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Abstract

Given a private string g and a remote server that holds a
set of public documents D, how can one of the K most rele-
vant documents to g in D be selected and viewed without
anyone (not even the server) learning anything about q or
the document? This is the oblivious document ranking and

retrieval problem. In this paper, we describe Coeus, a system
that solves this problem. At a high level, Coeus composes

two cryptographic primitives: secure matrix-vector prod-
uct for scoring document relevance using the widely-used
term frequency-inverse document frequency (tf-idf) method,
and private information retrieval (PIR) for obliviously re-
trieving documents. However, Coeus reduces the time to
run these protocols, thereby improving the user-perceived
latency, which is a key performance metric. Coeus first re-
duces the PIR overhead by separating out private metadata
retrieval from document retrieval, and it then scales secure
matrix-vector product to tf-idf matrices with several hun-
dred billion elements through a series of novel cryptographic
refinements. For a corpus of English Wikipedia containing
5 million documents, a keyword dictionary with 64K key-
words, and on a cluster of 143 machines on AWS, Coeus
enables a user to obliviously rank and retrieve a document
in 3.9 seconds—a 24X improvement over a baseline system.

CCS Concepts: « Information systems — Information
retrieval query processing; « Security and privacy —
Privacy-preserving protocols.

Keywords: document ranking; secure matrix-vector prod-
uct; private information retrieval

1 Introduction

As a motivating example, consider Ziv, who identifies with
a non-binary gender, chooses to keep this preference se-
cret from a conservative family, and considers Wikipedia a
reliable source of information. Ziv wants to attend a gender-
specific event and wishes to read about the event’s history
before attending it. As usual, Ziv opens Wikipedia, enters a
search query (e.g., “History of ____ event in San Francisco”),
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and selects one of the links to get the desired information.
However, this time Ziv feels concerned about privacy due to
recent, high-profile data breaches, via insider attacks [39],
external hacks [17, 52, 63], mass surveillance by an ISP [14],
and even financial pressure [71]. Can we enable Ziv to search
for and retrieve documents from Wikipedia, or more generally
any public document repository, privately? Furthermore, can
Ziv get peace-of-mind with provable privacy guarantees?

Ziv’s situation is one example of a fundamental problem
this paper addresses: the oblivious document ranking and re-
trieval problem. An abstract formulation of the problem is as
follows. A user holds a search query g containing multiple
keywords, while a server holds a set of public documents D.
The user enters ¢ in a web browser (or app), which interacts
with the server to enable the user to select and view one
of the K documents that have highest relevance to g. The
privacy requirement is that nobody besides the user (nei-
ther the server nor a network eavesdropper) must learn any
information about q or the document viewed by the user.

We emphasize that this problem is quite different from the
problem of searching and ranking on encrypted data that has
received much attention in the literature (e.g., [8, 20, 24, 29—
31, 48, 49, 53, 57, 67, 67, 79, 80, 82, 83, 88, 90, 91, 94, 99]; §7).
In searching on encrypted data, the data is private (owned by
the user), while in our problem the documents are public and
known to the server (for example, the Wikipedia server owns
the documents). This difference in setting enables fundamen-
tally different techniques; for example, if the documents are
private, then the owner may encrypt and arrange them in
a tree data structure, as in oblivious RAMs [42, 81]. Such
encryption is not possible if the documents are public.

Instead, oblivious document ranking and retrieval is more
closely related to the problem of private information retrieval
(PIR) [26, 59], although with significant differences. PIR, in
its most basic form, allows a user to privately retrieve a
document by specifying an index in a list (e.g., retrieve the
34-th document from the list of 1,000 documents). In contrast,
in our problem a user specifies a multi-keyword search query
and not an index. Two extensions to PIR, namely PIR-by-
keywords [25] and private stream searching [19, 68], allow
the user to retrieve documents that match keywords—but
without consideration of ranking. As an example, suppose
the user’s string is “Cristiano Ronaldo”. Then, with PIR-by-
keywords, the user will get one of the many articles that
contain the name of the famous soccer player. On the other
hand, with private stream searching, the user will get all
documents that mention Ronaldo, without any ranking or
ordering, possibly overwhelming the user.
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This paper describes Coeus, the first system for oblivious
document ranking and retrieval over public documents un-
der a strong threat model that does not make assumptions
about the server. Coeus ranks a document’s relevance given
a user query using the term frequency-inverse document
frequency (tf-idf) statistical method [72, 74] (§3.1), which
is used commonly in text-based recommender systems in
digital libraries. Coeus imposes a latency of a few seconds
on a user while providing provable guarantees.

At a high-level, Coeus composes the secure matrix-vector
product primitive [41, 46, 47, 58] with PIR. One natural way
to do their composition is a two-round protocol, where in the
first round the user securely multiplies the query g with the
tf-idf matrix to obtain scores for all the documents, and then
in the second round retrieves the top-K documents oblivi-
ously using PIR. The challenge though is the high server-side
overhead, imposed by both secure matrix-vector product and
PIR. Fundamentally, if the server must learn no information
about the user query or the retrieved document, then it must
process its entire state comprising the tf-idf matrix and the
document library; else, the server will learn information
about keywords that are not in the query, or the documents
that are not retrieved by the user (§2.3).

Coeus responds to this challenge in two ways. First, at
the protocol-design level, instead of using the natural two-
round protocol, Coeus uses a new three-round protocol that
separates out metadata retrieval from document retrieval. In
the first round, as in the two-round protocol, a user converts
the query q into an encrypted vector, sends it to the server,
and obtains encrypted relevance scores for the documents by
securely multiplying the vector with the tf-idf matrix. Then,
in the second round, the user retrieves short descriptions and
title (metadata) for top-K scoring documents from a meta-
data library using multi-retrieval PIR that can concurrently
retrieve multiple objects [12, 50]. Finally, in the third round,
the user retrieves a single document that the user wants to
view in detail using a single-retrieval PIR [7, 12].

Coeus’s three round protocol reduces PIR overhead rela-
tive to the two-round protocol. Not only does a user retrieve
K smaller metadata instead of K documents, but the sep-
aration of metadata from document retrieval enables the
server to pack variable-sized documents and compress the
document library, thereby reducing PIR compute time.

Coeus’s second idea further improves the overhead of
the first round through a new secure matrix-vector product
primitive that fundamentally reduces server-side work (§4.2,
§4.3), and distributes this work efficiently across a cluster
of machines (§4.4). Coeus starts from the state-of-the-art
construction of Halevi and Shoup that works for a square
matrix block with few thousand rows and the same number
of columns [46, 47] (§3.2). First, Coeus observes and elimi-
nates redundancy in the calls to an underlying homomorphic
rotation operation; this optimization reduces overhead by a
constant factor of approximately four (§4.2). Second, Coeus
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amortizes the overhead of homomorphic rotations across
multiple blocks of the tf-idf matrix (§4.3). Third, Coeus effi-
ciently distributes the computation for thousands of matrix
blocks (the tf-idf matrix is large consisting of several hun-
dred billion elements) onto a cluster of machines arranged in
a master-worker-aggregator architecture. During workload
distribution, Coeus preserves the benefits of amortization
while keeping in check the network transfer overhead, by
including an optimizer that finds the optimal shape of the
submatrices at the worker nodes (§4.4). Although Coeus’s
secure matrix-vector product scheme is designed keeping
Coeus’s scale in mind, it may find uses in other applications
especially where matrices are large.

We have implemented (§5) and evaluated (§6) a prototype
of Coeus. On an Amazon EC2 cluster (97 machines for docu-
ment relevance scoring, 7 for metadata retrieval, and 39 for
document retrieval), and for a document library consisting of
a corpus of English Wikipedia with 5M documents, Coeus’s
latency is 3.9s for oblivious document ranking and retrieval.
In contrast, without Coeus’s two techniques, its latency over
the same cluster would be 93.9s—thus an improvement of
24x. If Coeus’s resource overheads are converted to dollars,
then it costs 6.5 cents per request, in contrast to 1.62 dollars
for the baseline.

Coeus’s absolute overheads are substantial: each request
keeps a cluster of machines busy for up to a few seconds.
Thus, it may not be used for every request. However, Coeus
scales horizontally, as one can replicate its setup, for exam-
ple, at various CDNs. But more importantly, Coeus shows
that Ziv could choose to get strong privacy guarantees while
retrieving documents from Wikipedia, without waiting for
tens of seconds for the webpage to load, and without drain-
ing wallet balance (e.g., hundred private requests per month
would cost Ziv 6.5 dollars rather than 162 dollars).

2 Architecture and overview

Coeus is designed for private retrieval of public documents.
Abstractly, a user holds a multi-keyword query g and a server
holds a library of n documents and their metadata (informa-
tion such as the document title and a short text description).
Similar to how search engines work, Coeus takes as input
the query q and enables the user to select and view one of
the K > 1 documents that rank highest for g. In the process,
an adversary who may compromise the server hosting the
library or the network learns no information about q.

2.1 Approach and architecture

An approach to realize the picture described above is to
incorporate fully homomorphic encryption (FHE) [38]: the
user encrypts g using FHE and sends it to the server, who
homomorphically ranks and sends the top-K documents back
to the user. On the plus side, the user retrieves the documents
in a single round of communication, but on the negative



side, the server’s computational work is prohibitively high
due to the large expense of the homomorphic comparison
operation [54, 61].

An alternative to the single-round approach is to split doc-
ument ranking and retrieval into separate protocol rounds.
In the first round, the user retrieves scores for each of the
n documents, and locally compares them to learn indices
for the top-K documents. Then, in the second round, the
user obliviously retrieves the K documents from the server’s
library. A downside of this two-round protocol is that the
user’s device downloads K documents rather than the one
document the user eventually views in detail.

Coeus instead follows an approach consisting of three
rounds of query-scoring, metadata-retrieval, and document-
retrieval that run in succession. These rounds are depicted
in the three sub-figures of Figure 1, that also shows Coeus’s
client-server architecture, and the server’s three components:
a query-scorer, a metadata-provider, and a document-provider.

In the query-scoring round, Coeus’s client, running on a
user’s device, encodes the user query g into a suitable format
(for example, a Boolean vector), encrypts it, and sends it
to the query-scorer component of the server. The query-
scorer maintains a data structure to score documents against
user queries and returns an encrypted vector whose i-th
component contains the query’s score for the i-th document
in the server’s library. The client then locally processes the
score vector to obtain the K indices {idx, idx,, . .., idxx} for
the K vector entries that have the highest values.

Next, in the metadata-retrieval round, the client takes the
K indices, encodes and encrypts them in a specific way that
enables oblivious retrieval of the metadata, and sends them to
the metadata-provider (the middle diagram in Figure 1). The
metadata-provider sends back the entries in the metadata
library M corresponding to the K indices. The client presents
the metadata of the top-K documents to the user and asks
the user to select one of the documents.

Finally, in the document-retrieval round, the client uses
the metadata from the previous round to get a document
from the document-provider component of the server. Since
document sizes vary and Coeus must not reveal the length
of the retrieved document, the document-provider packs the
n documents in the document library O into nprs < n equal-
sized objects. Such packing is possible as Coeus can add a
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Figure 1. An overview of Coeus’s three-round protocol: query-scoring, metadata-retrieval, and document-retrieval.

document’s location (e.g., the index of the object into which a
document is packed) to the metadata of the document that is
retrieved before the document. The user’s device downloads
an entire object and locally selects the required document.

2.2 Assumptions and guarantees

Threat model. Coeus assumes a strong adversary who may
arbitrarily compromise the server or the network. For in-
stance, it may log and process network packets, or the re-
quests received and the responses sent by the server.

We assume that the adversary cannot break standard cryp-
tographic assumptions, such as the semantic security of en-
cryption. We also assume that the adversary does not com-
promise the user device.

Although we consider server-side side channels (disk ac-
cess patterns, memory access patterns, etc.), we do not con-
sider side channels that exist due to a client’s participation in
the system. In particular, we let the adversary learn the num-
ber of queries a user makes, the wall-clock times at which
the user makes these queries, and the time the user spends
in selecting one of the K documents to view in detail. A
user who wishes to hide this information can send queries
at a fixed schedule, and send dummy queries (e.g., “Cristiano
Ronaldo”) if needed, as in communication metadata hiding
systems [9, 13, 60, 86].

Privacy guarantee. Coeus guarantees query privacy (Ap-
pendix A). Informally, an adversary learns no information
about the user query q (which also means it learns no in-
formation about the metadata or the document returned by
the server). This notion of privacy is formalized via a secu-
rity game between a challenger and an adversary, in which
the adversary supplies two queries, the challenger simulates
Coeus’s protocol for one of them, and the adversary guesses
which query the challenger picked. In Coeus, the adversary
cannot identify the query choice with probability signifi-
cantly better than that of random guessing (%)

Non-guarantees. Coeus does not guarantee content integrity
that undermines correctness but not privacy. Indeed, the
server may compute scores incorrectly, or return documents
that do not match the requested indices. Coeus could be
extended to add protection against these attacks through ad-
ditional techniques such as verifiable computation [23, 69].



2.3 Challenges

Coeus’s three round protocol already improves over alterna-
tives such the one-round or the two-round protocol (§2.1).
But still, Coeus must manage the high server-side compute
overhead. This challenge is fundamental and best illustrated
by an example. Suppose that a client makes a query through
Coeus. Then, the three server components, namely, the query-
scorer, the metadata-provider, and the document-provider
must process their entire state (the data structure for scoring,
and the libraries M and D) to service the user query. Indeed,
if the server were given an information that would allow it to
process a subset of the scoring data structure or the libraries
(say leaving out a particular document of D), then the server
would learn information about the query keywords or the
document that the user is not interested in. Although, we
cannot break this fundamental lower bound [18], our goal is
to improve the concrete efficiency and provide low-latency,
affordable ranking and document retrieval.

3 Background and protocol

This section describes the scoring method Coeus uses to
determine a document’s relevance given a user’s query (§3.1),
cryptographic primitives Coeus builds on (§3.2), and Coeus’s
protocol (§3.3) that composes these primitives to provide
query privacy (§2.2). This protocol is an intermediate design
point for Coeus, as one of the protocol components requires
further optimizations (§4).

3.1 Term frequency-inverse document frequency

Coeus uses the term frequency-inverse document frequency
(tf-idf) measure [72, 74, 101] to determine document rele-
vance given a user query. This method is used popularly in
the information retrieval community. It also expresses the
scoring function as a matrix-vector product, which is a lin-
ear computation that can be performed somewhat efficiently
over encrypted data (§3.2). Given that tf-idf is well-studied,
we do not go into its lower-level details, but instead focus on
the matrix-vector computation structure.

The main idea behind tf-idf is to assign a weight to each
(term, document) pair, where a term is, a keyword or a phrase,
and the weight reflects how important or relevant the term
is to a document in a collection of documents. Thus, a corpus
of documents is represented by a tf-idf matrix, where the
matrix rows correspond to the documents in the corpus, and
the columns correspond to terms in the corpus.

With this arrangement, a common way to score a docu-
ment d for a query q is to add the tf-idf weights for all terms
in the query. This computation can be expressed as a matrix-
vector product. The query is converted to a binary vector,
whose j-th component is 1 if the j-th term in the corpus is
present in the query. Then, the score of a document is the
dot product of the query vector with the row vector for the
document in the tf-idf matrix. More generally, the scores
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for all documents are computed by taking the matrix-vector
product of the tf-idf matrix and the query vector.

3.2 Cryptographic building blocks

Coeus obliviously performs the scoring computation and
retrieves the best matching documents and their metadata
(§2.1), using two cryptographic primitives: secure matrix-
vector product [41] and private information retrieval (PIR) [26,
59]. The state-of-the-art constructions of these primitives [12,
46, 47] in turn rely on an underlying homomorphic encryp-
tion (HE) scheme based on lattices. The literature offers many
lattice-based HE schemes [21, 22, 35, 38, 62]; we use and de-
scribe the BFV scheme [21, 35] due to its maturity [75] and
involvement as a leading candidate in homomorphic encryp-
tion standardization efforts [10].

BFV homomorphic encryption scheme. In the more ef-
ficient vectorized version of BFV, a plaintext is a vector with
N components and a ciphertext is a vector with 2N compo-
nents, where N is of the form 2 in {2!1,..., 2%} [10]. For
the plaintext, each component is an element of Z,, which is
the set of integers modulo p. Meanwhile, each component of
the ciphertext vector is an element of Z,,. The parameters
N, p,p’ can be tuned for a desired security level [10](§5).

The BFV encryption algorithm Exc adds “noise” when
encrypting a plaintext into a ciphertext. ! This noise grows
as homomorphic operations are performed on the ciphertext.
To ensure that the noise does not grow to a point where the
ciphertext cannot be decrypted, p7 > p must be ensured.

The BFV scheme supports three homomorphic operations,
ApD, ScataArRMurt, and RoTarts, that are used in the higher-
level secure matrix-vector product and PIR primitives.

e App takes as input two ciphertexts ¢; and c; and produces
a ciphertext coy; that decrypts to the component-wise sum
of the plaintext vectors in ¢; and c,.

e ScaLarMuLt takes as input a plaintext vector s (of same
domain as a BFV plaintext) and a ciphertext vector ¢ and
produces a ciphertext c,,,; that decrypts to the component-
wise product of s with the plaintext vector in c.

e Rorarte takes as input a ciphertext ¢, an integer 1 < i <
N — 1, and a set of rotation keys RK, and produces a ci-
phertext c,y; that decrypts to the plaintext in ¢ rotated left
cyclically by i positions. For instance, if ¢ encrypts the
plaintext (a, b, c, d), then a rotation by i = 3 produces a
ciphertext that decrypts to (d, a, b, c).

The set of rotation keys RK is configurable and the rotation
is performed as a combination of the rotation keys, each
of which indicates the number of positions to rotate. On
the one extreme, RK = {rk;} contains a single rotation key,
where rk; performs rotations by one position. In this con-
figuration, each call to RoTaTke resolves into i single position

For the readers familiar with differential privacy [34], we remark that
the noise in the context of homomorphic encryption is semantically much
different from the noise added for differential privacy.
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Figure 2. An illustration of secure matrix-vector product construc-
tion of Halevi and Shoup [46, 47] for a 4 X 4 matrix.

rotations. Although the size of RK is small, this configuration
is impractical due to significant noise growth. On the other
extreme, the set RK = {rky,..., rky_1} contains N — 1 keys,
and Rotarte calls a single i position rotation with the key rk;.
This configuration keeps noise growth in check (and reduces
cpU time of Rorate), but drastically increases the size of RK
needed for Rotate (with our parameters, all N — 1 keys in
RK would be ~1.5 GiB). So we assume the default configura-
tion implemented in the state-of-the-art library for BFV [75],
where RK = {rkyo, rky1, . .., rkyogov-1} contains log(N) keys
for all powers of two between 1 and N — 1, and rotations
by i are performed using the rotation keys corresponding to
positions of 1s in i’s binary representation. Thus, rotation
by i uses as many keys as the number of 1’s in i’s binary
representation (i.e., i’'s Hamming weight); we call such in-
ternal calls to a primitive rotation operation that rotates by
a power-of-two amount as PRor. Further, since the set of
rotation keys is fixed, we will assume the set of rotation keys
is implicit when specifying the rotation operation.

Secure matrix-vector product. A protocol for secure matrix-
vector product runs between a client and a server, where the
client has a vector, the server has a matrix, and at the end of
the protocol the client learns the result of the matrix-vector
product. In the process, the server learns no information
about the values in the client vector.

The literature on cryptography offers many constructions
for secure matrix-vector product (e.g., [11, 33, 41, 46, 47, 56,
58]). The state-of-the-art construction is that of Halevi and
Shoup [46, 47]. It operates over square matrices of dimension
N x N (where N is the number of components in plaintext
vectors of a lattice-based HE scheme).

The main idea of the Halevi-Shoup construction is illus-
trated in Figure 2. The client starts by encrypting its vector of
dimension N X 1 using a lattice-based HE scheme and calling
its Enc function. The server then performs the product of
the vector with its plaintext matrix using the ScatarMutr ho-
momorphic operation. The key point here is that the server
multiplies the diagonals of the matrix with the rotations of
the client vector. For instance, say N = 4 and the matrix is as
shown in Figure 2. Then, the server first scalar-multiplies the
client vector that encrypts (vy, vz, v3, v4) with the matrix’s
main diagonal (ay, by, c3, dy) to get a ciphertext that encrypts
(ay - vi, by - vy, 03 - v3,dy - vy). Then, the server rotates the
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client vector by one position using Rorare and multiplies the
rotated vector with the matrix diagonal adjacent to the main
diagonal to get encryption of (ay - vo, b3 - v3, ¢4 - Vg, dy - v1).
And so on. Finally, the server adds (using App) all the in-
termediate ciphertexts to get one ciphertext containing the
result of the matrix-vector product.

We emphasize that the Halevi-Shoup method is much
more efficient than naive matrix-vector multiplication that
multiplies the input vector with the rows of the matrix (rather
than its diagonals). In the naive scheme, the server would
have to perform log(N) rotations for each row to add all com-
ponents of the dot product and allocate the result correctly
in the output vector. The Halevi-Shoup construction reduces
these log(N) rotations per-row down to 1 by performing
multiplications in diagonal order. In total, the construction
makes N calls each to ScaLarMuLT, App, and ROTATE.

One can trivially support matrices larger than N X N, say
of dimension (m- N) X (£ - N), by partitioning it into square
blocks of size N X N. (In case the original matrix dimensions
are not multiples of N, then the matrix can be padded.) In this
case, the aforementioned costs get multiplied by the number
of blocks m - £ in the larger matrix.

Private information retrieval (PIR). A PIR protocol [26,
59] runs between a client and a server, where a client has an
index i between 1 and n, and the server holds a set of n items.
The protocol allows the client to retrieve the i-th item while
hiding the value of i from the server.

PIR exists in two flavors: computational PIR (CPIR) [59]
and information-theoretic PIR (ITPIR) [26]. CPIR protocols
are computationally more expensive but make no assump-
tions about the server (except standard cryptographic as-
sumptions). On the other hand, ITPIR protocols are more
efficient, but require non-colluding servers. For Coeus, we
use a CPIR protocol due the alignment of CPIR assumptions
with Coeus’s threat model (§2.2).

Although a PIR protocol allows a client to retrieve one
document, it can be extended to retrieving K > 1 docu-
ments without naively running K parallel instances of a
single-retrieval PIR protocol. These more efficient schemes
for multiple retrievals are called multi-retrieval PIR [12, 50].

3.3 Coeus’s protocol

Coeus composes secure matrix-vector product with PIR. Specif-
ically, the query-scorer in Coeus’s server (§2.1) maintains a
tf-idf matrix, and during the query-scoring round of Coeus’s
protocol, uses secure matrix-vector product to score docu-
ments against a user query. This is possible as the scoring
computation with tf-idf is a matrix-vector product (§3.1).

In rounds two and three, a Coeus client and the server use
PIR. Specifically, in round two, Coeus runs multi-retrieval
PIR between the client who has K indices and the metadata-
provider who has the metadata library. For round three, the
client and the document-provider use single-retrieval PIR.
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Figure 3. How Coeus partitions secure matrix-vector product onto
a single master node, and a set of worker and aggregator nodes. I
is the input vector from the client containing ¢ ciphertexts, one for
each block along the width of the matrix. M is the matrix with mx ¢
blocks. R is the result vector containing m ciphertexts. RK is the set
of cryptographic keys for the ROTATE homomorphic operation.

A subtle issue for the third round is that of document sizes,
which can vary. But PIR expects all objects in the server’s
library to be of the same size. Coeus addresses this issue by
using a mix of concatenation and zero-padding, while taking
inspiration from prior work on PIR with variable document
sizes [44, 50]. In particular, Coeus uses bin packing to pack
multiple documents into the least number of bins such that
the “capacity” of each bin is equal to the size of the largest
document in the document library. After bin packing, Coeus
fills unfilled space in each bin with zeros. A consequence of
packing is that a Coeus client needs start and end offsets of
a document to extract it from a larger (binned) object. Coeus
includes this information in the metadata for each document.

We remark that had Coeus not used a three-round pro-
tocol that separates out metadata retrieval from document
retrieval, Coeus would have had to forego the packing tech-
nique described above. Instead, to make document sizes uni-
form, the natural option would have been to pad each docu-
ment to the size of the largest document, thereby increasing
the size of the document library and the overhead of PIR.

Security analysis. Appendix A contains a rigorous proof
that Coeus’s protocol provides query privacy (§2.2). Briefly,
during round one, the client sends an encrypted vector after
converting a query into a binary vector and encrypting it.
Thus, the server learns no information about the query due
to the semantic security of encryption. For rounds two and
three, the security of PIR ensures that the server learns no in-
formation about the indices for which the client is retrieving
objects from the metadata or the document library.

4 Large-scale secure matrix-vector product

The server-side scalability of PIR has received significant
attention recently [9, 12, 13]. Besides, the metadata and doc-
ument libraries are not large, at least in relation to the tf-idf
matrix. But the tf-idf matrix can have millions of rows and
tens of thousands of columns—a total of several hundred
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billion elements—corresponding to the documents and key-
words in the server’s document library. Thus, a fundamental
question Coeus must answer is: how can its server compute
the secure matrix-vector product with the tf-idf matrix while
keeping the client-perceived latency small?

One option is to process the tf-idf matrix block-by-block
using the Halevi-Shoup construction (§3.2), where each block
is of dimension NxN, and N is of the form 2* for some integer
x € {11,..., 15} for the security of the underlying homomor-
phic encryption scheme [10]. This solution, however, does
not meet the small latency requirement. First, the processing
time for each block is several seconds even on a machine with
tens of cpus (§6.3). This expense is due to the high cost of
the underlying homomorphic operations, particularly Rorare
(§3.2). Second, a tf-idf matrix with billions of elements com-
prises of thousands of blocks. Naturally, we do not want to
provision thousands of machines for the computation. Thus,
how should Coeus scale the secure matrix-vector product?

Coeus reduces the work the server has to perform (§4.2,
§4.3), and distributes this work efficiently over a cluster of ma-
chines (§4.4). We begin with an abstract overview of Coeus’s
scheme that will help set the stage for the optimizations.

4.1 Overview

Computation. Coeus’s server multiplies a matrix M of di-
mension (m- N) X (£ - N) consisting of m - £ blocks each of
dimension N X N, with a client input vector I comprising of
{ ciphertexts (recall each ciphertext itself encrypts a vector
of dimension N) to produce a result vector R comprising of
m ciphertexts. The i-th ciphertext in R is computed as

¢
R; = Z Brock-MuLt(M;, I;, RK),

j=1
where the sum operation is the homomorphic App operation,
Brock-MuLrT is a block-level secure matrix-vector multipli-
cation algorithm, M;; is a matrix block, J; is a ciphertext in
the client input vector, and RK is a set of client-supplied keys
for the Rorate homomorphic operation.

Architecture. Coeus projects this computation onto a mas-
ter node, and a set of worker and aggregator nodes (Figure 3).
The master receives I and RK from the client. It then copies
the keys RK to every worker. It also distributes one or more
ciphertexts in I to each worker. The workers together com-
pute BLock-MurT(M;, I;, RK) for all i € {1, ..., m} and for
all j € {1,...,¢}. Each worker, however, performs only part
of this computation—corresponding to a submatrix of M. An
aggregator produces one or more ciphertexts in R by adding
outputs from one or more workers.

Division of matrix into submatrices. If Coeus were per-
forming a plain matrix-vector product, it could partition the
matrix into submatrices arbitrarily: a submatrix could be a
single cell of dimension 1 X 1, or the entire matrix of dimen-
sion (m-N) X (£-N), or any dimension in between. However,
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Figure 4. How Coeus conserves calls to the PROT operation.

the Halevi-Shoup block multiplication algorithm that Coeus
builds on imposes certain restrictions due the vectorization
of the underlying homomorphic operations: each diagonal
of a N X N matrix block is encoded into a single, indivisible
unit (§3.2). This means that although the submatrix width w
can be any value between 1 and ¢ - N, the submatrix height h
must be a multiple of N. One way to visualize this constraint
is to imagine that each matrix block is transformed by taking
its diagonals one-by-one and putting them as columns of
the block; after this transformation, one can slice the block
vertically but not horizontally.

A toy example of the computation. Suppose the matrix
M has dimension 4 X 3 in terms of blocks. Then, the client
input I has three ciphertexts, and the result vector R has
four ciphertexts. Also, suppose that one of the workers gets
assigned the submatrix consisting of block M; ; and half of
block M ; (first N/2 diagonals of M; ). Then, this worker
receives ciphertexts I1, I, from the master, multiplies I; and
L, with M; ; and the N/2 diagonals of M, ,, respectively, to
obtain two ciphertexts, and sends their sum to an aggregator.
This aggregator adds this ciphertext to a similar ciphertext
from another worker who is responsible for the remaining
half of M; ; and the whole of M, 5. This final sum is R;.

4.2 Reducing expense of homomorphic rotations

We first drill into the computation performed by a single
worker, and further into the computation for a single block
of the worker’s submatrix. For now, assume that the width
w and height h of the submatrix are both multiples of N so
that the submatrix is an exact multiple of some number of
blocks; we will relax this simplifying assumption shortly.

Consider the Halevi-Shoup computation for a block. It
comprises of N steps, where each step rotates the plaintext
in an input ciphertext ¢ by one position (§3.2, Figure 2). As
an example, if N = 4, and the input ciphertext ¢ encrypts the
plaintext (vi, vz, v3, v4), then the algorithm calls Rorarte(c, 1),
RotaTE(c, 2), and RotaTE(c,3) in succession. These N — 1
rotations consume the bulk (x 90%) of the cpu time.

As mentioned earlier (§3.2), each call to RoTaTE resolves
into a set of calls to a primitive rotation operation PRot that
performs rotations with power-of-two amounts. For instance,
RotaTE( ¢, 3) resolves into a call to ¢’ < PRor(c, 2) followed
by a call to PRot(¢’, 1). In total, all N —1 calls to RoTATE in the
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Halevi-Shoup algorithm make Zﬁ]l HammiNgWT(i) = (N—
2) - log(N)/2 calls to PRot, where HAMMINGWT() returns
the number of 1’s in the binary representation of its input.
But observe there is significant redundancy across multiple
calls to Roratk. For instance, Rotate(c, 1100,) calls PRor for
rotation amounts eight and four, while Rorate(c, 1111,) calls
PRort over the same ciphertext for rotation amounts eight,
four, two, and one. Coeus eliminates these redundant calls
to PRor and resolves the N — 1 calls to Roratk in the Halevi-
Shoup algorithm into N — 1 calls to PRor.

Details. Define PARENT(Q) as the logical AND of the binary
representation i; and the negation of the smallest non-zero
suffix of i;. For example, if i is 1100, in binary, then its
smallest non-zero suffix is 1002, and its parent is 1100; &
~100, = 1000,. It is easy to see that the hamming distance
between i; and PARENT(i) is one. Thus, we can obtain ¢’ «
RotatE(c, i) by performing one PRor over the ciphertext
RotatEe(c, PARENT(i)), where the primitive rotation is for an
amount equal to the smallest non-zero suffix of i,.

A first-cut solution to leveraging this parent-child rela-
tionship is to generate all rotations of a ciphertext c, that
is, RotaTE(c, i) for all i € {1,...,N — 1}, sequentially, as
depicted by a toy example for N = 16 in the top part of Fig-
ure 4. In particular, we can generate RotaTe(c, i + 1) from its
parent, which is one of the ciphertexts from Rorate(c, 1) to
RotaTE(c, i). This solution does eliminate redundant calls to
PRor, but it has a downside that it increases memory pressure
as it requires storing up to N ciphertexts in memory.

However, observe in the toy example that once the ci-
phertext Rorate(c, 1000) is generated, the ciphertexts from
RotaTE(c, 12) to Rotate(c,0111,) can be discarded as they
cannot be parents for any ciphertext after RotaTe(c, 10007).
Similarly, once Rorati(c, 1100;) is generated, all ciphertexts
prior to (and including) Rorare(c, 10113) can be discarded,
and same for RoTaTE(c, 1110;) as the parent for the next value
of i = 1111, is 1110,.

Leveraging this intuition, Coeus collapses the linear struc-
ture into an efficient tree structure that eliminates redundant
PRot without increasing memory pressure, as depicted in
the bottom part of Figure 4. Coeus performs a depth-first
traversal through the tree and at each step in the traversal,
generates a child ciphertext from its parent using one call
to PRot. Coeus’s algorithm garbage collects any ciphertext
in a branch of the tree that has been completely traversed.
Hence at any given point, the maximum number of interme-
diate ciphertexts stored is log(N) as the height of the tree is
log(N), the number of bits in N. However, further observe
that once the algorithm traverses all siblings of a given ci-
phertext, it can also garbage collect the parent. Hence the
number of stored intermediate ciphertexts further reduces
to [log(N)/2].

This optimization to conserve calls to PRor applies even
to fractional blocks (recall the simplifying assumption at the



beginning of this subsection) that contain d < N adjacent
diagonals and require performing up to d consecutive rota-
tions. The computation for d diagonals maps to generating a
subtree of the overall tree.

Cost savings. The original Halevi-Shoup algorithm applied
toa (m-N) X (£-N) dimension matrix makes m - £ - N calls
to the ScararMurt and Abp homomorphic operations (§3.2),
and m- £- YNV HAMMINGWT(i) = m- £ - (N = 2) - log(N)/2
calls to PRot. Coeus’s optimization reduces the calls to the
expensive PRot to m- £ - (N — 1)—an improvement by a factor

of ~ log(N)/2.

4.3 Amortizing rotations across blocks

This subsection zooms out of block-level savings, and consid-
ers the entire submatrix at a worker (§4.1). Having potentially
many matrix blocks to process raises a natural question: can
we amortize the overhead across blocks? It turns out that the
cost of rotations can be amortized.

As with the last subsection, we begin by making a sim-
plifying assumption that the width w and height h of the
submatrix are multiples of N; we will relax this assumption
towards the end of this subsection.

Consider the computation imposed by the Halevi-Shoup
algorithm on a set of matrix blocks that are vertically aligned
in the submatrix: that is, the blocks {M;;} for a fixed j and
different values of i (up to h/N values of i, which is the num-
ber of vertically-stacked blocks in a submatrix of height h).
First, these blocks are multiplied by the same input cipher-
text: the j-th ciphertext I; in the client input vector I. Second,
when these blocks are multiplied by I;, the Halevi-Shoup
algorithm produces the same sequence of rotations for each
block: Rotare(j;, 0), Rotate(]j, 1),. .., Rotate(];, N — 1).

Coeus eliminates this redundancy in rotations by reorder-
ing homomorphic operations. If Coeus were to process each
of the vertically-aligned blocks independently, then it would
perform a computation structured as: for each of the h/N
blocks, perform a sequence of N Rotate, N ScaLarMurt, and
N App. Instead, Coeus restructures this computation along
the diagonals of the blocks: for each of the N diagonals, per-
form one Rorate followed by h/N ScararMurt’s and h/N
App’s for the h/N blocks.

This optimization extends to fractional blocks that are
vertically aligned and contain d < N diagonals each. These
diagonals are multiplied by consecutive d rotations of the
same input ciphertext. Thus, the homomorphic operations
can be reordered as before to amortize the costs of rotation.

Cost savings. Let h be the height of the submatrix and w
be its width. Then, the submatrix has f = (h/N) - |[w/N|
full blocks and t = (h/N) - (w — N - | w/N]) diagonals in
the fractional blocks. Without the optimization presented
in this subsection, Coeus would make f - N + t calls to each
of ScararMurrt, App, and PRot. With the optimization, the
number of calls to PRort reduces by a factor of h/N.
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4.4 Setting submatrix dimensions optimally

So far, we have discussed the matrix-vector product while
keeping submatrix dimensions abstract: width w and height
h. But, how should these values be set?

A strawman design is to partition the matrix into subma-
trices by using a strategy that is commonly used for plaintext
matrix-vector multiplication. In plaintext multiplication, the
compute time to process a submatrix is proportional to the
area of the submatrix—and does not depend on the shape
of the submatrix. This performance characteristic leads to
a common strategy of breaking up the matrix into square
submatrices [73, 93].

However, for Coeus, this strategy is sub-optimal as the
compute time to process a submatrix depends on the shape of
the submatrix: taller (but less wide) submatrices have lower
compute overhead due to the amortization of rotations (§4.3).
A downside of making submatrices less wide, however, is the
increase in aggregator overhead to combine results from each
worker. Thus, one needs to find a submatrix shape that mini-
mizes the total time to compute the matrix-vector product
considering both per-worker and across-worker work.

We first present an analytical model for the time to com-
pute the matrix-vector product. This model has limitations
and makes several simplifying assumptions, and thus cannot
be directly used, but serves as a tool to understand the sys-
tem behavior. We then use this analytical model to present
Coeus’s empirical method to determine the submatrix shape.

Analytical model. Our goal is to minimize the total time for
computing the matrix-vector product. This time is the sum
of three components, tyisributes tcomputes aNd taggregate, Which
correspond to the times for the three stages of computation:
distributing inputs from the master to the workers, process-
ing each submatrix parallelly at the workers, and aggregating
worker outputs (§4.1, Figure 3).

The first component tyjsyipyze is the sum of the time for
copying rotation keys RK from the master to each worker,
and copying parts of the input vector I as needed to the work-
ers. If the total number of workers is n,,okers, and the time to
transfer one copy of RK out of the master is txey, transfer, then
the total time for the copying of keys is Nyorkers * key_transfer-
For the remaining cost of copying parts of the input vector
I, observe that for a submatrix of width w, a worker needs
[w/N] ciphertexts. Thus, if t;_yransfer is the time to transfer
one ciphertext, the total time for input distribution phase is

Listribute = Mworkers * (tkeyftransfer + |_W/N-| ' tctftransfer)~ (1)

The second component of the total time, tompute, is the
time taken by a worker to process its submatrix. This time
follows from the number of per-worker homomorphic oper-
ations executed. This number was analyzed in the previous
subsection (§4.3). If t,44, tmui, and t,, are the times to per-
form one homomorphic ScararMutt, App, and PRor, then

(2)

tcompute = (h-w)/N - (tmuir + tadd) + W tror.



Finally, the aggregation time t,ggregaze €quals the sum of
the times to transfer intermediate ciphertexts from workers
to the aggregators, and the time each aggregator takes to add
the ciphertexts. The former equals m- [(£- N)/ W1 - te;_ansfer»
and the latter equals m - [(£ - N) /W] - taqq/Nnage, where m is
the number of blocks across the height of the original matrix
M, and ngge is the number of aggregators. The rationale is
that the matrix has [(£- N)/w] vertical partitions (recall that
matrix dimensions are (m- N) X (£ - N)), and each generates
m ciphertexts. Thus,

©)

Observe that tgisuipue and teompure depend linearly on the
value w (h - w in Equation 2 is the area of each submatrix
and is fixed depending on the total area of M and n,orkers)-
Thus, wider submatrices increase input distribution and com-
putation time. In contrast, t,ggregare depends inversely on w,
and reduces with the width of the submatrix. Due to these
opposing forces, the total time is a convex function of w.

Ideally, we would like to derive an optimal value for w (the
lowest point of the convex function) that would minimize
the total time. However, there are two issues. First, the model
uses uniform values for network transfer times for both keys
and ciphertexts that do not account for load, network condi-
tions, and the topology in which workers and aggregators are
connected. Second, the total time function is not continuous
and differentiable. Hence, in Coeus we develop an empirical
method to determine the submatrix width value.

taggregate = M * [(£-N)/w)]- (tctftransfer + tadd/nagg)o

Coeus’s empirical method. One tempting option is to con-
figure and deploy a prototype of Coeus for all possible values
of w and measure the total time to compute the matrix-vector
product. But observe that the total time is a convex function.
Thus, we can perform a more efficient directional search
inspired by gradient descent in machine learning [43]. Coeus
starts by measuring the time for any value of w, say wg;
then takes a step in an increasing or decreasing direction
of w and measuring the time for a new value of w; then, if
the time decreases, it continues in the same direction; other-
wise, it goes back to wg, and takes a step in the opposite
direction. Coeus repeats this process until steps in both direc-
tions increase time. Besides following this search approach,
Coeus explores only select values of w such that either N
is divisible by w, or ¢ - N is divisible by w (when w > N).
These constraints allow Coeus to more easily deal with the
boundary conditions due to the ceil function.

5 Implementation details

Query-scorer. Coeus’s query-scorer (§2) is written in ~2200
lines of C++. Its main piece is a distributed implementation
of Coeus’s secure matrix-vector product (§4) that uses the
state-of-the-art Microsoft SEAL library [75] for BFV homo-
morphic encryption. Recall that the BFV scheme has three
parameters: the bound p on each component of the plaintext
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vector, the dimension N of this vector, and the bound pr on
each component of the ciphertext vector (§3.2). We set p as a
46-bit prime (0x3FFFFFF84001), pr as a product of three 60-
bit primes {0xFFFFFFFFFFD80Q1, OxFFFFFFFFFFE8Q01, and
OxFFFFFFFFFFFCO01}, and N as 2'3. These values provide
128-bit security [10]. Furthermore, they satisfy the constraint
pr > psuch that the query-scorer can perform the required
number of homomorphic operations for the large tf-idf ma-
trix while staying within the noise budget (§3.2).

tf-idf matrix preparation and encoding. The query-scorer
converts a document library into a tf-idf matrix (§3.1) using
the Gensim Python library for natural language processing [1,
70]. The query-scorer must also encode the tf-idf matrix
into plaintext vectors in the BFV scheme (§3.3). One way
to perform this encoding is to map each matrix element
individually into a single component (of size log(p)) of the
plaintext vector. However, this method is wasteful as p is a 46-
bit prime and tf-idf values are within a small range. Instead,
Coeus uses the standard ideas of quantization [40] and input
packing [6, 45] to map multiple (three in our prototype)
matrix elements into a single component of the plaintext. For
example, if a;, by, and ¢ are the beginning elements of the
first three rows of the tf-idf matrix, then Coeus first quantizes
each one to one of 2!° levels, and then packs them into the
value a; - d?+ by - d+c; made of three “digits” of size log d = 15
bits each. As long as the number of keywords in user queries
is less than 2°, this arrangement ensures that additions of
packed values happen digit-wise without overflow.

Metadata and document providers. Coeus’s metadata and
document provider are written in #1200 and ~1000 lines of
C++, respectively. Underneath, the metadata-provider con-
tains our implementation of the multi-query PIR protocol of
Angel et al. [12], which in turn builds on the state-of-the-art
SealPIR PIR library [2]. Meanwhile, the document-provider
directly uses the SealPIR library (which, by default, provides
single-retrieval capability). Both the metadata and document
provider use a master-worker architecture for the PIR server,
where the master receives client request and distributes work
to the workers. Similarly, both providers configure SealPIR
to provide 128-bit security. Finally, the document-provider
implements the first-fit-decreasing bin packing algorithm to
pack the set of variable-sized documents into a PIR library
with equal-sized objects (§3.3).

6 Evaluation

Our evaluation focuses on highlighting Coeus’s latency for a
user request, Coeus’s resource overheads (cpu, network, and
dollars) for both its server and clients, and the benefits of
Coeus’s techniques in reducing these overheads. A summary
of our main results is as follows:

e For a corpus of 5M documents from English Wikipedia
and a dictionary with 65,536 keywords, Coeus’s latency
is 2.81 s, 0.55 s, and 0.54 s for its three protocol rounds of



query-scoring, metadata-retrieval, and document-retrieval
(§2.1). For the same configuration, a baseline system with
two rounds incurs a total latency of 93.9 seconds.

e For 5M documents and 65,536 keywords, Coeus’s resource
consumption (cPu and network) is substantial. However,
when converted to a dollar amount, this cost is 6.5 cents
per request. In contrast, the baseline costs 1.62 dollars.

e Both system-level design techniques (§2.1, §3.3) and op-
timizations to secure matrix-vector product (§4.2-§4.4)
significantly improve Coeus’s performance.

Baselines. We compare Coeus to two baseline systems. B1I
composes the secure matrix-vector product construction of
Halevi and Shoup for query-scoring with PIR (specifically,
SealPIR [2]) for document retrieval to form a two-round
protocol (§2.1, §3.3). B2 improves on B1 by incorporating
Coeus’s technique of splitting the document retrieval round
into separate rounds for metadata and document retrieval
(§3.3). Notably, both B1 and B2 apply the Halevi-Shoup algo-
rithm for query-scoring to the tf-idf matrix block-by-block,
and distribute this computation onto a cluster of machines
by assigning square, equal-sized submatrices to each worker
machine. The difference between B2 and Coeus is the im-
provements to secure-matrix vector product (§4.2-§4.4).

Dataset. Our seed corpus is an English Wikipedia articles
dump from Feb 1, 2021 [3]. It contains ~6M articles. However,
Coeus’s topic modeling library Gensim [1, 70] (§5) removes
small re-directional articles, which leaves 4, 965, 789 articles.
We form a keyword dictionary from these articles by picking
keywords that have the highest idf (specificity) (§3.1).

Experiment configurations. We vary the number of docu-
ments (n) in the server’s document library, the number of
keywords in the dictionary, and the number of machines
assigned to the server. To vary n, we sample documents from
the seed corpus uniformly at random. This sampling dictates
the size of the document library. For the baseline B1, we pad
each sampled document to the size of largest document in
the set of sampled documents. In contrast, for B2 and Coeus,
we pack (concatenate) smaller documents before padding
(§3.3). Each document’s metadata is 320 bytes, which includes
255 bytes of title [5], and 40 bytes of a short description [4],
among other information such as the document’s location in
the (packed) document library in the case of B2 and Coeus
(§3.3). For the baseline B1, we set K = 16 as the number of
documents the client retrieves in the second protocol round,
while for B2 and Coeus, K equals the number of documents
for which the client receives metadata in the second protocol
round. Finally, we set the number of tf-idf matrix columns
equal to the number of keywords, and the number of rows
of the matrix equal to [n/3] after taking into account tf-idf
matrix preparation from the document data (§5).

Testbed. We run Coeus’s server and a client over a set of ma-
chines in the US East (Ohio) AWS EC2 data center. Each com-
ponent of the server (query-scorer, metadata-provider, and
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Figure 5. User-perceived latency for Coeus’s query-scoring round.
n is the number of documents in the document library. The number
of keywords is set to 65,536.

document-provider) uses one machine of type c5.24xlarge
(96 vcru, 192 GiB RAM, and 25 Gbps network bandwidth) to
host its master, and a variable number of machines of type
c5.12x1arge (48 vcpu, 96 GiB RAM, 12 Gbps network band-
width) to run its workers. For the query-scorer, we also run
an aggregator on each of the worker machines. The client
uses a single vcpu of a machine of type c5.12x1arge.

6.1 Latency performance of Coeus

We first focus on the query-scoring round of Coeus’s protocol
as it is different for Coeus and both the baselines, and then
on the other two rounds (metadata and document retrieval),
which are different for Coeus and only the B1 baseline.

Coeus versus the baselines for query scoring. Figure 5
shows the user-perceived latency of Coeus and the baselines
for their query-scoring round, while keeping the number
of keywords fixed to 65,536 but varying both the number
of documents n in the document library and the number of
worker machines for the query-scorer. Coeus’s latency is, in
general, much lower than the baseline latency. For example,
for 5M documents and 96 machines, Coeus’s latency is 2.8s,
while the baseline’s latency is 63.4s, which is 22.6x higher.
These improvements are due to Coeus’s optimizations to
secure matrix-vector product that fundamentally reduce, and
efficiently distribute, the server’s work (§4.2-§4.4). We will
evaluate these optimizations individually in §6.3.

Variation with the number of machines. The latency of
query-scoring initially decreases with the number of ma-
chines for the query-scorer, then reaches an inflection point,
and then increases with more machines. This trend is most
clear to see for Coeus when n = 1.2M: the latency is 1.75s
for 32 machines, decreases to 1.60s for 64 machines, and
then increases to 1.68s for 96 machines. The reason is that
although the per-machine compute time decreases with an
increase in the number of machines due to a reduction in the
size of the submatrix assigned to a machine, the overhead
of aggregating intermediate outputs increases (§4.4). Thus,
adding more machines does not necessarily improve latency.
(For n = 300K and n = 5M, the curves for Coeus are to the
right and left of the inflection point, respectively.)
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with the number of keywords. The number of documents is set to
5M, and the number of machines for the query-scorer is 96.

Variation with the number of documents. Coeus’s la-
tency for query-scoring increases with the number of doc-
uments, but not linearly. This is due to the amortization of
the cost of RoTaTE operations across matrix blocks (§4.3). For
instance, for 32 server machines, latency for Coeus grows
from 0.97s for 300K documents to 1.75s for 1.2M documents—
an increase of 1.8X. In contrast, the corresponding latency
for the baselines increases from 12.8s to 49.7s (an increase
of 3.88x%). This linear growth for the baselines is expected
as they perform the secure matrix-vector product block-by-
block, without any amortization of costs across blocks.

Variation with the number of keywords. Figure 6 shows
how Coeus’s query-scoring latency changes with the number
of keywords when n = 5M and the query-scorer runs over
96 worker machines. Coeus’s latency increases linearly with
the number of keywords with a slope smaller than one. For
instance, it increases by 4.1x from 1.5s to 6.1s when the
number of keywords increase by 16x from 2!* to 2'%. The
reason the latency does not increase sixteen times (even
though the matrix increases by that factor) is that Coeus
readjusts submatrix dimensions to make submatrices taller,
which reduces server’s work by further amortizing the cost
of Rorate operations (§4.4, §4.3). In contrast, the baseline
latency increases with a slope of = 1 as the baseline secure
matrix-vector product computation time increases linearly
with the width of the matrix.

Latency for metadata and document retrieval. Figure 7
shows user-perceived latency for Coeus and the baselines for
the rounds of metadata-retrieval (if applicable) and document-
retrieval. (For completeness, the figure also shows query-
scoring latency from Figure 5.)

The baseline B1 does not have an explicit metadata-retrieval
round. It uses 48 worker machines to retrieve metadata and
data together for K = 16 documents. This choice of 48 ma-
chines is based on parameters for SealPIR and the size of
the document library. For instance, SealPIR’s multi-retrieval
scheme requires partitioning the document library into a
number of buckets that is a multiple of K. We choose 48
buckets and assign each bucket to a distinct worker machine.
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Figure 7. User-perceived latency for Coeus (C) and the baseline
systems (B1 and B2) with a varying number of documents (n) in
the document library. The number of keywords is 65,536. The text
provides details of the machines for these experiments.

In contrast to B1, the baseline B2 and Coeus have an explicit
metadata-retrieval round. We configure these systems to use
6 worker machines for the metadata-provider and 38 ma-
chines for the document-provider. Again, these choices are
based on SealPIR parameters and the size of the metadata
and document libraries. For instance, the largest object after
document packing is 142.5 KiB, which encrypts into 38 BFV
ciphertexts in SealPIR, where each is processed in parallel.
Coeus’s (and B2’s) separation of metadata retrieval from
document retrieval significantly improves latency over B1.
For example, for n = 5M, B1 takes 30.5s, while Coeus takes
0.55s for metadata retrieval and 0.54s for document retrieval.
This gain is for two reasons. First, B1 retrieves K = 16 doc-
uments each of size 140.7 KiB privately from a document
library via multi-retrieval PIR, whereas Coeus retrieves a
single document and 320 byte metadata for each of the K
documents. Second, B1’s document library is much larger
than Coeus’s: 670.8 GiB versus 13.1 GiB. This is because B1
pads each document in its library to the size of the largest
document (140.7 KiB), whereas Coeus packs multiple smaller
documents into 96,151 objects each of size 142.5 KiB (§3.3).

Summary. Coeus’s latency is dominated by that of query-
scoring. Further, Coeus’s techniques are effective: the decou-
pling of metadata from document retrieval reduces latency
from 93.9s to 63.5s for 5M documents and 65,536 keywords,
and the optimizations to secure matrix-vector product fur-
ther reduce this latency to 3.9s (an improvement of 24Xx).

6.2 Resource overheads of Coeus

This section explores the overhead Coeus imposes on clients
and estimates the combined overhead in terms of dollars.

Client-side overhead. Figure 8 shows client-side cpu time,
network upload, and network download for Coeus and the
baselines with a varying number of documents (n) in the
server’s document library. Coeus’s network overhead is sub-
stantial and thus Coeus requires significant download band-
width at the client. This is because the query-scoring re-
sponse contains a score for each document, and thus grows
with the number of documents (§2.1, §3.3). Meanwhile, the



n=300K n=1.2M n=5M
Client cpu (sec)
B1 4.04 4.43 5.54
B2/Coeus 0.34 0.61 1.64
Upload (MiB)
B1 12.29 12.29 17.89
B2/Coeus 14.31 14.31 14.31
Download (MiB)
B1 460.27 470.02 508.02
B2/Coeus 18.78 28.53 66.53

Figure 8. Client-side costs per request for Coeus and the baseline
systems (B1 and B2) for a keyword dictionary with 65,536 keywords
and a varying number of documents (n).

upload bandwidth does not change with n, as (a) the length
of the input vector to query-scoring depends on the number
of keywords (and not on the number of documents), and b)
the size of the inputs to PIR (specifically, SealPIR) follows a
step function and changes only for a value n > 16M.
Coeus’s overheads, particularly the network downloads,
are significantly lower than that of the baseline B1. The
reason is that B1 privately downloads K = 16 documents
while Coeus retrieves a single object and K smaller metadata.

Dollar cost. We convert both the network and the server-
side resource overhead to a dollar amount. For the former,
we use a network pricing model of $0.05 per GiB, which
is Amazon’s price for bulk network downloads (Amazon
does not charge for uploads) [77]. For the server’s cost, we
multiply the machine rent for Amazon EC2 (c5.12xlarge
and c5.24x1arge machines cost $0.744 and $1.488 per hour,
respectively [76]) with the number and type of machines we
use and the time for which we use them to service a request.
For Coeus, the per-request dollar cost for the configuration
of 5M documents and 65,536 keywords is 6.5 cents, of which
5.9 cents is due to query-scoring. The baseline B2 increases
this cost to 1.29 dollars, of which 1.28 dollars is due to query
scoring. Further, B1 increases this cost to 1.62 dollars, where
the additional 34 cents is due to the more expensive docu-
ment retrieval. Thus, Coeus’s improvements take oblivious
document ranking and retrieval a level up in affordability.

6.3 Performance of secure matrix-vector product

A major part of Coeus’s gain over the baselines is courtesy of
the improvements to secure matrix-vector product (§4). This
section zooms into the performance of this primitive in isola-
tion. We first focus on a matrix that fits into a single machine,
and then on Coeus’s distributed implementation over a clus-
ter of machines. The results also shed light on when Coeus’s
construction could be beneficial to other applications.

Single machine performance. We run the server compo-
nent of the secure matrix-vector product on a single CPU of
an AWS machine of type c5.12x1large. We compare (a) the
baseline Halevi-Shoup construction extended to process mul-
tiple blocks block-by-block, (b) this baseline plus Coeus’s
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Figure 9. Server cpu time to perform secure matrix-vector product.

first optimization (§4.2) to reduce the overhead of rotations
(Coeus-optl), and c) this previous variant extended with
Coeus’s technique (§4.3) to amortize rotation time across
blocks (Coeus-opt1-opt2).

Figure 9 shows the cpuU time to compute the product. Each
block is of dimension N x N, where N = 23, and new blocks
are added vertically on top of existing blocks.

Coeus-opt1 reduces computation time by a constant factor
of ~ 4.4X relative to the baseline. This reduction in time is
due to the constant log(N)/2 = 6.5 factor savings in the time
for the RotaTE operations (§4.2). Coeus-opt1-opt2 further
reduces overhead by amortizing the cost of rotations across
blocks (§4.3). For instance, for the baseline Halevi-Shoup
construction, increasing the number of blocks from one to
sixty-four increases time linearly from 75s to 4,834s (an in-
crease of 64.4X), but for Coeus-opt1-opt2, the time increases
from 17.1s to 74.2s (a factor of 4.34). Overall, for the data
point with 64 blocks, the baseline Halevi-Shoup construction
takes 4,834s, Coeus’s first variant (Coeus-opt1) reduces that
time to 1,094s, and Coeus’s version with both optimizations
(Coeus-opt1-opt2) reduces time to 74.2s.

Multiple machine performance. Coeus distributes secure
matrix-vector product computation efficiently onto a cluster
of machines, by optimally shaping the submatrices for the
worker nodes (§4.4). We compare Coeus’s performance with
and without this optimization. We run the server compo-
nent of the secure matrix-vector product over a cluster of
64 machines of type c5. 12xlarge while utilizing all CPUs
on each machine. We measure the wall-clock time for the
computation while varying the submatrix width.

Figure 10 shows the wall-clock time for various phases of
secure-matrix vector computation (input distribution from
the master to the workers, processing of submatrices at all
worker nodes, and the aggregation of intermediate outputs
generated by the workers) for an example matrix with 22
rows and 21¢ columns. The figure also shows the end-to-end
(total) time measured by the client.

Overall, the total time curve is convex: the time is higher
than its lowest value when submatrices are either too thin
(left side of the x-axis) or too wide (right side of the x-axis).
This convex shape is due to two competing forces. On the
one hand, the time to process the submatrices increases with
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Figure 10. Wall-clock time for various phases of computation of
Coeus’s secure matrix-vector product: input distribution, computa-
tion at the workers, and aggregation of intermediate results. The
curve labeled “total” is the end-to-end time measured at a client.

width due to a reduction in the amortization of Rotate cost.
(The time for input distribution also increases with width but
slowly.) On the other hand, the cost of aggregation decreases
with width. Coeus balances these two forces by finding and
setting the optimal width for the submatrices (§4.4). Indeed,
if Coeus had used the solution of square submatrices, then
its time would be 4.76s (the point with width of 2'°) rather
than 2.46s (width of 2!2)—an improvement of 1.93x.

The above experiment clarifies that statically setting square
submatrices is suboptimal. But could we statically set sub-
matrices to a rectangular shape and get most of the benefit
provided by Coeus’s scheme? This question is especially
compelling as the total time curve (Figure 10) changes slowly
around the optimal point of 22 width. Thus, as a concrete
example, could one always set submatrix width to 2!2?

To answer this question, we rerun the experiment above
for three different matrix dimensions: 1M rows and 64K
columns, 1M rows and 16K columns, and 256K rows and 16K
columns. Figure 11 shows the results. The inflection (optimal)
point differs significantly—4096, 1024, and 512, respectively—
for the three dimensions. Further, statically picking either of
these widths is detrimental for the other configurations. For
instance, if we pick 4096 as the submatrix width, then Coeus
would incur 41% more latency (1.47s instead of 1.04s) relative
to the optimal point for the matrix with 256K rows and 16K
columns. On the other hand, picking a submatrix width of
512 will be optimal for this matrix with 256K rows and 16K
columns but increase latency by 16% for the matrix with di-
mensions 1M rows and 16K columns. In general, the optimal
point depends on various factors such as matrix dimensions,
machine performance characteristics, and network connec-
tivity between machines. Besides, these factors change over
time due to updates to the document library and upgrades
to the infrastructure.

6.4 Comparison of Coeus to a non-private baseline

We implemented a tf-idf based system that does not hide user
query and the matched documents. This baseline implements
a two-round protocol. In the first round, a client sends a
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Figure 11. Wall-clock time for Coeus’s secure matrix vector product
protocol over 64 machines for different matrix dimensions and
varying submatrix widths.

query to the server in plaintext. The server computes the
tf-idf scores for each document and returns metadata for the
top K = 16 documents. In the second round, the client selects
one document from the top-K and retrieves it from the server.
With 5M documents and 65,536 keywords in the tf-idf matrix,
and after distributing the server’s workload over 48 machines
of type c5.12x1arge, the end-to-end latency experienced by
a client is ~90ms, which is 44X lower than Coeus. The dollar
cost for a single query is 0.09 cents, 72X cheaper than Coeus.

Coeus is different to a non-private baseline also in terms
of expressiveness of queries. It supports tf-idf-based ranking
over a multi-keyword query, but not other forms of queries
such as Boolean queries with AND, OR, and NOT operators,
fuzzy queries that auto-correct words that are spelled in-
correctly, and wildcard and regular expression queries that
enable search for patterns. Supporting these queries in Coeus
requires future research, though we note that limited query
processing, e.g., checking for typographical errors for fuzzy
queries, could be done at the client-side.

7 Related work

Searching over encrypted private data. Starting with the
seminal work of Song et al. [80], a large body of literature
has focused on searching on encrypted private data held at
a remote server (we refer the reader to surveys and recent
papers on this problem [20, 24, 29, 30, 49, 91]).

Two characteristics differentiate this problem from the
problem Coeus addresses. First, this problem considers a sce-
nario where the documents are owned by one or more users,
while their storage is outsourced. Thus, the data owner can
encrypt its documents using a symmetric encryption scheme
(e.g., [27]) or include an encrypted index that later helps with
search. As noted earlier (§1), such encryption is not possible
when data is public. Second, schemes in this category fo-
cus on searching rather than ranking. For example, a recent
system DORY [29] supports retrieval of documents exactly
matching a keyword.

Ranking over encrypted private data. A body of litera-
ture extends the capability of searching on private encrypted
data with the capability to rank the search results [8, 31, 48,



53, 57, 67, 67, 79, 82, 83, 88, 90, 94, 99]. Among these, the
schemes of Yu et al. (two-round searchable encryption or
TRSE) [99] and Strizhov and Ray [82] are related to Coeus.
Both these schemes support ranking using tf-idf over a
two-round protocol that is similar to the two-round baseline
B1 discussed and evaluated in this paper (§2.1, §6). In the first
round, a user sends a homomorphically encrypted query to
a remote server and learns relevance scores for each docu-
ment. Then, in the second round, the user retrieves the top-K
documents. Despite the similarities to B1, we compare Coeus
to B1 rather than these existing schemes, for two reasons.
First, in these existing schemes, the tf-idf matrix is en-
crypted as the data is private and owned by a data owner.
Thus, the remote server multiplies an encrypted matrix with
an encrypted vector. In contrast, in the baseline B1 (and in
Coeus), the matrix is in plaintext and only the vector is en-
crypted which results in cheaper server-side operations. Sec-
ond, these existing schemes inefficiently compute the matrix-
vector product. TRSE uses the homomorphic encryption
scheme of van Dijk et al. [87] which has large parameters and
lacks support for vectorized operations. Meanwhile, Strizhov
and Ray’s scheme uses the more efficient BGV scheme [22]
but computes the product naively by multiplying the vector
with each matrix row. In contrast, B1 uses the state-of-the-art
construction of Halevi and Shoup [46, 58] (§3.2).

Searching over public data. PIR [26, 59] and its extensions
are designed for public data. Indeed, PIR in its basic form
allows retrieval by index from a public library. With PIR-by-
keywords [25, 37], a user specifies a keyword and retrieves
one of the documents that contains the keyword. Therefore,
PIR-by-keywords is most applicable to a setting where key-
words are unique, for example, key-value stores [13]. SQL-
PIR [66] and Splinter [89] extend the PIR-by-keywords inter-
face to support data retrieval using a subset of SQL. However,
they do not support selective, oblivious aggregation across
columns as in tf-idf scoring computations. Moreover, they
assume non-colluding servers unlike Coeus which does not
make such assumptions about the server (§2.2). Finally, pri-
vate stream searching [19, 28, 68] extends search to a stream
of public documents such as Google News alerts [36, 65, 95—
98, 100]. But, as mentioned earlier (§1), these works do not
consider ranking. In contrast to all these works, one can view
Coeus as an extension to PIR that prefixes a ranking stage to
the private document retrieval stage.

Other related work. Other approaches to searching or rank-
ing privately include trusted execution environments (TEEs)
such as Intel SGX [51, 55, 64, 78, 84], anonymous commu-
nication systems such as Tor [85], and obfuscation-based
techniques that send dummy queries besides real queries [15,
32, 92]. These approaches are either orthogonal or do not pro-
vide strong guarantees: TEE-based solutions require trusting
the manufacturer of the TEE, anonymous communication
systems hide identity but reveal the personally identifiable
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information (PII) in the query that can in turn reveal a user’s
identity [16], and obfuscation-based techniques are heuristic
in nature and thus susceptible to attacks that separate out
real queries from dummy queries [15, 92]. In contrast to these
solutions, Coeus hides the content of user queries (and not
user identity), and does so provably by incorporating and
refining advanced primitives from cryptography.

8 Summary and future work

Coeus, to our knowledge, is the first end-to-end system that
supports oblivious ranked retrieval over large scale public
data and an untrusted infrastructure. Prior approaches either
did not support ranking or only managed private data. One
can view Coeus as an extension to the PIR domain that effi-
ciently supports ranking by exploiting standard tf-idf statis-
tical methods. At Coeus’s core is a new three round protocol
that separates metadata retrieval from document retrieval
(§2.1, §3.3), and a novel secure and efficient matrix-vector
product protocol (§4) based on the Halevi and Shoup method.
This latter scheme, although designed primarily for oblivious
document retrieval may be useful in other application con-
texts. Coeus demonstrates that oblivious ranked document
retrieval, which up to now was practically impossible due its
high overhead costs, has come to the realm of the possible.
Our hypothetical, privacy conscious Ziv can now use Coeus
to obliviously retrieve from Wikipedia, with its corpus of
about 5 million documents, the history of any event of inter-
est in under 4 seconds (rather than minutes) and at a cost of
single digit cents (rather than dollars). Needless to say, this
is not a panacea, but a significant improvement that paves
the way for a practical future where privacy is within the
reach of the masses.

In terms of further improvements, one avenue is to reduce
the server-side compute overhead, which is still the main
bottleneck. Here, accelerators such as GPUs may drive down
costs for both secure matrix-vector product and PIR. The
sparsity of the tf-idf matrix too presents an opportunity as it
contains many zero entries. One can also consider concur-
rent queries and batch processing opportunities that are not
applicable with a single query. Finally, besides performance,
one can improve expressiveness by adding more types of
queries such as fuzzy queries, as discussed earlier (§6.4).

Coeus’s source code is available at
https://github.com/ishtiyaque/Coeus_artifact.
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A Security proof (not peer-reviewed)

This appendix is included to show that Coeus’s protocol (§3.3,
§4) for oblivious document ranking and retrieval satisfies the
notion of query privacy (§2.2), however readers should note
that this section has not been peer-reviewed.

We first define an abstract protocol for oblivious docu-
ment ranking and retrieval, then describe a cryptographic
security game that captures the notion of query privacy,
and finally show why an adversary cannot win this game
with non-negligible probability when the abstract protocol
is instantiated with Coeus’s protocol (§3.3).

A.1 An abstract description of protocol

A protocol for oblivious document ranking and retrieval
runs between a server and a client. The server begins with a
data structure for scoring document relevance given a client
query, a metadata library containing n metadata objects for
n documents, and a document library that contains the n
documents packed into ny, equal-sized objects, where a
document does not span more than one object. Meanwhile,
the client begins with a multi-keyword search query q. At
the end of the protocol, the client receives one object in the
document library.

This protocol consists of three algorithms: SQuUErY, MQUERY,
and DQUERY.

SQUERY( 1%, Drcr, q) takes as inputs a security parameter 14,
a dictionary of keywords Dicr, and a multi-keyword search
query g, and outputs a query g, for scoring relevance of g
against all n documents in the server’s document library.

MQuery(1%, n, {idx;, .. ., idxk}) takes as input a security
parameter 1%, an integer n that represents the number of
objects in the server’s metadata library, and a set of K indices
whose values are between (and inclusive of) 1 and n, and
outputs a query gy, that is suitable for retrieving objects
in the metadata library whose indices are those in the set
{idxy, ..., idxg}.

DQuEery (14, Npkd idx) takes as input a security parameter
1%, an integer npkq representing the number of objects in
a suitable encoding of the document library, and an index
whose value is between 1 and ny4, and outputs a query qq
for retrieving one of the objects from the document library.

The protocol proceeds in three rounds. In the first round,
the client runs the SQuery algorithm and sends g, to the
server. The server responds with an answer which consists
of relevance scores for n documents in the server’s document
library. The client processes these scores to extract the value
n and a set of K indices corresponding to the highest scoring
documents. In the second round, the client feeds the outputs
from the first round as inputs to MQuery, and sends the
output gy, to the server. The server processes this query and
returns metadata for K documents. The server also returns
the number of objects npi4 in the encoded document library.
The client postprocesses the metadata returned by the server

686

SIMULATE (A, 7, DIcT, K, q3)
: // Run query-scoring round of protocol
qs < JI.SQUERY(IA,DICT, qb)
scores «— A.GETSCORES(¢s)
n « |scores| // n is the number of documents
// Obtain indices for the highest scoring documents
//'if K > n, Top-K fills missing values randomly
{idx1, ..., idxg} « Tor-K(scores)

8: // Run the metadata-retrieval round of the protocol
9: qm — ﬂ.MQ_UERY(lA, n, {idx1, ..., idxg})

10: (npkas {Midxy - -» Midxg }) < A.GETMETADATA(gm)
11: // Process metadata to get an integer between 1 and nyxq
12: idx < SELECTDOCUMENT(npid, {Midx, - - - Mid })

13: // Run the document-retrieval round of the protocol

14: qd — JT.DQpERY(lA, Npkds idx)

15: obj «— A.GETDOCUMENT(qy)

16 return all messages sent to or received from A

Figure 12. Pseudocode for the challenger to simulate the protocol x
for one of the queries supplied by the adversary.

to obtain an integer idx whose value is between 1 and n,g4.
Finally, in the third round, the client runs DQUERrY by feeding
the outputs of the second step as inputs to DQuEry. The client
sends the output of DQuERYy to the server, who processes it
against the document library to return one object from this
library.

A.2 The security game for query privacy

We define a security game that a challenger and an adversary
play that captures the notion of query privacy. We denote this
game as G » Dicr, x (1Y), where A is an probabilistic polyno-
mial time adversary, 7 is a protocol for oblivious document
ranking and retrieval consisting of the three algorithms of
SQuERY, MQUERY, and DQUERY, DicrT is a set of keywords, K
is an integer greater than or equal to 1 that represents the
number of metadata objects a client wants to get, and A is a
security parameter. The game has three phases: setup, simu-
lation, and guess.

During setup, the adversary chooses two multi-keyword
queries g and g; and sends them to the challenger. These
queries may or may not contain keywords in the Dicr.

During simulation, the challenger simulates the protocol
7 for one of the queries. The challenger first flips a coin and
picks either go or ¢; depending on the outcome of coin flip
(b € {0,1}). It then simulates x for g, using the SIMULATE
function described in Figure 12. Finally, the challenger shares
the output of simulate with the adversary.

During the final guess phase, the adversary takes the out-
put of SIMULATE corresponding to the scenario which the
challenger simulated and outputs b, which is the adversary’s
guess for whether the challenger simulated the protocol for
qo or q;. The adversary wins the game if b’ = b.



We note that the SIMULATE algorithm calls several func-
tions exposed by the adversary. For instance, it calls the
GETScORES function to learn the relevance scores for g,. Sim-
ilarly, it calls the GETMETADATA and GETDOCUMENT func-
tions to retrieve K metadata objects and one object from the
document library. The adversary may arbitrarily misbehave
when responding to these calls. For instance, when replying
to GETSCORES, it may or may not send the actual scores for
the scoring query. It may even send back less or more num-
ber of scores than n, which is the number of documents in
the server library. Similarly, GETMETADATA may return an
incorrect value of n,4, and incorrect number or incorrect
content of metadata objects.

A.3 Proof of query privacy

We want to show that the adversary’s advantage in winning
the game is negligible when r is instantiated with Coeus’s
protocol. We use a series of hybrid games to calculate the
adversary’s advantage.

Game 0: This game is the original game as described above
with 7 instantiated with Coeus’s protocol. The SQuery con-
verts q to a binary vector using the dictionary of keywords
Dict and then encrypts this binary vector using a secure-
matrix vector product primitive (§3.2, §4). The MQuery algo-
rithm calls the query generation function of a multi-retrieval
PIR query (e.g., [12]) with n as the total number of objects in
the library and the K indices as the positions of the metadata
objects client wants to retrieve. The DQuEry algorithm calls
the query generation function of a single-retrieval PIR with
Npkq as the number of objects in the library and idx as the
position of the object that is retrieved.

Game 1: This game is the same as game 0 except that
the DQuEry algorithm calls the query generation function
of a single-retrieval PIR with n; and an index sampled
uniformly at random from the range 1 to npy.

Game 2: This game is the same as game 1 except that the
MQuEry algorithm calls the query generation function of
a multi-retrieval PIR with K indices sampled uniformly at
random from the set {1,..., n}.

Game 3: This game is the same as game 2 except that the
SQuery algorithm calls the request generation algorithm of
secure matrix-vector product with a binary vector of length
|Dict| whose each element is sampled uniformly at random
from {0, 1}.

Let Sy be the event that b = b’ in Game 0, where g is the
query chosen by the challenger, and ¥’ is the adversary’s
guess. Similarly, let S; be the event b = b’ in Game 1, S; be
the event b = b’ in Game 2, and S; be the event that b = ¥’
in Game 3.

Lemma A.1. Pr[S;] =1/2.

Observe that in game 3 none of the requests to the adver-
sary depend on the query picked by the challenger. Specifi-
cally, DQuery and MQUERY generate PIR queries for uniformly
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sampled indices, and SQuUEry generates a query for a uni-
formly sampled binary vector. Therefore, an adversary par-
ticipating in game 3 cannot distinguish between the two
scenarios.

Lemma A.2. |Pr[52] - PF[S3] | < €Secure—matrix—vec

The difference between game 3 and game 2 is the input
to secure matrix-vector product. Specifically, in game 3, the
input is dependent on the actual query selected by the chal-
lenger, while in game 2, it is a uniformly sampled Boolean
vector. But given the security of secure matrix-vector product
(which in turn depends on the semantic security of an under-
lying encryption scheme), the adversary cannot differentiate
the two cases with non-negligible probability.

Lemma A.3. |Pr[sl] - Pr[52]| < EMulti-retrieval-PIR

The difference between game 2 and game 1 are the indices
input to multi-retrieval CPIR: in game 2, the indices are sam-
pled uniformly at random while in game 1 they are dependent
on the scores returned by the query-scoring round. However,
given the security of multi-retrieval CPIR that hides the value
of these indices, the adversary cannot distinguish between
the two games with non-negligible probability.

Lemma A4. |Pr(S,] — Pr[$]] < €Single—retrieval—PIR

The difference between game 1 and game 0 is the index
input to single-retrieval PIR: in game 1, the index is sampled
uniformly at random while in game 0 it is dependent on the
metadata returned by metadata-retrieval round. Again, given
the security of single-retrieval CPIR that hides the value of
the index, the adversary cannot distinguish between the two
games with non-negligible probability.

Combining the four lemmas, we get the proof that | Pr[S0]—

1/2] <= €Secure-matrix—vec + €Multi-retrieval-PIR + €single—retrieval—PIR-
Therefore, an adversary cannot win the security game with
non-negligible probability.
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