w elements, the active sketch, with % deletions, becomes expired.
The backup sketch now becomes the new active sketch and the
under-construction sketch becomes the new backup sketch. Delet-
ing the expired (previously active) sketch saves space, the freed
space is used to construct the new under-construction sketch.

At any point in time, the quantile information is reported of
the most recent w elements by merging the active and under-
construction sketches, i.e, the yellow and blue blocks shown in
Figure 5. Also note that, since deletions only arrive when the sketch
has already inserted w items, all sketches will have a deletions to
insertions ratio of r = % and because a sketch expires after at most

w

05w 1 ; — 93
>, r < =2 < 5 and hence setting @ = 2 is

¥ deletions, i.e, d <



sufficient to ensure that r < 1

<3 In fact, the @ can also be changed
to other values; however, the number of backup sketches will also
change accordingly. Thus, we have demonstrated a randomized al-
gorithm to maintain quantile summary in fixed-size sliding window

with three O(%Slogzlog%) sketches and « = 2.

5 EXPERIMENTS

This section experimentally evaluates KLL* for datasets that ex-
perience an input data stream that consists of both insertions and
bounded deletions of elements. KLL* is the first quantile sketch
algorithm to operate in the bounded deletion model and the ex-
periments aim to identify the overhead incurred in accounting for
bounded deletes compared to other sketches:

e KLL: Since KLL is insertion-only, the input stream only in-
serts those elements that are left after all the deletions.

e Two-Parallel KLL: Two independent KLL sketches: one
for insertions and one for deletions; then aggregate their
estimations to approximate quantiles.

e DCS’: A universe-driven sketch that assumes a bounded
universe to tolerate an arbitrary number of deletions.

5.1 Experimental Setup

We set ¢ = % for all experiments, and implemented KLL* by en-
hancing the Python 3.7.6 code-base of the KLL sketch algorithm
presented in [18, 20]. The changes incorporated in our implementa-
tion are: (i) the minimum capacity of a compactor is increased to 3;
(ii) bottom compactors of capacity 3 are replaced by 2 samplers, one
for insertions and one for deletions; and (iii) the compaction algo-
rithm is modified to implement our new Conditional Compaction
algorithm. The metric for accuracy measurement is the Kolmogorov-
Smirnov divergence [5], the maximum deviation among all quantile
queries, a measurement widely used to perform comparisons be-
tween CDFs with different distributions [18]. For each experiment,
the maximum errors are averaged over 5 independent runs.

5.2 Data Sets

The experimental evaluation is conducted using both synthetic and
real world data sets consisting of items that are inserted and deleted.
For the synthetic data, we consider three different distributions:

e Uniform Distribution: The insertions are randomly gener-
ated from a discrete uniform distribution, and the deletions
are uniformly chosen from the insertions.

Zipf Distribution: The elements drawn from bounded uni-
verse and the frequencies of elements follow the Zipf Law
[29], in which the frequency of element with rank R: f(R, s) =
%ﬁam where s indicate skewness. Deletions are uniformly
chosen from the insertions.

Binomial Distribution: The elements are generated ac-
cording to the binomial distribution with parameters n and
p where p is the probability of success in n independent
Bernoulli trials.

In addition to the synthetic data sets, we used the following real
world Wiki dataset®:

7See chapter 4 in [10] for implementation details.
8https://dumps.wikimedia.org/other/pagecounts-ez/
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e Page View Statistics for Wikimedia (Wiki) [23]: This is
an extensive data set consisting of page count files from
2007 to 2016. The experiments use the 2016 page count files,
which include 8 months of <projectname, pagename, #re-
quests, #bytes> tuples. The data are aggregated by day and
within each day, data are sorted on projectname and page-
name. In the experiments, deleted items are random uni-
formly chosen from the inserted items and each update is a
concatenation of projectioname and pagename and the com-
parison model is lexicographic

We also conducted experiments by exploring two additional
properties of the data sets:

e Sorted Dataset: Input is sorted in descending order such
that insertions arrive before deletions; The deletions are
uniformly chosen from the insertions.

o Shuffled Dataset: The insertions are randomly shuffled
and the deletions are also randomly shuffled and uniformly
chosen from the insertions.

5.3 Evaluation

The y-axis depicts the average of maximum quantile error over
5 independent runs: lower y-axis values indicate better accuracy.
Most of the following experiments evaluate the error value in ap-
proximating quantiles while increasing the sketch size in which the
x-axis denotes the sketch size. Except for Section 5.3.6, we assume
all insertions arrive before any deletions into the sketch. This input
pattern is in fact an adverse pattern as the discard operation will
find less matched pairs.

5.3.1 KLL* vs. Two-Parallel KLL vs. DCS. This experiment com-
pares the accuracy among KLL*, two-parallel KLL method, and
DCS under the same memory budget. The experiment measures
the quantile estimation when the underlying dataset is entirely
changed: We first insert one million elements from the binomial
distribution with parameter of B(216, 0.5) in which the elements
should be densely centered at value 2'°. Then another one million
elements are inserted from a uniform distribution in Figure 6(a), or
from a zipf distribution with skewness factor of 0.5 (moderate skew)
in Figure 6(b). Both the uniform distribution and zipf distribution
assume a bounded universe where |U| = 216, and all inputs are ran-
domly shuffled. Finally, all elements from the binomial distribution
are deleted. Since the total insertions are two millions and the total
deletions are one million, the delete:insert ratio is 0.5.

Figure 6(a) and (b) show that both data driven sketch approaches,
KLL* and Two Parallel KLL, perform significantly better than the
universe driven DCS sketch. Although the maximum error of KLL*
and Two Parallel Method decreases as the sketch size increases,
KLL* has less maximum error across all sketch sizes. This finding is
expected since KLL* makes a best effort to apply discard operations
thus catching cancellations early on which reduces the number of
compactions, whereas in the two-parallel KLL method each sketch
has no knowledge about the other and accumulates all the errors.
We observe that DCS performs worse on the zipf distribution com-
pared to a uniform distribution. The skewness in the input data
distribution affects the performance of DCS and decreases its accu-
racy as skewness increases. This observation for universe-driven
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Figure 6: Comparison of KLL* with Two Parallel KLL and DCS when the underlying data distribution is entirely changed from
Binomial to (a) Uniform and to (b) Zipf (.5). (c) KLL* accuracy with different delete:insert ratios.

DCS sketch is in consistent with the theoretical expectations [28].
On the other hand, the performance of both data-driven sketches,
KLL* and two-parallel KLL, is not affected by the skew in the input.

5.3.2  Error correlations: deletion ratio & sketch size. We experi-
mentally verified that the delete to insert ratio on the data set
affects the accuracy of the sketch. By scaling the sketch size by
a factor of (2a — 1)1 according to Section 4, KLL* can keep the
errors to the same level compare with errors from KLL with no
deletions, as shown in Figure 6 (c). This scaling factor depends on
the delete:insert ratio r. For example, when r = 0.5, we set @ = 2 to
increase the KLL* sketch size. Note (2a — 1)1 is actually an upper
bound, as in the proof we make no assumptions on the number of
discard operations which is affected by the input pattern. Hence.
we expect KLL* with scaled sketch sizes to perform no worse than
the original KLL with no deletions.

The input random shuffled stream contains a million insertions
drawn from a uniform distribution. The deletions are uniformly
chosen from the insertions. This experiment shows the interplay of
space and accuracy when the delete:insert ratio r in the input stream
increase, and verifies the theoretical claim made in Section 4.1
that changing the sketch size in accordance with r keeps the error
roughly constant. Figure 6 (c) shows that the higher delete:insert
ratio leads to larger errors, while increasing the sketch size with
the increase in deletions ensure the accuracy is no worse than the
original KLL with no deletions. For instance, when KLL uses k = 512,
the corresponding average maximum error value is 0.0028. For
r = 0.25, scaling KLL* space with a = %, k increased to 1102 and the
corresponding averaged maximum error value is 0.0022. Similarly
for r = 0.5, scaling KLL* space with @ = 2, k increases to 2661
and the corresponding averaged maximum error value is 0.0019.
This verifies the theoretical expectation that scaling the sketch size
according to the delete:insert ratio keeps the error roughly constant.

5.3.3 Different Data Distributions. In this experiment, we further
demonstrate the trade-off between space and accuracy on different
data distributions. Figures 7(a) through 7(c) depict the maximum
quantile errors with increasing sketch size for synthetic datasets
uniform and zipf and for real world data Wikimedia page view
statistics. The experiment also plots the behaviour of KLL* and KLL
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when the input steam is sorted vs. shuffled. While the universe-
driven DCS’s accuracy is independent from the input pattern and
the number of deletions [28], the DCS plots in Figure 7(a) and (b) are
used as a comparison reference for KLL* with large delete:insert
ratio, namely 90%. In Figure 7 (a) and (b), note that even when a
significant number of items are deleted and the delete:insert ratio
becomes 90%, KLL* still performs well compare to DCS.

The behavior of all sketches is consistent across all data distribu-
tions: larger space leads to smaller errors. The experiment shows
that KLL* behaves worse on shuffled streams compared to sorted
streams, across all types of data distributions. This finding is con-
sistent with [18] where it is observed that the randomness within
the stream affects the accuracy of the sketch.

5.34 Update Time. In this section, we experimentally compare
the update time among KLL, KLL*, and DCS sketches. The items in
the input stream are shuffled uniform distribution of |U| = 216. We
also include the update time of DCS for U = 232. All sketches share
the same space budget. In Figure 8(a), the y-axis is the update-time
and the x-axis is the stream length, smaller y-value implies faster
update time per item. The result is aligned with our expectation,
namely that KLL* incurs slightly more time than KLL using the
same memory budget, because KLL* makes a best effort to apply
discard operations before compaction. In DCS, on the other hand,
the universe size affects the update time as a larger universe size
leads to slower update time per item.

5.3.5 Error Sensitivity to stream length. This experiment demon-
strates that the quantile approximation error of KLL* is indepen-
dent of the input stream length, as shown in Figure 8(b). In this
figure, the x-axis denotes the input stream length in which N =(I+D),
where N is the total number of operations in the stream, and r
determines the percentage of elements that are deleted. For this
experiment,KLL and KLL* both uses parameter k = 1024. The inser-
tions are randomly shuffled items from uniform distribution and the
deletions are randomly chosen from the previously inserted items.
This experiment highlights that, for a given delete:insert ratio, the
error remains roughly constant with the increase in stream length
and hence is independent of the input stream size.
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5.3.6 Interleaved Deletions. All prior experiments were performed
under the assumption that the input consists of insertions first, fol-
lowed by deletions. In this experiment, we explore the performance
of KLL* with inputs consisting of interleaved inserts and deletes.
The input stream is a shuffled uniform distribution. The input is
divided into a number of folds, such as 1, 10, 102, and 103, in which
1 fold means the whole input stream consist of a single pair of inser-
tions and deletions i.e., <all inserts, all deletes>. Similarly, 10 folds
means the stream consists of 10 pairs of < %, % > substreams
where I and D are the total number of inserts and deletes. For each
pair of <inserts, deletes>, the deletes are uniformly chosen from
its inserts. More folds imply deleted items are closer to their corre-
sponding inserted items. In Proposition 1, we showed that discard
operations introduce no error. When deleted items are closer to
the inserted items, we expect more discard operations leading to
fewer errors. Figure 8(c) shows that when number of folds are small,
the averaged maximum error is higher, and when number of folds
increases, KLL* improves its performance by applying more dis-
card operations, reducing the overall averaged maximum error. On
the other hand, the performance of Two Parallel KLL sketches will
not improve in the interleaved deletion pattern, as the insertions
and deletions are separately managed. When the insertions and
deletions are mixed, the maximum error of the KLL* decreases
which reflects more realistic real world scenarios.
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6 CONCLUSIONS

Quantile approximations have an important role in both research
as well as real world systems. Many algorithms have been proposed
to approximate quantiles for the insertion-only and the turnstile
models. In this work, we propose a data-driven algorithm KLL*
to approximate quantiles in the bounded deletions model. To our
knowledge, this is the first work to account for bounded deletions
for approximating quantiles. The experimental evaluations of KLL*
highlight that the accuracy provided by the quantile approximations
of KLL* is significantly better than the state of the art DCS sketch
even when a significant fraction (90%) of elements are deleted. We
also demonstrate that the accuracy of KLL* is not affected by the
underlying distribution of the data which is not the case with the
universe-driven sketch such as DCS. Furthermore, the experiments
highlight that KLL* has much faster update times compared to
DCS. These characteristics of KLL* makes it a practical choice
for real world applications. Finally, we also demonstrated that the
deletion property of KLL* can be leveraged for maintaining quantile
estimation in fixed-sized sliding windows over datasets.
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