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Abstract—This paper considers the optimal control problem

of nonlinear systems under safety constraints with unknown dy-

namics. Departing from the standard optimal control framework

based on dynamic programming, we study its dual formula-

tion over the space of occupancy measures. For control-affine

dynamics, with proper reparametrization, the problem can be

formulated as an infinite-dimensional convex optimization over

occupancy measures. Moreover, the safety constraints can be

naturally captured by linear constraints in this formulation.

Furthermore, this dual formulation can still be approximately

obtained by utilizing the Koopman theory when the underlying

dynamics are unknown. Finally, to develop a practical method to

solve the resulting convex optimization, we choose a polynomial

basis and then relax the problem into a semi-definite program

(SDP) using sum-of-square (SOS) techniques. Simulation results

are presented to demonstrate the efficacy of the developed

framework.

Index Terms—Optimal control, Data-driven control, Nonlinear

control, Sum-of-square

I. INTRODUCTION

In many real-world applications, one seeks to drive a
dynamical system from an initial set to a target region while
avoiding certain unsafe regions along the trajectory. This
type of reach-safe problem appears in many scenarios in the
control and robotics community, such as obstacle avoidance
for quadrotors [1] as well as a safe control in human-robot
interaction [2], [3]. Furthermore, in real applications, one
often encounters a situation where the dynamical model of
the plant is hard to obtain. At the same time, a collection
of data is relatively easy to be sampled. To overcome this
difficulty, data-driven path planning and obstacle avoidance are
extensively studied in the literature. In [4], the authors consider
the problem of designing finite-horizon safe controllers for a
system without an analytical model while only limited data
along a single system trajectory are available. In [5], the
authors make use of control barrier functions and discrete-time
Koopman operators to guarantee the safety of the autonomous
systems. However, in most of the above works, the optimality
of the control is not investigated.
Lyapunov theory [6] is considered as the most fundamental

analytical tool in proving the stability of a given dynamical
system. However, in the control synthesis problem, the joint-
search of Lyapunov function and a controller is, in general, a
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non-convex problem. The authors of [7] leverage the notion of
Lyapunov density [8] for control affine dynamics and provide
a convex formulation by introducing a combined variable in
the original bilinear non-convex problem.
In this paper, we formulate the optimal-safety problem into

an optimal control problem with safety constraints. We adopt
the Lyapunov density and the convex formulation introduced in
[7], [8] and combine them with linear operator theory involv-
ing Koopman and Perron-Frobenius operator from [9]–[11]
for optimal control. With the introduction of the occupancy
measure, we incorporate the safety guarantee as a constraint to
the obtained convex optimization problem. Towards unknown
dynamics, a data-driven approach for optimal control from
[11] is adopted in this paper to formulate the optimal control
with safety constraints as infinite-dimensional optimization
problem. The infinite-dimensional optimization problem is
solved by parameterizing it using polynomials and deploying
the Sum-of-squares (SOS) techniques [12] along with relax-
ation approach based on the results of penalty functions [13].
Methods towards solving optimal control problems widely

exist in the literature [14], [15]. Dynamic programming nu-
merically solves the Hamilton-Jacobi-Bellman equation. Indi-
rect methods transform the problem into a boundary value
problem. Direct methods, on the other hand, first discretize
then solve it using nonlinear programming tools. Compared
with the existing works, our method provides a convex
formulation in a data-driven setting which can be solved
efficiently without explicit discretization. The resulted closed-
loop dynamics preserves optimality and also satisfies the safety
constraints. Our work is closely related to the works in [16]–
[19], and is a direct extension of the works in [20] from
model-based settings to a data-driven approach. The results of
[18] regarding optimal navigation using navigation measures
are extended from discrete-time settings to continuous time
settings in this paper.
The rest of the paper is structured as follows. In Section II,

we provide a brief introduction to our framework’s necessary
fundamentals. Section III consists of problem formulation and
the main theoretical results. In Section IV, we develop the
algorithm details based on the SOS techniques. Numerical
simulations follow this in Section V and a brief conclusion
in Section VI.

II. BACKGROUND AND NOTATIONS

In this section we briefly introduce Koopman theory and the
sum-of-squares techniques, on which our method relies.



A. Koopman and Perron-Frobenius Operator

Consider the dynamical system

ẋ(t) = f(x(t)), x(t) 2 X, x(0) = x0, (1)

where X ✓ Rn denotes the domain of consideration. We use
st(x0) and x(t) interchangeably to denote the non-singular
map from initial state x0 to the solution of dynamical system
(1) at time t. We often use x to denote arbitrary variable
in the state space. The operator s�t(x) represents the initial
state of state x at time t, i.e., s�t(x) = {y : st(y) = x}.
Let B(X) be the Borel �-algebra of sets on X. For any set
A 2 B(X), denote by 1A(x) the indicator function of A,
and s�t(A) , {x : st(x) 2 A}. Denote by L1(X), L1(X),
and Ck(X) the space of essentially bounded, integrable, and k

times continuously differentiable functions on X respectively.
Koopman and Perron-Frobenius operators are two powerful
tools to study the system behavior in the lifted function spaces
[21].

Definition II.1 (Koopman Operator). Kt for dynamical sys-

tem (1) is defined as

[Kt'](x) = '(st(x)), (2)

where ' is called a test function in the lifted function space

L1(X)
T
C1(X). The infinitesimal generator for Koopman

operator is defined as

lim
t!0

[Kt'](x)� '(x)

t
= f(x) ·r'(x) =: Kf'. (3)

Definition II.2 (Perron-Frobenius Operator). Pt : L1(X) !
L1(X) for dynamical system (1) is defined as

Z

s�t(A)
 (x)dx =

Z

A
Pt[ ](x)dx, 8A ⇢ X. (4)

The infinitesimal generator for the P-F operator is given by

lim
t!0

[Pt ]�  

t
= �r · (f(x) (x)) =: Pf (5)

These two operators are dual to each other as
Z

X
[Kt'](x) (x)dx =

Z

X
[Pt ](x)'(x)dx. (6)

Many methods [22]–[24] have been proposed to approximate
the Koopman operator Kt. In this paper, we adopt the gEDMD
[24] method which approximates the infinitesimal generator
Kf (3) of the Koopman operator. In this method, the data is
in pair form as (xk, ẋk), k = 1, 2, . . . ,M . For a given basis
 = [ 1, . . . , N ]T , the gEDMD seeks a matrix L, a matrix
representation of the Koopman generator with respect to the
basis  , that minimizes

MX

k=1

��� ̇(xk, ẋk)� L (xk)
���
2

2
, (7)

where  ̇(xk, ẋk) = [r 1(xk) · ẋk, . . . ,r N (xk) · ẋk]T . The
minimizer is L? = BA

† where

B =
1

M

MX

k=1

 ̇(xk, ẋk) (xk)
T (8a)

A =
1

M

MX

k=1

 (xk) (xk)
T
. (8b)

B. Positive polynomials and Sum-of-squares

We first define the monomial basis

 d = [1, x1, . . . , xn, x
2
1, x1x2, . . . , x

2
n, . . . , x

d
n]

T (9)

as the concatenation of all the monomials of degree less or
equal to d, which has dimension

�n+d
d

�
. Any polynomial p(x)

of degree d can be expressed in  d with coefficients Cp 2
R(

n+d
d ) such that p(x) = C

T
p  d. Consider now the problem of

verifying the global nonnegativity of a given polynomial with
even degree 2d, i.e., p(x) � 0, 8x = [x1, . . . , xn]T 2 Rn.
This problem is NP-hard when the degree of polynomial
p is greater than 4 [12]. However, when p(x) is of the
form p(x) =  d(x)TQ d(x) with Q 2 R(

n+d
d )⇥(n+d

d ),
this problem is relatively easy to solve as it is equivalent to
verifying the semidefinite positiveness of the matrix Q. SOS
technique reformulates the positive polynomial problem into a
semidefinite program. More specifically, for monomials  2d

and  d, a polynomial p(x) of degree 2d, p(x) = C
T
p  2d is

globally positive if 9Q 2 R(
n+d
d )⇥(n+d

d )
,Q ⌫ 0 s.t. p(x) =

 
T
d Q d. There are many available software toolboxes such as

SOSTOOLS [25] and SOSOPT [26] which internally conduct
the transformation from the problem of positive polynomial to
SDP and call the underlying SDP solvers such as SEDUMI
[27]. We define the existence of SOS decomposition of a given
polynomial p(x) as “p(x) 2 SOS”.

III. OPTIMAL-SAFETY CONTROL PROBLEM

We consider hereafter the control system

ẋ(t) = F(x(t),u(x(t))),x(t) 2 X ✓ Rn
,x(0) = x0, (10)

where u 2 Rm is the control input and u(x) is assumed to
be a feedback control policy in this paper. For a fixed policy,
denote st(x0) or x(t) the solution to (10) at time t. We seek an
optimal policy u(x) that drives the system from an initial set
X0 to a destination set Xr while avoiding pre-defined (unsafe)
sets Xu. The sets have the inclusion relations X0,Xu,Xr ✓
X.

Let l(x,u) be the running cost, and h0(x0) be an initial
density supported on X0, then the problem is formulated as

inf
u(·)

Z

X

Z 1

0
l(st(x0),u(st(x0)))dth0(x0)dx0 (11a)

s.t.

Z 1

0
1Xu(st(x0))dt = 0, 8x0 2 X0. (11b)

We consider the problem hereafter as function of arbitrary
initial state variable x instead of x0. For each trajectory
starting from x, the individual cost is the infinite-horizon
summation of the cost l(x(t),u(x(t))). The objective is thus



the expectation of individual costs given the initial distribution
h0. The constraint (11b) ensures that any trajectory starts in
X0 doesn’t run into the unsafe set Xu.

A. Dual formulation

By the definition of the Koopman operator (2), the objective
function of problem (11) reads

J(h0) =

Z

X

Z 1

0
[Ktl(x, u(x))](x)dth0(x)dx. (12)

In view of the duality (6), it becomes

J(h0) =

Z

X
l(x,u(x))

Z 1

0
[Pth0](x)dtdx. (13)

Now define
⇢(x) ,

Z 1

0
[Pth0](x)dt, (14)

then this objective function can be rewritten as

J(h0) =

Z

X
l(x,u(x))⇢(x)dx. (15)

We next show that, when the controller drives all the
trajectories from X0 to Xr, the occupancy measure ⇢(x)
defined in equation (14) satisfies

r · (F(x,u(x))⇢) = h0. (16)

It follows directly from

r · (F⇢) =
Z 1

0
r · ([Pth0](x)F(x,u(x)))dt

=

Z 1

0
�@[Pth0](x)

@t
dt = h0(x).

Since
Z

Xu

⇢(x)dx =

Z

X
1Xu(x)

Z 1

0
[Pth0](x)dtdx

=

Z 1

0

Z

X
[Kt1Xu ](x)h0(x)dxdt

=

Z

X

Z 1

0
1Xu(st(x))dth0(x)dx,

(17)

R
Xu

⇢(x)dx = 0 implies
R1
0 1Xu(x(t))dt = 0 for almost

every x with respect to initial density h0. Thus the constraint
(11b) can be rewritten as

R
Xu

⇢(x)dx = 0.
Combining equations (15), (16) and (17), we arrive at the

equivalent formulation

inf
⇢,u

Z

X
l(x,u(x))⇢(x)dx (18a)

s.t. r · (F(x,u(x))⇢(x)) = h0(x) (18b)Z

X
1Xu(x)⇢(x)dx = 0 (18c)

of the optimal control problem (11) with a measurable Xu. We
call this formulation (18) the dual form of the optimal safety
problem. It is not difficult to see that (18) is the Lagrangian
dual to (11) where ⇢(x) is nothing but the Lagrange multiplier
associated with the constraint (11b).

Remark. The definition of ⇢ in (14) has a physical interpre-

tation of occupancy [18]. Specifically, ⇢(A) :=
R
A ⇢(x) dx

for any given A 2 B(X) signifies the time spent by system

trajectory in A. Compared with the system evolution point of

view with Koopman operator in (12), the occupancy defined by

the P-F operator provides an alternative view of the objective

function as the time occupancy of the system penalized by

a predefined penalty field, l(x,u(x)) in (15). This duality

arises from the duality between the two operators. With the

physical interpretation of ⇢, the safety constraints are directly

interpreted by the zero occupancy.

B. Penalty function method for safety constraints

One approach to solve the constrained optimization problem
of the form (18) is to introduce Lagrange multiplier with
respect to the linear equality constraint (18c). Towards this,
the optimization problem (18) can be equivalently written as

inf
⇢,u

sup
�2R

Z

X
(l(x,u(x)) + �1Xu(x)) ⇢(x) dx

s.t. r · (F(x,u(x))⇢(x)) = h0(x),
(19)

where 1Xu(x) is the indicator function of set Xu and � 2 R
is the Lagrangian multiplier. The multiplier � can be restricted
to nonnegative values due to the nonnegativity of ⇢. The
standard primal-dual type algorithms [28] can be devised to
solve the saddle point optimization problem (19), where one
alternates between minimization step (gradient descent for
primal variable) and maximization step (gradient ascent for
dual variable). However, in general these problems are difficult
to solve.
Alternatively, the Lagrangian multiplier term can be re-

garded as a penalty which penalizes the behavior of entering
the obstacle setXu. Results from the penalty function methods
show that a near-optimal solution of problem (18) can be
obtained with a fixed large value of � in (19), denoted as
the penalty constant �̄. Problem (18) is thus transformed into

inf
⇢,u

Z

X

�
l(x,u(x)) + �̄1Xu(x)

�
⇢(x) dx

s.t. r · (F(x,u(x))⇢) = h0(x).
(20)

A geometric interpretation for the penalty function method
is provided in [13] in attacking equality-constrained problems.
For a fixed �̄, solving the unconstrained problem with penalties
on the equality constraints determines a supporting hyperplane
and a dual functional for the original constrained problem.
With the increase of the penalty term, the dual functional will
approach the boundary point of the original problem’s region
of definition. In practice, the choice of �̄ is the result of a trade-
off between maximizing the penalty to better approximate the
constrained problem and minimizing the penalty to keep the
original objectives.

C. Convex formulation for control-affine dynamical systems

We focus hereafter on the control-affine dynamical system
from which a convex formulation will be established.



Assumption 1 (Control-affine system with state cost and input
regularization). The dynamics is control-affine

1
, i.e.,

F(x,u) = f(x) + g(x)u. (21)

The cost is of the form l(x,u) = q(x)+r(u) with a state cost

q(x) and a regularization term r(u) on the control.

Under Assumption 1, the constraint in (20) can be written as
r · (f⇢+gu⇢) = h0. The bi-linearity of the constraint renders
the joint search for ⇢(x) and u(x) a non-convex problem. To
overcome this, we define [7] ⇢u , ⇢̄ = [⇢̄1, . . . , ⇢̄m] 2 Rm,
and reformulate the problem into

inf
⇢(x),⇢̄(x)

Z

X
(q(x) + r(

⇢̄(x)

⇢(x)
) + �̄1Xu(x))⇢(x) dx (22a)

s.t. r · (f(x)⇢(x) + g(x)⇢̄(x)) = h0(x), (22b)

which is a convex problem. The optimal policy can be recov-
ered from the solution by u(x) = ⇢̄(x)/⇢(x).

Considering the actuation limits of dynamical systems,
quadratic costs and absolute costs on the input are considered
in this paper. The problem (22) with quadratic control cost is
defined as r( ⇢̄⇢ ) =

⇢̄TR⇢̄
⇢2 = u

T
Ru in (22a)

inf
⇢,⇢̄

Z

X
(q + �̄1Xu)⇢+

⇢̄T
R⇢̄

⇢
dx

s.t. r · (f⇢+ g⇢̄) = h0,

(23)

where R ⌫ 0 is a penalty constant. For absolute control cost,
r( ⇢̄⇢ ) =

�
⇢

Pm
i=1|⇢̄i| = �

Pm
i=1|ui| in equation (22a), and the

problem (22) with absolute control cost reads

inf
⇢,⇢̄

Z

X
(q + �̄1Xu)⇢+ �

mX

i=1

|⇢̄i| dx

s.t. r · (f⇢+ g⇢̄) = h0.

(24)

Problem (23) and (24) are difficult to solve directly. In the
following sections we relax the two problems into standard
finite dimensional convex optimization problems.

IV. POLYNOMIAL PARAMETRIZATION, DATA
APPROXIMATION, AND SDP RELAXATION

In this section we parameterize problem (22) using poly-
nomials. A convex optimization problem with polynomial
non-negativity constraints is obtained using SOS. We also
approximate Koopman operator in a data-driven fashion.

A. Polynomial parametrization

We assume the rational parameterization [19] of ⇢ and ⇢

⇢ =
a(x)

b(x)↵
, ⇢ =

c(x)

b(x)↵
(25)

where a(x) and b(x) are positive polynomials and c(x) ,
[c1(x), . . . cm(x)]T is a vector of polynomials. We choose
b and ↵ such that deg(b↵) > max{deg(a), deg(c)}, where

1This control-affine dynamics is widely used in robotics and can be used
to model most mechanical systems. Moreover, any nonlinear dynamics can
be converted into this form with a state augmentation trick.

deg(c) denotes the maximum degree among all the polyno-
mials in c(x). We use the monomial basis  d defined in (9),
where d � max{deg(a), deg(c), deg(b↵), deg(ab), deg(bc)}.
All these polynomials and variable x can be expressed in  d

as
a = C

T
a  d, b = C

T
b  d, c = C

T
c  d,

ab = C
T
ab d, bc = C

T
bc d,x = C

T
x d,

(26)

where Cc is the concatenation of the coefficients of polyno-
mials in c(x), and Cbc is the concatenation of the coefficients
of polynomials in bc(x).
We now write the left hand side of (22b) as

r · [ 1
b↵

(fa+ gc)]

=
1

b↵+1
[(1 + ↵)br · (fa+ gc)� ↵r · (bfa+ bgc)].

(27)

Since b(x) � 0 and h0(x) > 0, we relax this constraint to

(1 + ↵)br · (fa+ gc)� ↵r · (bfa+ bgc) � 0. (28)

B. Approximation of the constraints from data

Consider the dynamics as in Assumption 1 where g =
[g1, . . . ,gm] 2 Rn⇥m and u = [u1

, . . . ,u
m]T 2 Rm.

Within the gEDMD framework introduced in Section II-A,
we choose the monomial basis defined in (9), i.e.,  ,  d.
We collect experiment data of the form (xk,uk, ẋk) where
uk , [u1

k, . . . ,u
m
k ] are arbitrary inputs for k = 1, . . . ,M .

Let  ̇d(xk, ẋk) = [r 1(xk) · ẋk, . . . ,r N (xk) · ẋk]T . We
then approximate the infinitesimal generators Kf and Kgi , i =
1, . . . ,m (with matrix representation L0 and Li, i = 1, . . . ,m
respectively) by solving [19] [29]

min
L0,...,Lm

MX

k=1

��������
 ̇d(xk, ẋk)�[L0, . . . ,Lm]

2

664

 d(xk)
 d(xk)u1

k
. . .

 d(xk)um
k

3

775

��������

2

2

.(29)

Denote matrices in equation (29) as L̂ , [L0, . . . ,Lm]
and  

uk
x , [ d(xk), d(xk)u1

k, . . . , d(xk)um
k ]T , then the

solution is given by

L̂
? = (

1

M

MX

k=1

 ̇d(xk, ẋk)( 
uk
x )T )(

1

M

MX

k=1

 
uk
x ( uk

x )T )†.

(30)
By the definition of the infinitesimal generator of the

Koopman operator (3), we can approximate the term r · f
and r · gi

r · f = r · [Kfx1, . . . ,Kfxn] ⇡ r · (CT
x L0 d), (31a)

r · gi = r · [Kgix1, . . . ,Kgixn] ⇡ r · (CT
x Li d). (31b)

Without knowing the dynamics, the first term in constraint
(28) can be approximated [19] using (31a) and (31b) as

r · (fa+ gc) = r · fa+ f
Tra+

mX

i=1

(r · gici + g
T
i rci)

⇡ r · (CT
x L0 d)a+ C

T
a L0 d

+
mX

i=1

[r · (CT
x Li d)ci + C

T
ciLi d]. (32)



Similarly, the second term can be approximated by

r · (fab+ bgc) ⇡ r · (CT
x L0 d)ab+ C

T
abL0 d

+
mX

i=1

[r · (CT
x Li d)bci + C

T
bciLi d].

(33)

C. SOS techniques

With parametrization (25), problem (23) can be written as

inf
a,c

Z

X1

q(x)a(x)

b(x)↵
+

c(x)TRc(x)

a(x)b(x)↵
dx+ �̄

Z

Xu

a(x)

b(x)↵
dx

s.t. a(x) � 0, (28) � 0. (34)

To avoid singularity, the integration is performed on X1 ,
X \ Xexcld which is the whole set X minus a small region
Xexcld around origin. The term

R
X1

c(x)TRc(x)
a(x)b(x)↵ dx contains

a(x) in the denominator and is hard to be expressed as SOS.
We seek thus an upper bound polynomial w(x) of this term.

Definition IV.1 ( [30] PSD polynomial matrix). Polyno-

mial matrix H(x) 2 R[x]P⇥P
(Hij is polynomial, 8i, j 2

{1, . . . , P}) is PSD w.r.t. monomial basis  N (x) =
[ 1

N 
(x), . . . N 

N 
(x)]T , denoted as H ⌫ 0, if 9D, s.t. H =

( N ⌦ IP )TD( N ⌦ IP ) and D ⌫ 0.

The PSD matrix SOS feasibility program is thus a SDP
feasibility problem with (P ⇥ N )2 linear constraints. We

define in our problem Ĥ ,

w(x) c(x)T

c(x) a(x)R�1

�
, then from

Schur complement we know Ĥ ⌫ 0 , w(x) � c(x)TRc(x)
a(x) .

The problem (34) reads

inf
Ca,Cc,Cw

Z

X1

q(x)a(x)

b(x)↵
+

w(x)

b(x)↵
dx+ �̄

Z

Xu

a(x)

b(x)↵
dx

s.t. a(x) � 0, (28) � 0

w(x) c(x)T

c(x) a(x)R�1

�
⌫ 0. (35)

Furthermore,
R
X1

q(x)a(x)
b(x)↵ dx = C

T
a d1,

R
X1

w(x)
b(x)↵ dx =

C
T
wd2, and

R
Xu

a(x)
b(x)↵ dx = C

T
a d3, with constants d1 ,

R
X1

q(x)�(x)
b(x)↵ dx, d2 ,

R
X1

�(x)
b(x)↵ dx, and d3 ,

R
Xu

�(x)
b(x)↵ dx.

Problem (35) reads

inf
Ca,Cc,Cw

C
T
a (d1 + �̄d3) + C

T
wd2

s.t. (1 + ↵)br · (fa+ gc)� ↵r · (bfa+ bgc) 2 SOS

a(x) 2 SOS

w(x) c(x)T

c(x) a(x)R�1

�
⌫ 0. (36)

Similarly, using the definition of d1,d2 and d3, the problem
with absolute control cost (24) reads

inf
Ca,Cc,Csi

C
T
a (d1 + �̄d3) + �

mX

i=1

C
T
sid2

s.t. (1 + ↵)br · (fa+ gc)� ↵r · (bfa+ bgc) 2 SOS

a(x) 2 SOS, si 2 SOS, i = 1, . . . ,m

si(x)� ⇢̄i(x) 2 SOS, i = 1, . . . ,m

si(x) + ⇢̄i(x) 2 SOS, i = 1, . . . ,m.
(37)
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Fig. 1: System trajectories with increasing value of penalty
constant �̄ in (36), with quadratic control cost.
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Fig. 2: System trajectories with increasing value of penalty
constant �̄ in (37), with absolute control cost.

By introducing SOS techniques, problems (23) and (24) are
transformed into 2 SDPs which can be solved efficiently.

V. EXPERIMENTS

Simulations are conducted in this section to verify the
proposed methods. We consider the Van Der Pol dynamics

ẋ1 = x2, ẋ2 = (1� x
2
1)x2 � x1 + u. (38)

For operator approximation, 10000 data points are uniformly
sampled within the region X = [�5, 5] ⇥ [�5, 5]. gEDMD
method is deployed in the approximation. Monomial basis
with highest degree 9 is used. For the degree of polynomials,



we choose deg(a(x)) = 4, deg(c(x)) = 6. The polynomial
b(x) = 3.3784x2

1 + 0.82843x1x2 + 2.6818x2
2, which is the

result of an LQR controller for the system locally linearized
around the origin. To avoid singularities, the controller is
switched to this local LQR controller once the trajectory enters
Xr. We choose ↵ = 4 in (25). For state and control costs in
(22), we choose q(x) = x

4
1 + x

4
2 and R = 1. Define different

sets as
• X1 , {(x1, x2): 4.22 � x

2
1 + x

2
2 � 0.12},

• X
1
0 , {(x1, x2): 0.52 � (x1 + 1.5)2 � (x2 � 2.5)2 � 0},

• X
2
0 , {(x1, x2): 0.52 � (x1 � 1.5)2 � (x2 + 3)2 � 0},

• X
1
u , {(x1, x2): 0.52� (x1�0.15)2� (x2�1.0)2 � 0},

• X
2
u , {(x1, x2): 0.52 � (x1 + 0.3)2 � (x2 + 1.2)2 � 0},

• Xr , {(x1, x2): 0.42 � x
2
1 � x

2
2 � 0}.

We gradually increase the penalty constant �̄ starting from
0 (solely under the optimal control objective) and observe
the system’s performance in terms of obstacle avoidance. The
results of the problems defined in (36) and (37) are shown
in Figure 1 and Figure 2 respectively. We choose the weight
on the control penalty � = 5e�4 in (37). As shown in both
the figures, when �̄ = 0, the system trajectories starting
from the two initial sets, X1

0 and X
2
0, intersect with a large

portion of the two unsafe sets, X1
u and X

2
u. As �̄ increases,

the trajectories intersects less and less with the unsafe sets.
When �̄ increases to 104 for problem (37) and �̄ = 5 ⇥ 107

for problem (36), trajectories completely avoid the unsafe sets
and reach the reach set Xr. The choice of �̄ is to find an
appropriate value which enables the system to avoid the unsafe
sets while preserving the original optimal control objectives.

VI. CONCLUSION

In this paper, we considered the optimal control prob-
lem with safety constraints for nonlinear dynamical systems.
Studying the problem in the lifted space and using the Koop-
man and Perron Frobenius operator, a dual form of the original
problem was obtained where the avoidance of the unsafe sets
was expressed as zero occupancy. We leveraged the penalty
function method to get a near-optimal solution for the infinite-
dimensional constrained optimization problem. Furthermore,
we obtained a convex formulation of the problem by focusing
on the control-affine dynamical system and restricting the
problem in the polynomial space. This problem was then
solved with the SOS techniques. Future directions and ap-
plications of this work will involve more complex dynamical
environment, and hardware experiments.
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