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Abstract— The common saying, that information is power,
takes a rigorous form in stochastic thermodynamics, where
a quantitative equivalence between the two helps explain the
paradox of Maxwell’s demon in its ability to reduce entropy.
In the present paper, we build on earlier work on the interplay
between the relative cost and benefits of information in pro-
ducing work in cyclic operation of thermodynamic engines (by
Sandberg etal. 2014). Specifically, we study the general case
of overdamped particles in a time-varying potential (control
action) in feedback that utilizes continuous measurements
(nonlinear filtering) of a thermodynamic ensemble, to produce
suitable adaptations of the second law of thermodynamics that
involve information.

I. INTRODUCTION

Thermodynamics is the branch of physics which is con-
cerned with the relation between heat and other forms of
energy. Historically, it was born of the quest to quantify
the maximal efficiency of heat engines, i.e., the maximal
ratio of the total work output over the total heat input to
a thermodynamic system. This was accomplished in the
celebrated work of Carnot [1], [2] where, assuming that
transitions take place infinitely slowly, it was shown that the
maximal efficiency possible is nc = 1 — T./T}, (Carnot
efficiency), where Ty, and T, are the absolute temperatures
of two heat reservoirs, hot and cold respectively, with which
the heat engine alternates contact.

Somewhat inadvertently, Carnot’s work gave birth to the
second law of thermodynamics, which affirms that the total
entropy of a system can never decrease, and whose most
prominent consequence is to highlight the arrow of time.
Specifically, it states that the work output —V can not
exceed the free energy difference between the initial and
terminal states of the thermodynamic system —AF, that is,

In Lord Kelvin’s words, the second law of thermodynamics
amounts to the impossibility of a self-acting machine, un-
aided by any external agency, to convey heat from one body
to another at a higher temperature [3].
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Soon after Lord Kelvin’s assertion, Maxwell’s far reaching
thought experiment that involved a demonic creature [4],
pointed to ways to generate a temperature gradient by sorting
particles in a thermodynamic ensemble based on velocity
measurements. The apparent paradox was not resolved until,
a century later, Rolf Landauer affirmed that information
is physical [5]. Starting from the basic assumption that
information must be stored somewhere, he was able to link
the loss of information with the work performed.

The relation between information and work gradually
became a central theme of stochastic thermodynamics [6],
[71, [8], [9], [10], [11] — a field shaped in the past two
decades to study thermodynamic transitions taking place
in finite time. To this end, thermodynamic ensembles are
modeled via stochastic differential equations and notions
of work and heat are described at the level of individual
trajectories of the ensemble. Ideas from stochastic control
were naturally brought in and the second law was extended
to include discrete time measurements, as well as continuous
ones, both for quantum systems [12], [13], [14] and classical
systems under feedback cooling [15], [16]. In these studies,
a generalized version of the second law has taken the form:

W > AF — kpTZ|

where 7 represents the information utilized in effecting a
thermodynamic transition. Information engines that work
without temperature gradient and only fueled by information
soon followed [17], [18], [19].

The present work aims to develop further this circle of
ideas within a stochastic controls perspective. Specifically,
we derive tighter forms of the second law for over-damped
systems in general, modeled by Langevin equations and
subject to continuous nonlinear measurements. Moreover, in
the setting where the ensemble is seen as the medium of a
thermodynamic engine and where performance is measured
by power drawn, detailed expressions for maximal power and
efficiency are derived in the setting of linear-dynamics with
Gaussian-distributions.

The exposition proceeds as follows. Section II provides
a preamble on optimal mass transport — a theory that
constitutes the template for optimal control of probabilistic
ensembles. Section III explains the stochastic model of a
thermodynamic engine, the energy exchange mechanism, and
the form of the second law in the absence of feedback.



Section IV extends the second law to the case when informa-
tion from a single measurement becomes available. Section
V contains our main results on operating a thermodynamic
engine with nonlinear continuous time measurements and a
form of the second law that applies in this case. Section
VI details expressions for maximal power and efficiency of
the linear Gaussian information engine. Finally, Section VII
provides perspective and research directions.

II. PRELIMINARIES ON OPTIMAL MASS TRANSPORT

We outline certain geometrical notions from optimal mass
transport [20] that play an essential role in the present paper.
Given probability distributions py and py on R,

WQ(p()’pf)z = werli(lzlzg D)

/ |I —y‘Qﬂ'(I,y)dIdy,
RxR

where II(po,py) denotes the set of joint probability distri-
butions on R x R with pg, py as marginals, defines the
so-called 2-Wasserstein distance (metric). It turns out that
Ws(po,py) makes probability distributions into a geodesic
space. In turn, geodesics correspond to (optimal) flows
between endpoint distributions that provide an alternative
expression for Wa(po,ps). Specifically, the time-varying
probability distribution p(¢, ), driven by the velocity field
v(t,x) via the continuity equation d;p + V - (pv) = 0. Then

t
Alp, v] = /0 ' /R (ot 2)2p(t, z)dzdt, 0

represents an action integral for the flow p(-, z). A celebrated
result by Benamou and Brenier states

1
min Alp,v] = —W2(po, ps), 2)
(p,v)EP(Po,py) .l tf 2(Po, py) (

as a minimal over the set of paths connecting pg to py.

III. STOCHASTIC THERMODYNAMIC MODEL

In this paper particles are governed by the overdamped
Langevin dynamics (one-dimensional, for simplicity)

vyd Xy = =V, U(t, Xy)dt + \/2vkpTdB; Xo ~ po, (3)

where X; € R denotes the location of a particle, py the
initial distribution of an ensemble, ~ the viscosity coefficient
of the ambient medium, kp the Boltzmann constant, 7" the
temperature of a heat bath, B; a standard Brownian motion'
that models the thermal excitation from the heat bath, and
U(t,x) a time-varying potential exerting a force —V U (¢, x)
on a particle at location x € R. The potential function
U(t,z) is externally controlled and exchanges work with
the particle. The work performed on the particle, during the
interval [0,¢¢], is [7, Ch. 5]?
ty
W = o U (t, Xy)dt. 4
Jo

!Formally, the standard Brownian motion satisfies E[dB;] = 0 and obeys
the It6 rule (dB:)2 = dt and dBidt = 0.

2This definition of work is standard in stochastic thermodynamics, but
differs from the one in [21]. See also [22], [23], [24], [25].

The average work is

W= /0 Y B0t X))t = /0 Y / QU (t, 2)p(t, z)dadt,

where the probability p(¢,x) of the particle X; evolves
according to the Fokker-Planck equation

1
o=V (p[VU + kpTVlog(p)] = =V - (pv),
where we introduced the effective velocity field
1
vi= —;(VU + kgTVlog(p)).

In order to state the second law of thermodynamics, we in-
troduce the notion of free energy corresponding to a potential
function U and a probability distribution p, namely [11],?

F(U.p) = /UpderkBT/log(p)pd:c. (5)

The first term represents the energy and the second term rep-
resents the negative of entropy, while together, F relates to
the relative entropy between p and the Boltzmann distribution
corresponding to the potential. The following proposition
relates the average work over the interval [0,¢;] to the free
energy difference between the initial and final states, giving
a version of the second law of thermodynamics.

Proposition 3.1: For the over-damped Langevin dynam-
ics (3), the average work satisfies the identity,

t,
W:A}"+’y/ ' /|v(t,x)|2p(t,x)dxdt, ©)
0

and the bound

W= AF + W3 (p(0, ), p(ts, ) (7

where AF = F (U(tf7 '>7p(tf7 )) - ]:(U(Ov ')7]7(0, ))

Remark 3.1: The second term in the identity (6) is equal
to the action integral (1) and represents the dissipation
along the thermodynamic transition. According to (2), its
minimum is the Wasserstein distance between the end-point
distributions, concluding (7). The bound is tight and can be
achieved by transporting along the geodesic with constant
velocity. In the quasi-static limit, as ¢y — oo, the dissipation
term vanishes, leading to the classical statement of the second
law W > AF. As a result, the bound (7) is interpreted as
refinement of the second law for finite-time transitions. It
was obtained in [26] for Gaussian setting and generalized
in [27] to arbitrary distributions.

IV. SINGLE MEASUREMENT

We now extend the second law (i.e., the bound (7)) to
the case where access to a single noisy measurement of the
particle’s location is available. Thus, assume we have access
to noisy measurement Y of the initial particle location Xj.

3This is a notion of non-equilibrium free energy, since p does not need

to be the Boltzmann distribution p o< oxp(—kB—T)



We utilize the measurement Y to modify our control in U,
denoted UY . The expected work conditioned on Y is

W) = /0 VRO (1, X)) Y]t

The information in Y allows extracting work, and this
additional work is characterized in terms of the mutual
information between X; and Y,

I(XyY) == H(Xy) — H(X|Y). (3)

Here, H(X;) and H(X;|Y') are the entropy of X; and the
conditional entropy of X, given Y respectively, defined as

HX) = [ [ 100, (2)) px, (w)d

HXY) = — / / log (px, v («]9)) px. v (. y)dzdy,

where px, y denotes the joint distribution of (X¢,Y), px,|y
the conditional, and px, and py the marginals.

The following proposition states an extension of the sec-
ond law. In order to compare to the case with no measure-
ment, we set the initial and final potential to a fixed function
Uy and Uy respectively. Note that the potential function is
allowed to have discontinuous jump at initial and final time.

Proposition 4.1: Consider a particle governed by the over-
damped Langevin dynamics (3), and access to a noisy
measurement Y of initial particle location X. Fix the initial
and final potential functions Uy and Uy, respectively. Then,
the average work satisfies the bound

EW(Y)] > AF + 2 W3(px,.px,,)

ke T(I(X0:Y) —T(Xe YY) | O

where AF = }'(Uf,pxtf) — F(Uo, po)-

Remark 4.1: Compared to (7), the new bound (9) contains
an additional term kpT'(Z(Xo;Y) — Z(X¢,;Y)). This term
quantifies the amount of information by measuring Y that
is actually being used as the particle transitions from X
to X;,. In the case where the system undergoes cyclic
transitions, and therefore AF = 0, the information term
provides the maximum amount of work that can be extracted
from a single heat bath with constant temperature using
feedback. The thermodynamic system under such a feedback
cycle is referred to as an information machine [18].

Remark 4.2: Compared to earlier literature, and specifi-
cally the bound EW(Y)] > AF — kpTZ(Xo;Y) in [18,
Eq. (1)], our bound is tighter and involves two additional
terms. The additional term involving the Wasserstein distance
characterizes the minimum dissipation in the process. The
additional term kpTZ(X;Y) contains the information that
has not been used at the end of the process and cannot be
transformed to work. Assuming the system converges to a
steady state independent of Y, both of these terms will tend
to zero as ty — 0.

Proof: The conditional probability distribution py,y
satisfies the Fokker-Planck equation for ¢t > 0,

opx.ly = =V (px,yv") (10)

where

oY (tx) = |

5 VUY (t, ) + kpTV log(px, v (z|Y))].
Upon expressing the derivative of the free energy as

d

SFUY ) mxy) = [0UY (alpx v (aly)de

dt
- / 0 (¢, 2) Ppx, v (2] V) de,

and integrating over the time interval [0, t¢],

ty
W) =AFY +’y/ /\vy(t, x)|2pXt|y(x\Y)dxdt,
0

where AFY = ]-'(Uf,pth‘y) — F(Uo,px,|y)- The ex-
pected free energy at the initial time is

E[F (Uo, pxoiy)] = / Uo(&)pxapy (ly)py (4)dady
+kpT / log(px, v (z|y))px, |y (x]y)py (v)dzdy

:/Uo(ac)pxo(yc)dav—kBTH(X0|Y)7
= ]:(Uo,pxo) — k:BTI(XO;Y) (11

where we used that Z(Xo;Y) = H(Xo) — H(Xo]Y"). Then,
with a similar conclusion for the expected free energy at ty,

EAFY] = AF — kpT[Z(X0;Y) — I(X¢,;Y)).

It now remains to bound the dissipation term from below.
For a fixed value of the measurement Y,

ty 1
/ |Uy(t»$)\2pxt\Y($|Y)dxdt > EW§(PX0|Y7PXW\Y)7
0

because of (10) and the Benamou-Brenier result (2). In
addition, the expectation of the Wasserstein distance, over
the measurement Y, satisfies the lower bound

E[W3(px, )y Px:, v)] = W3 (P, Px, ,)-

This bound is obtained using the standard dual formulation
of the Wasserstein distance as a sup over linear functional of
the marginals. Interchanging the expectation and sup results
in this lower-bound and concludes the result. ]

V. CONTINUOUS MEASUREMENTS

We now consider the case of having access to a continuous
stream of measurement given by

dZt = h(Xt)dt + O'Ud‘/t, (12)

where h(-) is the observation function, {V;} is a standard
Brownian motion representing the noise in measurements,
and o, is the strength of noise. We assume that {V;} and
{B;} are mutually independent processes. The expected
work conditioned on the measurement history, i.e. the filtra-
tion Z; generated by the observation process {Zs; s € [0, ]},
is

ty
W(2:,) :/ E[0,U(t, Xy)| Z4]dt,
0



where we used the notation UZt (¢, X;) to indicate that the
potential function at time ¢ may depend on the history of
observations up to that point. Similar to the single measure-
ment case, this information can be used to extract work from
the system. The information in the continuous-time setting is
characterized by the mutual information between the random
processes Xo.¢, and Zg.,. For the particular observation
model (12), the mutual information is given by [28]

1
202

where hy := E[h(X,)|Z,).

ty R
1(Xou,: Zos,) / Eh(X,) — b2, (13)
0

Proposition 5.1: Consider the particle governed by the
over-damped Langevin dynamics (3) and access to a con-
tinuous stream of measurements according to (12). Assume
the initial and terminal potential functions are fixed to Uy
and Uy respectively. Then,

EW(Z:,)] = AF + EW3(px,. px,,)

(14)
_kBT<I(XO:tf; Zo:tf) - I(th7 ZO:tf))

where AF = ./T"(Uf,pth) — F(Uo, px,)-

Remark 5.1: The notion of information in the continuous
measurement case involves the mutual information between
the particle location and the measurement I(Xo.t,; Zo:¢, ),
as well as the remaining information I(X;,; Zo.;,) that has
not been used. This result provides the first and tightest
analysis for the role of information for feedback systems
under continuous nonlinear observation models.

Proof: The conditional probability distribution px,z,
evolves according to the Kushner-Stratonovich equation [29]

1 R
dpx, |z, = =V (px,z,07")dt+ ;PXAZ,,(h_h)dgp (15)
v
where d§; = dZ; — Btdt is the innovation process and
1
vE = 7;[VUZf + kpTV log(px, z,)]-

Differentiating the free energy
AF (U= (t,-),px,|2,) = {/@U&pxt'%dx

kT »
- 7/ |Uzt|2pxt|ztdﬂf + 2 /(h - ht)Qpthtdl‘] dt

2
202

+ L {/(UZ‘ + kBT log(px,|z,))Px, 2, (h — h)dﬁ] dé:.

2
0y

Integrating over the interval and taking the expectation yields

o [ Bl i

EW(Z,)] = E[AF?] —

ty
y / E(jo® (¢, X;) dt,
0

where AFZ = F(Uys.px,,\2.,) — F (Uo, px,) and we used
the fact that & behaves as a Brownian motion under condi-
tional expectation [29, Lemma 5.6]. Using the definition (13)

and applying the relationship (11) for the expected free
energy at the final time concludes

E[W(th)] :AF - kBT(I(XOtfa ZO:tf) - I(th7 ZO:tf))
ty
+ 'y/ E[[v®* (t, X;)|?]dt.
0

It remains to obtain a lower-bound on the dissipation term.
By Jensen’s inequality

EfJv® (t, Xo)*| Xe] 2 [E[v® (£, Xo)| X]|* = [o(t, Xo) |,

where we introduced #(t, x) := E[vZ¢(t, X;)| X; = z]. Upon
taking the expectation and integrating over the time interval,

/tf E[Jv®* (t, X;)[?]dt > /tf E[|o(t, X,)|?]dt.
0 0

The proof follows by showing that the velocity field v(¢, x)
generates the flow for the marginal distribution px,, i.e. that
Opx, = —V - (px,v), to conclude

ty 1
[ Bl X0 > S W, v, )

In order to do so, we take the expectation of both sides of
equation (15) and use the identities

px,(x) = Elpx, 2, (2| Zo:1)]
px, (2)o(t, @) = Elpx, |z, (2| Zo: )™ (t, )]
as well as cancel the mean-zero term multiplied by d§;. W

A. Efficiency for information engines
The efficiency for information engines is defined [18]

as the ratio between the work output and the amount of
information that is available to be used. Thus, in our case,

)

kpTIZ(Xo:t;; Zo:t,)
In light of (14), the efficiency is always smaller than 1. It
is also noted that, in order to achieve maximal efficiency,

it is necessary that Z(X¢,; Zo.t,) = 0, and thereby, that all
available information has been used within the interval.

(16)

VI. LINEAR GAUSSIAN SETTING

We now focus on the case of a quadratic potential function
U(t,z) = @ (x—r¢)?, where the location ry of the center of
the potential represents the control input while the intensity
go remains constant. We assume access to continuous mea-
surements of the particle with observation function h(z) = z.
Thus, the dynamics for the particle and the observation are

[9kpT
dth—%(Xt—rt)dt+ f dB,

dZ; = Xidt + 0,dV;.

(17a)

(17b)

The objective is to maximize the work output during a
cycle of period ¢y by designing the control input r;. We
assume boundary condition ro = r;, = 0. We also assume
that the initial probability distribution is at equilibrium to
disregard any amount of work that can be extracted if the



system is not prepared at equilibrium. For the initial potential
Up(z) = %a?, the equilibrium distribution is Gaussian
N(0,3) with variance Xy = kaT

In this special linear Gaussian case, the conditional prob-
ability distribution of X given the observations is Gaussian
N(my, %), where the mean and variance evolve according

to Kalman-Bucy filter equations [30]

5
dmt = —@(mt — 'f’t)dt + %dgt (183)
2 o2
. 2 o%kpT 1
2= -y, T 52 (18b)
v v o2

and d¢; = dZ; — mydt is the innovation process. In this
special case, the work input to the system is

ty
W = / qo(rt — Xt)’l'“tdt,
0

and the conditional expectation of work given the observa-
tions is

ty
W(Z) = / qo(Tt — mt)i’tdt,
0

where we replaced X, with its conditional expectation my.
Upon integration by parts and utilizing the boundary condi-
tions rg =1y, =0,

@ (7 a0 [*
W(Z) = - —0/ re(my —ri)dt + —2/ reSpde;.
Y Jo 0w Jo

Finally, taking expectation, the second term disappears and,
in order to maximize work output, we end up with the
following stochastic optimal control problem

@ b 1
min —E [/ (u? — mf)dt] (19a)
u oy 0 4
5
st dmy = — 200 4t + Lot + ZLde,. (19b)
2y v o3

where we introduced the control input u; = r; — %mt.

Proposition 6.1: Consider a particle governed by the over-
damped Langevin equation with quadratic potential and a
linear observation model (17), and assume that the boundary
conditions ro = r, = 0 and the equilibrium initial distribu-
tion NV (0, ]“;—OT) hold. The maximum work output over [0, ¢ ]
is

t
q0
-W = T2

f
P,Y2dt,
0y Jo

(20)
and the optimal control is given by r; = (% — P,)my, where
my and X, are the conditional mean and variance of X; given
by the Kalman-Bucy filter equations (18) and

Y 1o
Lp=(P+2)? P
th (t+2), t

=0, 21

f
or, in closed form, P, = [w + 2] - % Moreover,
the efficiency at maximum power is
=2 [y PiX3dt

kpT [y Sidt

Proof: We use the following candidate value function
V(t,m) = Pom? + Q; where P; and Q; are time varying
parameters '[o2 be determined later. Express the objective
function as “LE[J] where J := o (uf — Lm?)dt. Upon
adding the zero term fotf dV(t,my)—V(ty, m)+V(0,mg) =
0 to J, and using

AV(t, my) =Pm2dt + Qudt — L Pm2dt
v

2 by
+ Zq—OPtmtutdt + Pt%dt + 2Ptmt %dgt,
Y a

v v

we arrive at

YT I 5 2
J = / Uy + 2—Ptmtut + (—* + Pt - —Pt)mt dt+
0 ¥ 4 gl

tr, »? tr >,
/O(Qt + Pt?)dﬁ‘/o 2Ptmt§d§t =V(ty,me)+V(0,mp).

v

Now we use our freedom to specify P, and ); to make the
first term a complete square and second term zero.

A @ 2

P =-+ =P =P P, =0
t 4+7 t+72 1 t s

. 2

Qi = *Pt?;a Qi =0.

We also set the terminal condition to zero to make
V(ty,mq,) = 0. The resulting expression for .J, after taking
the expectation, is

E[J] =E [/Otf (ut + ?Ptmt>2dt+l}(0,mo)] .

The term V(0,mg) does not depend on u. Therefore, the
optimal control is u; = —%Ptmt, and the optimal value is

2 2 2
x4 q q
W* = ZE[J] = 2V(0,mo) = ~Qo,
v Y v
where we used mgy = 0. "l;he result of the proposition follows
by noting Q¢ = fotf Pt%dt and changing P, - ©P,. ®

Remark 6.1 (Steady-state analysis): Explicit formulas for
average power —2/\1 and efficiency is obtained in steady-state
as ty — oo. The steady-state average power is

(m_l)Q.

—Wr _ quBT 1
o SNR

lim
ty—o0 tf y

where SNR = 27§f2T represents the signal to noise ratio.
L 0%
The limit is obtained using the steady-state values P, =

2
1 _ 2 q0 495 2kpT :
—z and Xy = op(=8 4+ /7% o ). In particular, as
o, — 00, power converges to zero (because in this case,
effectively, no information is available), and as o, — 0,

power attains its maximum value % The efficiency at

steady state becomes

2

i
ty—o00 S

Note that as o, — o0, the efficiency goes to 1. However,
as o, — 0, the efficiency converges to 0, since the available
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Fig. 1.  Steady-state values for maximum power and efficiency for a

linear Gaussian over-damped information machine, as a function of the
measurement noise.

information is infinite. We numerically illustrate power and
efficiency tradeoffs as functions of o, in Figure 1.

Remark 6.2: The work presented in this section parallels
the work of Sandberg etal. [21], but the model and approach
are fundamentally different. A major difference is on defini-
tion of work (4) as well as the nature of the control variable.
In spite of the differences, we arrive at the qualitatively
similar results on power and efficiency (c.f. [21, Figure 3]).

VII. CONCLUDING REMARKS

After more than a century of debate the celebrated paradox
of Maxwell’s demon led to the deep insight that information
is physical and can be traded for work. From this vantage
point several authors sought to quantify the relation between
work, heat, dissipation, entropy and information (e.g., [21],
[17], [18], [11]). In a similar spirit we quantify the work that
can be drawn from a thermodynamic ensemble in contact
with a heat bath of fixed temperature, as information on the
state of the ensemble becomes available either at one point in
time (Proposition 4.1) or via monitoring over a finite interval
(Proposition 5.1). The bounds that we obtain are tighter than
in earlier works, as they account for the dissipation over
finite-time transitions as well as for the information that has
not been utilized at the end of the operating interval. Further,
we work out explicitly the optimal control protocol to extract
maximal work in the linear-Gaussian case (Proposition 6.1)
that illustrates the apparent trade-off between power and
efficiency (cf. Figure 1).

Extension of these results to nonlinear dynamics requires
solving a stochastic optimal control problem with partial
observations which, in general, is challenging. However,
intuitively, the bounds inform that the optimal protocol
needs to trade-off a dissipation cost, that depends on the
Wasserstein length of the state trajectory, against the utilized
information.
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