Automatica 137 (2022) 110100

journal homepage: www.elsevier.com/locate/automatica

Contents lists available at ScienceDirect

Automatica

automatica

Brief paper

Learning hidden Markov models from aggregate observations™ A

Rahul Singh?, Qinsheng Zhang?, Yongxin Chen >*

¢ Machine Learning Center, Georgia Institute of Technology, Atlanta, GA, USA

b School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 2 November 2020

Received in revised form 21 June 2021
Accepted 3 November 2021

Available online xxxx

Keywords:

Hidden Markov models

Aggregate observations

Parameter learning
Expectation-maximization algorithm

In this paper, we propose an algorithm for estimating the parameters of a time-homogeneous hidden
Markov model (HMM) from aggregate observations. This problem arises when only the population
level counts of the number of individuals at each time step are available, and one seeks to learn
the individual HMM from these observations. Our algorithm is built upon the classical expectation—
maximization algorithm and the recently proposed aggregate inference algorithm (Sinkhorn belief
propagation). We present the parameter learning algorithm for two different settings of HMMs:
one with discrete observations and one with continuous observations, and the algorithm exhibits
convergence guarantees in both cases. Moreover, our learning framework naturally reduces to the
standard Baum-Welch learning algorithm for HMMs when the population size is 1. The efficacy of our
algorithm is demonstrated through several numerical experiments.
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1. Introduction

There has been a growing interest in applications where data
about individuals are not accessible, instead aggregate population-
level observations in the form of counts of the individuals are
available (Luo, Xu, Zhen, Dilkina, Zha, Yang, & Zhang, 2016;
Sheldon & Dietterich, 2011). For various reasons including mea-
surement fidelity, privacy preservation, cost of data collection,
and scalability, data is often collected as aggregates. For example,
in human ensemble flow analysis, individual trajectories may not
be readily accessible due to privacy concerns, but the number of
individuals in a certain geographical area can typically be counted
by cell phone carriers. More examples include voter turnout
based on demography from census data (King, 2013) and bird
migration analysis (Sun, Sheldon, & Kumar, 2015). One funda-
mental part in modeling such aggregate data is estimating the
individual model parameters. Learning the underlying individual
model from aggregate observations is a challenging task since the
full trajectory of each individual is not accessible.

We are interested in learning hidden Markov models (HMMs)
using aggregate data. HMMs are popular graphical models used
in various scenarios involving unobservable (hidden) data se-
quences arising in ecology, social dynamics, and emergence of
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an epidemic (Cappé, Moulines, & Rydén, 2006; Dong, Pentland,
& Heller, 2012; Rabiner & Juang, 1986; Singh, Haasler, Zhang,
Karlsson, & Chen, 2020). Due to their ability to address the non-
stationarity in observed data sequences, HMMs are capable of
modeling a rich class of problems. In aggregate HMM settings,
a large set of homogeneous individuals transit from one state
to another according to the underlying HMM and at each time-
step, corresponding aggregated observations are recorded. For
example, in epidemiology, one can model spread of an infectious
disease such as COVID-19 over time in a geographical area using
the population level aggregate data generated by an HMM. In this
work, we consider the problem of estimating the parameters of
a time-homogeneous hidden Markov model, i.e., transition and
observation probabilities, from noisy aggregate data.

A traditional method for learning HMM is the Baum-Welch
algorithm (Baum & Eagon, 1967; Baum, Petrie, Soules, & Weiss,
1970), which is a special case of the expectation-maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977; Neal & Hin-
ton, 1998). For the given observations sampled from a model
consisting of latent variables (variables that are not observable)
with unknown parameters, the EM algorithm aims to find the
maximum likelihood estimates of the model parameters. In its
first step (E-step), the EM algorithm estimates a function of the
expected values of the latent variables and subsequently in the
second step (M-step), it finds the maximum likelihood parameter
estimates. For the case of learning HMM parameters, inference
algorithm such as belief propagation (BP) algorithm (Pearl, 1988)
is utilized in the E-step of the EM algorithm. The Baum-Welch
algorithm for estimating an HMM uses the forward-backward
inference algorithm, one type of BP algorithms, in the E-step


https://doi.org/10.1016/j.automatica.2021.110100
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2021.110100&domain=pdf
mailto:rasingh@gatech.edu
mailto:qzhang419@gatech.edu
mailto:yongchen@gatech.edu
https://doi.org/10.1016/j.automatica.2021.110100

R. Singh, Q. Zhang and Y. Chen

to complete the data. Unfortunately, traditional HMM learning
methods such as Baum-Welch algorithm (Baum et al., 1970)
cannot be applied to aggregate setting. Learning the individual
model from such population-level observations becomes chal-
lenging since great amount of information about individuals is
lost due to data aggregation and observation noise.

Recently, the learning and inference problems in aggregate
settings have been formalized under the collective graphical
model (CGM) framework (Sheldon & Dietterich, 2011). Within the
CGM framework, for learning the parameters of the individual
model, several aggregate inference methods such as non-linear
belief propagation (NLBP) (Sun et al., 2015) and Bethe-RDA (Vil-
nis, Belanger, Sheldon, & McCallum, 2015) algorithms have been
utilized in the E-step of the EM algorithm aiming to maximize the
complete data likelihood. Both of the inference algorithms work
on an explicit observation model. In addition, since NLBP does not
exhibit convergence guarantee, it does not lead to stable learning
methods.

The primary contribution of our work is a novel algorithm

for estimating the HMM parameters with theoretical guaran-
tees from noisy aggregate observations. We utilize a modified
EM algorithm for the learning task, where the E-step of the
algorithm is solved using recently proposed aggregate inference
method, the Sinkhorn belief propagation (SBP) algorithm (Singh
et al., 2020). We show that our algorithm exhibits convergence
guarantee. Instead of explicitly considering the noise model, we
incorporate observation noise in the underlying graph and as a
result, our algorithm reduces to the standard Baum-Welch algo-
rithm when only one individual is considered. We further extend
our algorithm to learn the model parameters with continuous
observation noise model. We evaluate the performance of our
algorithm on a variety of scenarios including human ensemble
flow on real-world data.
Related Work: Estimating Markov chains from aggregate data,
also referred to as macro data in earlier works, has a long history.
It was first studied in Lee, Judge, and Zellner (1970) where the
transition matrices were estimated based on maximum likelihood
method. In Kalbfleisch, Lawless, and Vollmer (1983), MacRae
(1977) and Sundberg (1975), the modeling of a single Markov
chain was studied by maximizing the aggregate posterior. More
recent learning methods from aggregate data include Luo et al.
(2016) and Pasanisi, Fu, and Bousquet (2012). After the introduc-
tion of the CGM framework in Sheldon and Dietterich (2011),
there have been a few works on learning the underlying in-
dividual model from aggregate data. The NLBP algorithm (Sun
et al,, 2015), a message passing type algorithm for approximate
inference in CGMs, has been utilized in EM for the task of learning
a Markov chain. Another existing aggregate inference algorithm
utilized in the E-step of the EM algorithm is Bethe-RDA (Vilnis
et al., 2015) which exhibits convergence guarantees. Finally, Bern-
stein and Sheldon (2016) proposed a method of moments esti-
mator for learning a Markov chain within the CGM framework.
Other works along this line include estimating spatiotemporal
population flow (Iwata & Shimizu, 2019) and recurrent estima-
tion of HMM (Lyubchyk, Grinberg, Dunaievska, & Lubchick, 2019)
from aggregate data, learning stochastic behavior of aggregate
data (Ma, Liu, Zha, & Zhou, 2020), learning hidden nonlinear
dynamics from aggregate data (Wang, Dai, Kong, Erfani, Bailey,
& Zha, 2018), and estimating group behavior from ensemble
observations (Zeng, 2019).

The rest of the paper is organized as follows. In Section 2, we
briefly discuss related background. We present our main results
and algorithms in Section 3 for discrete observations. The coun-
terpart with continuous observations is developed in Section 4
followed by experimental results in Section 5 and a concluding
remark in Section 6.
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Fig. 1. A length T HMM.

2. Background

In this section, we present related background on HMMs, their
extension to aggregate settings, and the CFB inference algorithm.

2.1. Hidden Markov models

An HMM is a Markov chain where the variables are not di-
rectly observable, but corresponding noisy variables are observed.
Denote the unobserved hidden variables as Xi, X, ... and ob-
served variables as Oq, O,, . ... Here X; and O; are random vari-
ables taking values from sets X and O respectively. In general,
both X and O can be either finite sets or infinite sets. For discrete
HMMs, X and O are finite sets with cardinalities |X| = d and
|O| = s, respectively.

A time-homogeneous HMM is parameterized by the initial
distribution 7 (X;), the state transition probabilities p(X¢;1|X:),
and the observation probabilities p(O; | X;) independent of time
steps t = 1,2,.... An HMM is a special type of probabilistic
graphical model (PGM) (Wainwright & Jordan, 2008). The graphi-
cal representation of a length T HMM is shown in Fig. 1. The joint
distribution of an HMM with length T factorizes as

-1 T

p(x,0)=m(x1) [] plxesr I x) [ plor %), (1)
t=1 t=1

where X = {X1,X2,...,xr} and 0 = {01, 0,,...,07} denote

particular assignments to the hidden and observation variables,

respectively.

One of the most important problems in HMMs is Bayesian
inference where the goal is to calculate the posterior distributions
of the hidden states X; given a sequence of observations 0 =
{01, 03, ..., 0r}. This is also known as filtering/smoothing (Mur-
phy, 2012) in systems and control community. A well-known
algorithm for this task is the standard forward-backward algo-
rithm (Rabiner, 1989), which itself is a special case of belief prop-
agation (Pearl, 1988) for Bayesian inference of general graphical
models.

Another important problem in HMMs is the parameter learn-
ing, which is also known as system identification. Denote the set
of parameters to be learned as

0 = {mw(x1), p(Xe111xc), p(Oe]xe)}. (2)

Let {o™}M_ with o™ = {o\™, 0", ..., 0™} be a set of observed
trajectories. The objective of parameter learning of HMMs is to
estimate the parameter 6 using the available data {o(m)}"r{]’:]. Since
the HMM is a latent variable model where the latent variable X;
is not observable, the maximum likelihood estimation cannot be
applied directly. A popular approach for learning latent variable
models is the expectation-maximization (EM) algorithm (Bishop,
2006; Neal & Hinton, 1998). The EM algorithm is an iterative
method that involves two steps in each iteration: E-step and
M-step. In the E-step, the values associated with the hidden vari-
ables are estimated to make the data complete and then, in M-
step, the parameters of the underlying model are optimized based
on the complete data likelihood. When specialized to HMMs, the
EM algorithm reduces to the Baum-Welch algorithm (Koller &
Friedman, 2009).
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Fig. 2. Observation model of aggregate HMMs (shaded nodes represent
aggregate observations).

2.2. Aggregate hidden Markov models

Aggregate HMM is a framework for learning and inference
from noisy aggregate data generated from an HMM describing
the behavior of individuals. It is a special case of the collective
graphical model (Sheldon & Dietterich, 2011), which is a frame-
work for general probabilistic graphical models. The aggregate
data is generated from M independent individuals following an
HMM. The HMMs are aggregate in the sense that they are indis-
tinguishable to each other. Let Xt(m) be the (unobservable) state of
the mth individual at time ¢t and O([m) be the observable state. The
observations are made in the form of y;(o;) = Z%:] ]I[O(tm) =
o] = nf(o;), where I denotes the indicator function. It is the
histogram of M observations over O. The aggregate observation
model for length of T = 3 is depicted in Fig. 2. Given these aggre-
gate observations, the goal of inference in aggregate HMMS 1s to
estimate the latent distributions nt t+1(x[, Xei1) Z 1 ]I[X
x[,X[(Jri = Xr1], Nec(Xe, 00) = Z JIIX; m _ x,, O(mT = o], and
ne(x) = Z'xﬂ H[X[(m) = Xt].

The exact inference is proved to be computationally infeasi-
ble (Sheldon & Dietterich, 2011) for problems with large T and M.
It is proposed in Singh et al. (2020) that this aggregate inference
can be approximately achieved by solving a free energy mini-
mization problem. Moreover, the approximation error vanishes
as the size M of the population goes to infinity. The integral con-
straints on n can be relaxed (Singh et al., 2020) without affecting
the precision much. With this relaxation, the latent distributions
n = {n;, N}, n; ¢, N; 1} satisfy the local polytope constraints

D omx)=M,Vte(l,....T) (3a)
xeX

Z N e1(X, Xep1) = Nep1(Xeqe1),

XeXxX

an“(xt,x):nt(xt), vtef{l,...,T—1} (3b)
Xex

D nx0)=n(x), Vee(l,....T) (3c)
0cO

> nei(x,0)=nd(0), Vte({l,...,T). (3d)
XeXxX

Denote the local polytope described in (3) by M (Wainwright &
Jordan, 2008). For aggregate HMMs, the free energy equals (Singh
et al., 2020; Wainwright & Jordan, 2008)

T
=— > ) meelxe, o) log plog|x:) (4)

t=1 Xt,0¢

T—1
—Z Z Ne,e(Xe, Xeq1) 108 p(Xet11Xc)

t=1 Xt, Xt 41

— Zm x1)log 7w (x1) Zm x1)lognq(xq)

X1
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- ZZZH‘ x¢)log ne(x¢) — an x7)log ny(xr)

t=2 Xt

+ Z D neelxe, o) log ne o(xc, 0¢)

t=1 X¢,0t
T—1
+ E E e e 1(Xes Xer1) 108 N e 1 (Xe, Xeq1)-

t=1 Xt,Xr11

It is in fact equal to the Kullback-Leibler divergence between the
inferred distribution and the prior distribution over the space of
trajectories (Singh et al., 2020). The aggregate inference prob-
lem is equivalent (Singh et al., 2020) to the following convex
optimization problem.

Problem 1.

21511\51} F(n, 6) (5a)

subject tong =y;, Vte{l,..., T} (5b)

Thanks to the large deviation theory (Singh et al., 2020; Varad-
han, 1984), the conditional distribution p(nly, ) of n given the
observation y approximately concentrates on the solution to
Problem 1. The very same approximation is the foundation of
the Schrédinger bridge problem (Chen, Georgiou, & Pavon, 2016,
2021) which has been explored extensively in stochastic control.

In Singh et al. (2020), we proposed the SBP algorithm for
solving aggregate inference problems over more general CGMs
with tree-structure. The SBP algorithm has convergence guaran-
tees with linear rate (Singh et al., 2020). There exist some other
algorithms for aggregate inference problems in CGMs including
approximate MAP (Sheldon, Sun, Kumar, & Dietterich, 2013),
NLBP (Sun et al,, 2015) and Bethe-RDA (Vilnis et al., 2015). One
major difference between SBP and these methods is the observa-
tion model. In Sheldon et al. (2013), Sun et al. (2015) and Vilnis
et al. (2015), the noise is added to the aggregate observation
y; directly, meaning the real observed histogram is a perturbed
version of y; by some random noise. In contrast, in Problem 1,
we assume that the observation noise enters the system in the
individual level and the measurement of the histogram is precise.
It has the nice property that when M = 1, it reduces to a
standard inference problem for PGMs or HMMs. We refer the
reader to Singh et al. (2020) for more details on the comparison
of the observation models.

2.3. Collective forward-backward algorithm

The collective forward-backward algorithm (CFB) is a special
case of the general SBP algorithm when the underlying graphical
model is an HMM (Singh et al., 2020). It is a message passing
type algorithm, similar to BP, consisting of four types of messages.
Fig. 3 depicts the messages employed by the CFB algorithm with
a¢(x;) being the messages in the forward direction and B.(x;)
being the messages in the backward direction. Moreover, y;(x;)
denote the messages from observation node to hidden node and
&:(o¢) are the messages from hidden nodes to observation nodes.
These messages are characterized by

(%) o Y pxelxe—1)ete1(%e-1)ye-(xe-1) (6a)
Be(x) o ZP(XtH 1% )Be-r1(Xeq 1) Ver1(Xe41) (6b)

Ye(o)
08 ;p(mm)&(ot)
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ag(wr) Be (1)

Fig. 3. Messages for inference in aggregate HMMs.

Algorithm 1 Collective Forward-Backward algorithm

Initialize all the messages o (X;), Be(xt), ve(xt), &(0¢)
while not converged do
Forward pass:
fort=2,3,...,T do
(i) Update y;—1(xc—1)
(i) Update o (x;), &(or)
end for
Backward pass:
fort=T-1,...,1do
(i) Update ypq1(xeq1)
(ii) Update B(x), &(o;)
end for
end while

£(0r) o Y ploglxeJere(x:)Bi(x:), (6d)
Xt
with boundary conditions a1(x1) = 7 (x1), Br(xr) = 1.
The sequence of update steps are listed in Algorithm 1.
Once the algorithm converges, which is guaranteed, the latent
marginals can be estimated as

1 (Xe) ¢ ot (X )Be(Xe Jye(%e )
e e 1(Xes Xea1) O P(Xeq1 1% Joee (Xe ) Ve (Xe ) Be (Xeq 1) ve(Xe 1)
p(0r |X¢ ot (X )Be(Xe)

&t(or)

Clearly, when the population size is 1, i.e, M = 1, the CFB
algorithm reduces to the standard Forward-backward algorithm
for the inference of HMMs (Haasler, Singh, Zhang, Karlsson, &
Chen, 2020; Singh et al., 2020).

N ¢(Xe, 0)

3. Learning discrete aggregate HMMs

The learning problem in CGMs is concerned with estimat-
ing the individual model parameters of the underlying graphical
model from aggregate observations. For learning the parameters
of a latent variable model, the EM algorithm (Dempster et al.,
1977) is a standard approach. The EM algorithm consists of two
operations: the E-step to compute the log-likelihood of the ob-
servations given the current estimation of parameters, and the
M-step to maximize the log-likelihood. The challenge to apply
the EM algorithm for learning CGMs lies in the fact that the E-
step requires inferring the conditional distribution of n on the
observation y, which is untractable (Sheldon et al., 2013; Singh
et al,, 2020).

In this section, we propose the approximate EM algorithm
(Algorithm 2) for learning HMMs with observations in aggregate
form. The key idea is to use the tractable CFB algorithm to
approximately infer the aggregate distributions n. Note that the
SBP algorithm can be used for learning more general CGMs.

Theorem 2. The Approximate EM algorithm converges.

Proof. The E-step and M-step in Algorithm 2 are coordinate
descent updates of the free energy 7(n, #) with respect to n and
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Algorithm 2 Approximate EM algorithm

Initialize model parameters 6°

fort=1,2,...do
E-step: Obtain the solution n* to Problem 1 using CFB with
parameters ¢!
M-step: 8¢ = argmin, F(n*, §)

end for

@, and thus the objective function is monotonically decreasing.
Moreover, since the free energy F in (4) is equal to Kullback-
Leibler divergence between the inferred distribution and the prior
distribution over the space of trajectories (Singh et al., 2020), it is
bounded below by 0. Thus, in view of the fact that F is continu-
ously differentiable, the approximate EM algorithm converges to
a local minimum. ®

We next argue that the log-likelihood L(6¢) := logp(y|0?)
approximately monotonically increases. The improvement of L at
the £th iteration is

L") —L(6" ") =log Y " p(y.n|6°)—log ply | 6°")

. ply,n |69 1
=log Y pnly, 0" ") =—"——= —log p(y| 6"
Xn: p(nly, 6¢-1)
_ p(y.n|6°) 1
> ) pnly,6") log ———— —log p(y| 6 ")
Xn: p(nly, 6¢-1)
0(
= p(nly,6'™") log p.n|67) - 2 :
- ply,m|6°1)

Since p(nly, 6¢~!) approximately concentrates on n*,

p(y, n* | 6°)

ply, n* | 0¢-1)

Again, due to the large deviation theory (Singh et al., 2020),
p(y,n | 0) =~ exp[—MF(n, 6)]. Thus,

L(OY) — L6 1) ~ log

%(L(ef) — L6 ~ — A, 0Y) + F(n*, 00,

The approximate monotonicity of likelihood then follows from
the definition of the M-step in Algorithm 2.

Thanks to the special structure of HMMs, the M-step can be
implemented efficiently in closed-form.

Proposition 1.
by

The M-step in learning aggregate HMMs is given

(1) = m(x1), (7a)
Z[T;] e e 1(Xes Xet1)
S mlx)

_ 2321 e (X, 0r)

t = 7
p(oe | ) ST ) (7¢)

Proof. See Appendix A. ®

P(Xeq1 | %) = (7b)

Remark 1. If parts of the parameters are known, then we only
need to update the other parameters in the M-step. For instance,
if the emission probability p(o¢|x;) is known, then only (7a)-(7b)
are needed for the M-step.

Algorithm 2 is for learning from a single sequence of aggregate
data generated from a certain number of samples. Learning from
multiple sequences of observations was initially explored in the
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Baum-Welch algorithm (Rabiner, 1989). Building on the same
idea, we extend it to the setting (Algorithm 3) with an ensemble
of K number of aggregate observation sequences generated from
the same HMM model. Note that here each aggregate observation
is based on the collective information of M individuals, therefore
K such aggregate observations in fact corresponds to N = MK
individuals.

Denote the ensemble of aggregate observatlons by {¥*};
then in the E-step, we need to find the solution n* to Problem 1
for each of these observations. In the M-step, one solves

K
. k
min F(n", 9).
) ’El ( )

k=

This can again be expressed in closed form for HMMs as

kK

K

1
i) = k; nk(x1) (8a)
Zt 1 “t er1(Xes Xet1)
P(Xeq1 | X) = (8b)
A Zkthlan
K
plog | %) = k=1 Zt:l nt.t(Xf’ Ot)_ (80)

K T
k=1 Dt=1 né(xe)

Algorithm 3 Learning HMMs with an ensemble of aggregate
observations
Initialize 7w(x1), p(Xe+1 | X¢),
repeat
Compute n by solving Problem 1 with measurement y* using
CFBforallk=1,...,K
Update the parameters using (8)
until convergence

ploe | x¢)

Proposition 2. Algorithms 2 and 3 reduce to the Baum-Welch
algorithm when observations are from populations of size M = 1.

Proof. See AppendixB. ®
4. Learning aggregate HMMs with continuous observations

Next we turn our attention to the parameter learning prob-
lems of HMMs with continuous observation space © = R®
(the state space X is still discrete). Such a HMM with contin-
uous observation is similar to the discrete HMM except that it
has a continuous emission density. The continuous observation
model in standard HMMs has been studied in Juang (1985) and
Juang, Levinson, and Sondhi (1986). In this section, we extend our
learning algorithm to aggregate HMMs with continuous emission
densities.

Suppose we have a total of M trajectories of continuous ob-
servations {o(]m), o(zm), e, o(Tm)}, vm=1,2,...,M,0™ € RS over
an HMM of length T. Note that the individuals are indistinguish-
able, which implies the order {o(t]), o(tz), el OEM)} at each time
point t is arbitrary and meaningless. In discrete aggregate HMMs,
the observation at time t can be summarized in a histogram
y:. This is not an efficient representation of observation in the
setting with continuous observations as it requires discretizing
the observation space © which would be potentially expensive.
Instead, we keep the observation at time t in its raw format
{o([l), 0([2), RN otM)}, as a bunch of samples. Similarly, since the
observation space is continuous, the joint distribution n; ((x;, o;)
is no longer an efficient representation. We instead use n(tm)(x[) to
capture the association between the states and the observations.
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Algorithm 4 Learning aggregate Gaussian-HMMs
w(xe), 2(xc)

Initialize 7w(x1), p(Xe+1 | X¢),
repeat
Compute n¢ ¢y 1(Xe, Xeq1), Ne(Xe ), n([m
Update the parameters using (12)
until convergence

)(xt) using CFB

Recently, the inference problem in aggregate HMMs with con-
tinuous emission densities has been studied in Zhang, Singh,
and Chen (2020). It was shown that the latent marginals can be
estimated as (Corollary 2, Zhang et al., 2020)

1 (Xe) o< ot (X )Be(Xe )ve(Xe ), (9a)
e e+1(Xe, Xe1) O P(Xeg1 |Xe oee (Xe )ye(Xe)
Be(Xe+1)Ve(Xet1) (9b)
n(tm)(x ) o p(o(tm)|xt)at(xt)ﬁt(xt)7 (90)
&:(m)

where a¢(x;), Be(x;), and y.(x;) are the messages in aggregate
HMMs as depicted in Fig. 3. They correspond to the fixed point of
the updates

a(x) = ZP(XHqu)Olfq(xrf]))/tq(xrf]), (10a)

Be(x) = ZP(XH—] X0 )Be1(Xer1)Ver1(Xea1), (10b)
1 o (o™ %)

ve(xe) = M ; 7&(m) ) (10c)
Zp xeJote (% )Be(xe) (10d)

with 0l1(X1) =m(X1), Br(xr) = 1.

The inference estimates given by (9) are applicable to ag-
gregate HMMs with any general continuous emission density.
Next, we derive the formulas for parameter estimation of the
underlying continuous observation HMM with Gaussian emission
density.

Assuming the Gaussian noise model for emission density, it
takes the form

poglxe) = N(0g; p(xe), X(xc)), (11)

i.e., each (discrete) hidden state corresponds to a single Gaussian
density parameterized by mean p(x;) and variance X(x;). In such
a model, an observation o(tm corresponding to the mth individual
at time t is nothing but a sample from one of the Gaussian
components.

The learning of aggregate HMMs with Gaussian emission den-
sity can be achieved using the approximate EM algorithm with
slightly modifications in the two steps. The E-step is an inference
step using (9). The M-step has a closed-form expression given
by the following Proposition. We omit its proof due to space
constraints (it is similar to the proof of Proposition 1).

Proposition 3. The M-step for aggregate HMMs with Gaussian
emission density takes the form

7 (%1) = ny(x1), (12a)
T-1
Pl | %) = 2= "T”j;(’(‘;’ )’“*‘) (12b)
t=1 "\t
T M (m) (m)
pix) = izt mm e ()0 (12¢)

Z[:l n Xf)
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Fig. 4. Learning curves of HMMs with discrete observations. Curves in different color depict the results with different M. All three experiments share the same values
of T =5, N = 5000. The figures show how ANLL evolves with the number of iterations, for d = 3, d = 5 and d = 10 respectively. The shaded region represents
standard deviation over 10 random seeds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Learning curves of various HMMs with Gaussian observation models. Curves in different color depict the results with different M. All three experiments are
HMMs with T =5 and N = 5000. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where prime denotes matrix transpose.

2(x;) (12d)

Based on Proposition 3, the parameters of a Gaussian-HMM
are estimated using Algorithm 4. Note that in this aggregate
Gaussian-HMM setting, the estimation updates for the initial
distribution 7(x;) and the transition probabilities p(x;.1|x;) are
the same as in Algorithm 2.

Remark 2. The convergence of Algorithm 4 follows from the
same arguments as in the proof of Theorem 2.

Remark 3. Similar to discrete HMMs, one can extend Algo-
rithm 4 to the setting with an ensemble of continuous aggregate
observations.

5. Experiments

To illustrate the efficacy of the proposed aggregate learning
algorithms, we perform multiple sets of experiments on syn-
thetic as well as real-world dataset of population flow over a
geographical area.

5.1. Learning HMMs with synthetic data

In this section, we consider synthetic data for evaluating our
learning algorithms. We perform multiple sets of experiments for
performance comparison of fitted time-invariant HMM models
with discrete as well as continuous observations. The initial state
probability 7 (x;) is sampled from the uniform distribution over
the probability simplex. To produce the transition matrix, we first
randomly permute rows of noised identity matrix Z+0.05 x /d x

exp(Uniform[—1, 1]). We scale rows of the permuted matrix so
that the resulting matrix is a valid conditional distribution. For
discrete observation setting, the emission matrix is generated in
a similar way as transition matrix, but with a different random
seed. In case of HMMs with continuous observations, we consider
the Gaussian emission model. For each state, the corresponding
Gaussian distribution is parameterized by a random mean and
variance. The mean is sampled from Uniform[—5d, 5d] and vari-
ance is from Uniform[1, 5]. In continuous observation setting, the
algorithm is required to estimate the initial distribution, the tran-
sition matrix and the means of Gaussian emission densities. We
generate N individual trajectories from the HMM parameterized
with 6* and aggregate them. Each aggregate sequence consists of
collective observations of M independent trajectories of length T.
The HMM parameters are learned based on K = % number of
aggregate sequences. For testing purpose, we generate another
set of N individual trajectories.

We use the negative log likelihood (NLL) as a metric for eval-
uating performance of our learning algorithm. The difference of
NLLs between the learned model 6 and ground truth 6* is

1 1
ANLL(B) = - NLL() - NNLL(Q*).

The HMM model with learned parameters is evaluated on test
dataset with the same number of total trajectories N as in training
data. Fig. 4 shows the performance of our algorithm for different
values of state dimension d and population size M on HMMs with
discrete observations. Curves in the same figure show learning
performance with different values of M but with fixed values
for d, T, and N. It can be observed that one achieves best per-
formance for the case of no aggregation (M = 1) and as the
aggregate size M increases, ANLL also increases. Similar obser-
vations can be made for the case of Gaussian observation model
as depicted in Fig. 5. It shows that our algorithm can effectively
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Fig. 6. Effect of the HMM length on the learning performance. Curves with different color correspond to different T values. All three experiments are Gaussian
observation HMMs with d = 5 and N = 500. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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Fig. 7. Performance of aggregate learning with various data sizes. Curves with different color depict the learning curves with different data sizes N. The insufficient
data causes overfitting to the training data. Our algorithm shows better performance with more samples available. All three experiments are discrete observation

HMMs with d = 10, and T = 10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

— 0.4
- | = | = -
- ks 10} % i W
= i =2 | = 3 =
31.0 S et 3 \ Fo2{ \ =
CFE o— 0.51 i 7
0.5 i —_—r 0.11 = N S
PROX PHOX PROX B "
0.0 2.5 5.0 7.5 10.0 0 10 20 30 0 20 40 60 80

time (minutes)

(a) d=3

time (minutes)

(b)d=5

time (minutes)

(¢) d=10

Fig. 8. Comparison of different learning algorithms under discrete HMM with T =5, N = 5000, M = 10. We report evolution of ANLL with respect to wall time. It

clearly shows that learning with CFB outperforms other existing approaches.

learn the generative models. Larger aggregate size corresponds to
lower convergence rate as expected; with larger aggregate size,
more information is lost about the individuals.

To further demonstrate the scalability of our algorithm, we
conduct experiments with various HMM lengths and sample sizes
as depicted in Fig. 6 and Fig. 7, respectively. In Fig. 6, the curves
in different colors depict the learning performance with differ-
ent HMM lengths T. We observe that larger T leads to better
performance. This is because larger T is associated with more
training data. Moreover, one can also observe that as the ag-
gregate size M increases, the performance degrades as expected.
Fig. 7 demonstrates the effect on HMM learning varying data
sizes N. It can be observed that with more data available, the
performance of our algorithm improves. With data size smaller
than N = 500, the overfitting problem occurs; even though the

algorithm converges on training data, the ANLL evaluated on test
data tends to increase.

Next, we compare our algorithm with the learning framework
involving NLBP (Sun et al., 2015), Bethe-RDA (Vilnis et al., 2015),
and Prox (Singh et al, 2020) in Fig. 8. Since those algorithms
assume different observation models, we only learn the initial
distribution and transition matrix with given observations models
for a fair comparison. For the cases of NLBP, Bethe-RDA, and Prox,
we choose the explicit aggregate noise model following inde-
pendent Poisson distributions for each aggregate state (see Sun
et al. (2015) for more details on this aggregate noise model).
We conduct experiments on discrete HMM with T = 5N =
5000, and M = 10. The comparison of learning performances
for different values of d is depicted in Fig. 8. One can clearly
observe from Fig. 8 that our learning framework based on the CFB
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(a) 2: 00 (b) 14 : 00

Fig. 9. Heatmap observation of population around the city of Tokyo. The whole
area of the city is divided into 14 x 16 blocks. With more people stay in a block,
color inside the block becomes deeper. The underlying green curves represent
main roads around the city. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

algorithm converges faster and performs better than the existing
aggregate learning approaches.

5.2. Estimating spatio-temporal population flow

We now turn to real-world aggregated data of population flow
within the Japanese city of Tokyo. The dataset! consists of anony-
mous individual trajectories containing latitude and longitude of
each person over time. The individual locations were recorded
over time via geo-tagged tweets. We discretize the whole city
area into 14 x 16 blocks with each block representing a 15 km x
15 km area, resulting in (hidden) state space dimension of d =
224. The observations are collected by aggregating the individual
trajectories every 30 min. A total of 6,432, 9,166, 6,822, 10,134,
6,646, 10,338 trajectories were collected respectively on July 1,
July 7, October 7, October 13, December 16 and December 29 in
the year 2013. We assume that the observations are corrupted
by Gaussian Noise. Additionally, with a small chance, a point in
the center block can be categorized to eight neighboring blocks
incorrectly, which account for sensor inaccuracy. In Fig. 9, we
show the aggregate observation at timestamps 2:00 and 14:00
generated from the noisy observation model. The observations
are based on all the individual trajectories recorded on the pre-
viously mentioned six number of days at corresponding times
(N = 49538).

Our task is to estimate the transition probabilities characteriz-
ing the population flow at different times 2:00, 8:00, 14:00, and
20:00. The estimations at each time point are based on one and
half hour window such that the underlying HMM has a length
of T = 3. The observations are aggregated based on a time-
homogeneous HMM with length T = 3 and aggregate size M =
20. We estimate the HMM parameters directly from the aggre-
gated data. We consider the estimated parameters with M = 1
as the ground truth while assuming that the observation noise
model is known. Fig. 10 depicts the comparison between our
estimation and ground truth movement at the four timestamps.
The red arrows in the figure implicitly represent the underlying
transition probabilities multiplied by the total population N =
49538. One can observe that our algorithm successfully recovers
the underlying movement of population with noisy aggregate
observations.

1 Data Source: SNS-based People Flow Data, Nightley, Inc., Shibasaki &
Sekimoto Laboratory, the University of Tokyo, Micro Geo Data Forum, People
Flow project, and Center for Spatial Information Science at the University of
Tokyo, http://nightley.jp/archives/1954.
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(b) Ground Truth

(a) Estimation

Fig. 10. Comparison between estimation based on our algorithm and ground
truth movement. The four rows show the comparison at times 2:00, 8:00, 14:00
and 20:00, respectively. The red arrow depicts that flow between two block
exceeds a threshold, 35. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

6. Conclusion

In this paper, we proposed an algorithm for learning the
parameters of a time-homogeneous HMM from aggregate data.
Our algorithm is based on a modified version of the EM al-
gorithm, wherein we utilized the Sinkhorn belief propagation
algorithm to infer the unobservable states. In contrast to the
existing state-of-the-art algorithms that explicitly consider the
aggregate observation noise, our algorithm employs the aggregate
observation noise within the graphical model and due to which
it is consistent with the standard Baum-Welch algorithm when
aggregate data consists of only a single individual. Moreover, our
algorithm enjoys convergence guarantees. We further extended
our algorithm to incorporate continuous observations and pre-
sented estimates for Gaussian observation model. In this work,
we have assumed that the HMMs are time-homogeneous, which
restricts the modeling capability of the data. We plan to explore
learning of time-varying HMMs in our future research.
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Appendix A. Proof of Proposition 1

Proof. The M-step in Algorithm 2 for aggregate HMMs solves

n}oin F(n, 0) (A.1a)
subject to Z”(x1) =1, (A.1b)
X1
D P %) =1, (A1c)
Xe+1
(A.1d)

ZP(Ot [ %) =1,
ot

where 6 = {7 (x1), p(X¢+1|x¢), p(0¢]x¢)} and F(m, 0) as in (4).

Let the Lagrange multipliers corresponding to the constraints
(A.1b), (A.1c), and (A.1d) be A, v, and u respectively. Then, the
Lagrangian is

£(0,2, v, 1) = Fm,0) = Y v, (D plesr [ %) — 1)

=) wa) = 1) =Y (D ploc | x) = 1).

Setting the derivatives of the Lagrangian with respect to the
variables to zero, we get

oL
___=_muﬂ_A=Q
o (x1) (1)
T-1
9L n Xe, X,
_ _Z te41(Xe s Xeg1) E—
Op(Xeq1 | Xt) = P(Xeq1 | X¢)
T
AL n¢.¢(Xe, Of)
- = _— - My, = 0.
op(or | x¢) ; plog | x¢) "

Solving above equations, in view of the constraints (A.1b)-(A.1c)-
(A.1d), we obtain

7(x1) = ny(x1), (A.2a)
er;ll N1 (Xe, Xet1)
P(Xetr | X)) = = (A.2b)
" ZZ:J nt(xt)
T
plog | xc) = —Zt:l Mo, Ot). (A.2¢)

Yoty me(x)
Appendix B. Proof of Proposition 2

Proof. Here we only present proof for the statement related to
Algorithms 2. It can be easily extended to the other part of the
theorem. In case M = 1, the aggregate observation y corresponds
to a sequence of observations 01, 07, ..., 0r. In particular, the
aggregate observations take the form

ye(or) = 8(o; — o), (B.1)

where §(-) denotes the Dirac function. Then the messages in col-
lective forward-backward algorithm coincide with the messages
in standard forward-backward algorithm (Singh et al., 2020) and
take the following form

(%) ¢ Y P(Xelxe—1)ete 1 (Xe—1)p(Oe 1 Ixe 1), (B.2a)
Be(x¢) Z P(Xe411%0)Bea1(Xe1)P(Or1 1Xe41), (B.2b)
Ye(Xe) = p(0¢ |Xt). (B.2¢)
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Using above messages, the required marginals can be estimated
as

ne(X;) o< p(Oe|X¢ Jote (xe)Be(Xe ), (B.3a)
e e+1(Xe, Xeq1) OC (X )P(Xe1[Xe)Be(Xe1)

PO X0 Jp(Oe+11Xe+1), (B.3b)
e e(Xe, 0¢) = Ne(Xe). (B.3c)

Finally, the parameter update equations given in Algorithm 2
reduce to the standard Baum-Welch algorithm. =
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