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Abstract— In this work we develop an efficient numerical
solution method for solving potential mean field games with
multiple species. This is done by using recent developments
that connect mean field games and entropy-regularized optimal
transport. In particular, we reformulate the original problem
as a structured entropy-regularized multi-marginal optimal
transport problem, and develop highly efficient methods for
solving the latter. Finally, we illustrate the proposed method
on a problem with four interacting species, where each of the
species has different target objectives.

I. INTRODUCTION

A strong trend today is the emergence of large scale
systems where each subsystem belongs to a class of systems.
As the systems become larger, more complex, and more
important in the society, there is an increasing need for
understanding and controlling macroscopic behavior of such
systems of systems. For these systems the available control is
typically local and must also take into account the constraints
and the utility function of the different groups of subsystems.

An important research area for analyzing and controlling
such systems is the area of mean field games [9], [21],
[33]–[35], [39], i.e., dynamic games where players’ actions
are negligible to other players at the individual level but
significant when aggregated. Many such games are potential
games and can be seen as density control problems where the
density abides to a controlled Fokker–Planck equation with
distributed control [39]. Such control problems have been
studied in, e.g., [7], [10], [14]. An important generalization of
this is the multi-species setting when the population consists
of several different types of agents or species [1], [8], [16],
[34], [37], [39].

In parallel to these results, there has been a rapid develop-
ment of theory related to the optimal transport problem. One
influential paper is [4], where it was shown that certain opti-
mal transport problems can be formulated as fluid dynamics
problems, which leads to density control problems over the
continuity equation. This idea can be generalized to allow
for optimal transport problems that have general underlying
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dynamics [13], [32]. Moreover, a recent development for
numerically solving the optimal transport problem is to
include entropy regularization, and the resulting problem can
then be efficiently solved using Sinkhorn iterations [19], [43].
Interestingly, this entropy regularization is closely related to
the fluid dynamics formulation in [4], and corresponds to
adding a stochastic term to the particle dynamics, which
leads to a controlled Fokker–Planck equation over the density
[11].

In this paper we connect these research directions and
show how the optimal transport framework can be used to
derive efficient methods for mean field type games with
general dynamics and multiple species. In particular, we
consider the case where each species has a different objective
function. The approach builds on formulating the problem
as a multi-marginal optimal transport problem, which is
structured due to the fact that the dynamics of each species
has the Markov property. This structure can be seen by
viewing each marginal as a node in a graph, where edges
in the graph denote that there is a dependency between
the corresponding marginals [29]. This approach has been
used before on more basic graph-structures for control [27],
estimation [28], and information fusion [22]. Another related
work is [6], in which the single species case is considered
for agents that follow the dynamics of a first-order integrator.
The computational method developed in [6] is based on a
variable elimination technique, while we in this work use a
belief-propagation-type technique as in [29], [31].

The outline of the paper is as follows: in Section II we
briefly review the areas of mean field games, density optimal
control, and optimal transport. In Section III we formulate
potential multi-species mean field games as structured multi-
marginal optimal transport problems and present an efficient
algorithm for computing the optimal solution. In Section
IV we present a detailed numerical example, and finally in
Section V we present conclusions and future directions.

II. BACKGROUND

In this section we present some background material on
mean field games, density optimal control, and optimal
transport. The section is also used to set up notation. In
particular, note that we use ./, �, log(·), and exp(·), to
denote element-wise division, multiplication, logarithm, and
exponential.

A. Mean field games and density optimal control

Consider a time-varying distribution of agents ρ(t, x), for
times t ∈ [0, 1] and states x ∈ X ⊂ Rn. Assume that
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each infinitesimal agent obeys the (Itô) stochastic differential
equation

dx(t) = f(x(t))dt+B(x(t))
(
v(x(t), t)dt+

√
εdw

)
(1)

subject to the initial condition x(0) = x0, where the latter
follows the distribution ρ(0, x) = ρ0(x). Here, w is a m-
dimensional Wiener process. For ease of notation, we will
further suppress the explicit dependence on t from the state x
and the explicit dependence on x and t from control signal v
and (most of the time) from the density ρ. For the dynamics,
we assume that f and B are continuously differentiable with
bounded derivatives. In this case, under suitable conditions
on the (Markovian) feedback v, there exists a unique solution
(a.s.) to (1), cf. [23, Thm. V.4.1], [7, pp. 7-8]. In this work,
we also assume that the deterministic counterpart to system
(1) is controllable in the (rather strong) sense that for all
x0, x1 ∈ X and for all t > 0 there exists a control signal
in L2([0, t]) that transitions the system from the initial state
x(0) = x0 to the final state x(t) = x1.

It is well-known that a potential mean field game can be
reformulated as an optimal control problem over densities,
where the density ρ is the solution of a controlled Fokker-
Planck equation. In particular, under suitable regularity con-
ditions [7], [10] this leads to the density optimal control
problem [39]

min
ρ,v

∫ 1

0

∫
X

1

2
‖v‖2ρdxdt+

∫ 1

0

Ft(ρ(t, ·))dt+G(ρ(1, ·)) (2a)

s.t.
∂ρ

∂t
+∇ · ((f+Bv)ρ)− ε

2

n∑
i,k=1

∂2(σikρ)

∂xi∂xk
= 0 (2b)

ρ(0, ·) = ρ0, (2c)

where ∇· denotes the divergence of the vector field, σ(x) :=
B(x)B(x)T where (·)T denotes the transpose, and Ft and G
are functionals on L2 ∩ L∞. Moreover, we assume that the
latter are proper, convex, and lower semicontinuous, and that
Ft is piece-wise continuous with respect to t. Note, e.g., that
a terminal constraint ρ(1, ·) = ρ1 can be imposed by letting
G be the indicator function on the singleton {ρ1}.

B. Multi-marginal and computational optimal transport

The optimal transport problem is a classical problem in
mathematics, which addresses the problem of how to move
mass from an initial distribution to a target distribution with
minimum cost; for an introduction and overview of the
topic, see, e.g., [49]. The multi-marginal optimal transport
problem is an extension of the original problem, which seeks
a transport plan between several distributions [5], [22], [25],
[41], [42], [45], [46]. Here, we will focus on the discrete
case, in which the marginal distributions are given by a
finite set of nonnegative vectors1 µ1, . . . , µT ∈ RN+ . The
transport plan, describing how the mass is moved, and the
corresponding cost of moving mass, are both represented by

1To simplify the notation, we assume that all the marginals have the same
number of elements, i.e., µj ∈ RN . This can easily be relaxed.

T -mode tensors M and C, respectively. More precisely, the
elements Mi1,...,iT and Ci1,...,iT corresponds to the trans-
ported mass and the cost of moving mass associated with the
tuple (i1, . . . , iT ), respectively. The marginal distributions of
M are given by the projections Pj(M) ∈ RN+ , where

(Pj(M))ij :=
∑

i1,...,ij−1,ij+1,iT

Mi1,...,iT , (3)

and similarly we let Pj1,j2(M) ∈ RN×N+ denote the bi-
marginal projections on the marginals j1 and j2 (see, e.g.,
[29]). In analogy to the classical bi-marginal problem, for
given µ1, . . . , µT we have that M is a feasible transport plan
if Pj(M) = µj for j = 1, . . . , T . A generalization of this,
which will be used throughout, is to not necessarily impose
marginal constraints on all projections Pj(M), but only for
an index set Γ ⊂ {1, . . . , T }. The discrete multi-marginal
optimal transport problem can thus be formulated as

min
M∈RNT

+

〈C,M〉 (4a)

s.t. Pj(M) = µj , j ∈ Γ, (4b)

where 〈C,M〉 :=
∑
i1,...,iT

Ci1,...,iTMi1,...,iT is the stan-
dard inner product. Albeit being a linear program, numeri-
cally solving an optimal transport problem can be computa-
tionally challenging due to the large number of variables. A
popular approach for approximately solving (4) is to perturb
the problem by adding the entropy term

D(M) :=
∑

i1,...,iT

(
Mi1,...,iT log(Mi1,...,iT )−Mi1,...,iT +1

)
to the cost function. First proposed in the bi-marginal setting
[19] (see also [43]), the perturbed problem can be solved
using so-called Sinkhorn iterations.2 In particular, defining
the tensor K = exp(−C/ε), the optimal transport plan to
the perturbed problem can be shown to take the form

M = K�U, (5)

where U is a rank-one tensor defined by

Ui1...iT =
∏
j∈Γ

(uj)ij , (6)

see [5], [22]. The Sinkhorn iterations is to iteratively update
uj to match the given marginals, i.e., to iteratively perform

uj ← uj � µj ./Pj(K�U), for j ∈ Γ. (7)

In fact, the variables uj correspond to the logarithms of the
dual variables in a Lagrangian relaxation of the entropy-
regularized version of (4) and the iterations can be viewed
as block coordinate ascent in this Lagrangian dual [22],
[36], [40], or as iterative Bregman projections [5], [38],
[48]. Any of the two viewpoints can be used to show that
the iterations converges (linearly) to an optimal solution of
the perturbed problem [40], [48]. However, in the multi-
marginal case, computing Pj(K � U) is challenging since

2In fact, the iterations have been discovered and rediscovered in different
settings; see, e.g., [15] for a review of the history.
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the number of terms in the sum grows exponentially with
the number of marginals. Nevertheless, in some cases when
the underlying cost C is structured the projections can be
computed efficiently. In particular, this is the case for many
graph-structures, see [2], [5], [22], [27], [29]–[31], [47].

III. SOLVING MULTI-SPECIES MEAN FIELD GAMES

The idea of considering multi-species mean field games
was introduced already in [34], [39]. In the potential multi-
species mean field games considered here we have L differ-
ent populations, each with a distribution ρ`, and where each
infinitesimal agent obeys the dynamics

dx`(t) = f(x`)dt+B(x`)
(
v`dt+

√
εdw`

)
, (8)

for ` = 1, . . . , L. In this work, we assume that all populations
have the same dynamics. This is an initial, simplifying
assumption, which we intend to relax in future work. A
potential multi-species mean field game problem can, anal-
ogously to the single species game, be formulated as an
optimal control problem over densities. The problem of
interest here takes the form

min
ρ,ρ`,v`

∫ 1

0

∫
X

L∑
`=1

1

2
‖v`‖2ρ` dxdt+

∫ 1

0

Ft(ρ(t, ·))dt+G(ρ(1, ·))

+

∫
X

L∑
`=1

(∫ 1

0

F`(t, x)ρ`(t, x)dt+G`(x)ρ`(1, x)

)
dx

(9a)

s.t.
∂ρ`
∂t

+∇ · ((f(x) +B(x)v`)ρ`)

− ε

2

n∑
i,k=1

∂2(σikρ`)

∂xi∂xk
= 0, ` = 1, . . . L, (9b)

ρ`(0, ·) = ρ0,`, ρ(t, x) =
L∑
`=1

ρ`(t, x). (9c)

where we assume that F`(t, ·) and G` are in L2 ∩ L∞, and
F`(·, x) is piece-wise continuous. Note in particular that
the cost functions Ft and G are the ones that connect the
different species; for Ft ≡ 0, G ≡ 0, (9) reduces to L
independent single-species problems.

A. Discretizing the single-species problem

In a first instance, we consider the single species problem
in (2). In particular, when Ft ≡ 0, G ≡ 0, the objective
function can be reformulated as the Kullback-Leibler (KL)
divergence of the controller process with respect to the
Wiener process with initial density ρ0. To this end, denote
the distribution of the controlled process on path space by
Pv . By invoking the celebrated Girsanov theorem, we have
that

KL(Pv‖P0)=
1

2ε
EPv{

∫ 1

0

‖v‖2dt}=
1

2ε

∫
X

∫ 1

0

‖v‖2ρdtdx,

where ρ is the solution to (2b) and (2c), see, e.g., [24,
pp. 156-157], [20, p. 321]; see also [6], [11], [14], [26]. To
ensure that the above holds, it is important that the noise and

control enter the system through the same channel, as in (1).
This expression, linking stochastic control and entropy, has
led to several novel applications of optimal control [11]–[13],
[15]. Moreover, using it the problem (2) can be reformulated
as

min
Pv

εKL(Pv‖P0) +

∫ 1

0

Ft(Pvt )dt+G(Pv1 ) (10a)

s.t. Pv0 = ρ0. (10b)

After discretization over space, into the grid points
x1, . . . , xN , and discretization over time, into the time points
0,∆t, 2∆t, . . . , 1, where ∆t = 1/T , the problem reduces to

min
M∈RNT+1

+ ,

µ1,...,µT ∈RN
+

〈C,M〉+ εD(M) + ∆t
T −1∑
j=1

Fj(µj) +G(µT )

(11a)
s.t. Pj(M) = µj , j = 1, 2, . . . , T , (11b)

P0(M) = ρ0, (11c)

Here, M is a nonnegative (T +1)-mode tensor that represents
the flow of the agents, and C is a (T + 1)-mode tensor that
represents the cost of moving agents. In fact, since at a given
time the cost of moving agents depends only on the current
time step, the tensor C takes the form

Ci0,...,iT =

T −1∑
j=0

Cij ,ij+1 . (12a)

where C is a N × N matrix whose elements Cik are the
(optimal) cost of moving mass from discretization point xi
to discretization point xk in one time step, i.e.,

Cik =


min

v∈L2([0,∆t])

∫ ∆t

0

1

2
‖v‖2dt

s.t. ẋ = f(x) +B(x)v

x(0) = xi, x(∆t) = xk.

(12b)

This optimal control problem can in some cases be solved
analytically, e.g., in the linear-quadratic case, but in general
one typically need to resort to numerical solution methods.
Note however, that the computation of the cost function C
can be done off-line before solving (11). Also note that due
to the controllability assumption, (12b) is always finite. By
allowing the matrices C to have elements with value∞, this
assumption may be relaxed. However, in this case one has
to assure that (11) has a feasible solution.

As already indicated by the notation, the discretized prob-
lem (11) can be identified as an entropy-regularized multi-
marginal optimal transport problem; in fact, more specifically
as a tree-structured problem [29] where the underlying tree
is a path graph.

B. Discretizing the multi-species problem

Next, we move to the multi-species case. To this end, as
noted above, for Ft ≡ 0 and G ≡ 0 in (9) the problem re-
duces to L independent single-species problems. By adapting
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the arguments in the previous section, we therefore arrive at
the discrete problem

min
M`,µj ,µ

(`)
j

j=1,...,T
`=1,...,L

L∑
`=1

〈C,M`〉+ εD(M`)+∆t
T −1∑
j=1

Fj(µj) +G(µT )

+
L∑
`=1

T −1∑
j=1

〈cj,`, µ(`)
j 〉+ 〈cT ,`, µ(`)

T 〉

 (13a)

s.t. Pj(M`) = µ
(`)
j , j = 1, . . . , T , (13b)

P0(M`) = ρ0,`, ` = 1, . . . , L, (13c)
L∑
`=1

µ
(`)
j = µj , j = 0, . . . , T (13d)

where C still has the form (12). Moreover, the second line
in the cost (13a) is the discretization of the second line in
(9a). In particular, the integrals over X are inner products
with respect to the densities, i.e., (cj,`)k = ∆tF`(j∆t, xk)
for j = 1, . . . , T −1 and (cT ,`)k = G`(xk), for ` = 1, . . . , L.

We now reformulate (13) into one single entropy-
regularized multi-marginal transport problem. To this end,
consider a transport tensor M ∈ RL×N×···×N that has T +2
modes, and where the element M`,i0,...,iT corresponds to
the amount of mass of species ` that moves along the path
i0, . . . , iT . Moreover, the additional marginal µ−1 ∈ RL+
represents the total mass of the density for species `, i.e.,
(µ−1)` =

∑N
k=1(µ

(`)
0 )k for ` = 1, . . . , L. Note that this

construction results in that Pj(M) is the total distribution µj
at time j∆t, as defined by (13d). Moreover, the bi-marginal
projection P−1,j(M) gives the L × N matrix consisting of
[µ

(1)
j , . . . , µ

(L)
j ]T . In fact, the latter means that the constraints

on the initial distributions, given in (13c), can be imposed
by requiring that P−1,0(M) = R(−1,0), where the matrix
R(−1,0) ∈ RL×n+ is

R(−1,0) = [ρ0,1, . . . , ρ0,L]T .

Next, defining the set of matrices Cj ∈ RL×N as

Cj = [cj,1, . . . , cj,L]T , j = 1, . . . , T ,

the last term in the cost (13a) can be written
as

∑T
j=1〈Cj , P−1,j(M)〉. Finally, by noting that∑L

`=1D(M`) = D(M), we can write the problem as

min
M,µj

j=1,...,T

〈C̃,M〉+ εD(M) + ∆t
T −1∑
j=1

Fj(µj) +G(µT )

(14a)
s.t. Pj(M) = µj , j = 1, . . . , T , (14b)

P−1,0(M) = R(−1,0) (14c)

where

C̃i−1,i0,...,iT =
T∑
j=1

(Cj)i−1,ij +
T −1∑
j=0

Cij ,ij+1
. (14d)

The problem (14) is a graph-structured entropy-regularized
multi-marginal optimal transport problem, but where some
of the constraints are imposed on the bi-marginals of the
transport plan. Next, we present numerical methods for
solving such problems.

C. Numerical method for discretized multi-species problems

A numerical method for solving problems of the form (14),
similar in spirit to the Sinkhorn iterations (7), can be derived
by considering a Lagrangian dual to (14) and numerically
solving the latter via coordinate ascent. Here, we will outline
how this can be done by following along the lines of [5],
[22], [27], [29], [36]; for details, we refer to [30] and the
forthcoming paper [44].

To this end, we introduce the Lagrangian variables λj , for
j = 1, . . . , T , corresponding to the constraints (14b), and
the Lagrangian variable Λ−1,0 for the bimarginal constraint
(14b). Using these, the optimal solution to (14) can be shown
to be of the form M = K�U, where K = exp(−C̃/ε) and
where

U`,i0,...,iT = (U−1,0)`,i0

T∏
j=1

(uj)ij . (15)

In particular, uj = exp(λj/ε), for j = 1, . . . , T , and
U−1,0 = exp(−Λ−1,0/ε). Moreover, the corresponding La-
grangian dual problem takes the form

maximize
U−1,0∈RL×N

+ ,

uj∈RN
+ ,j=1,...,T

− ε〈K,U〉 −
T −1∑
j=1

(∆tFj)
∗(−ε log(uj)) (16)

−G∗ (−ε log(uT )) + ε〈log(U−1,0), R−1,0〉

where (·)∗ denotes the Fenchel conjugate [3, Chp. 13].
Furthermore, under some assumptions on Fj and G, strong
duality holds between (14) and (16) cf. [48, Lem. 2.1].3

Next, in order to simplify the rest of the exposition,
assume that F ∗j and G∗ are differentiable on RN+ . Performing
coordinate ascent on (16), we fix all except one (set of)
variable and maximinze with respect to that variable. Since
the cost function in (16) is concave with respect to all
variables, the maximum is where the gradient with respect
to the variable is zero, leading to the equations

0 = −Pj(K�U) +∇(∆tFj)
∗(−ε log(uj)), (17a)

for j = 1, . . . , T − 1,

0 = −PT (K�U) +∇G∗(−ε log(uT )), (17b)

and
0 = −P−1,0(K�U) +R(−1,0), (17c)

respectively. Now, by considering (3) and (15), it can be
observed that the projections can be written as

Pj(K�U) = uj�wj and P−1,0(K�U) = U−1,0�W−1,0

3 One set of such assumptions are that there exists a feasible point M > 0
to (14) such that for any non-polyhedral function Fj and G, the marginals
corresponding to M are in the relative interior of the effective domain of
the corresponding function. These can be weakened somewhat, see [30,
Sec. 4.1] for a more detailed disucssion, in which case the functions used
in the example in Section IV also fulfill the assumptions.
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for some vectors wj , j = 1, . . . , T , and some matrix W−1,0

that do not depend on uj and U−1,0, respectively; cf. [22],
[29]. Moreover, as we will see shortly, these vectors and
matrices can be efficiently computed (see Theorem 1). Now,
a Sinkhorn-type algorithm is thus obtained by iteratively
solving the equations (17a)–(17c). Moreover, under the as-
sumption above for strong duality, and assuming that the
functions Fj and G are continuous on their effective domain,
iteratively solving the equations (17a)–(17c) is in fact an
iterative algorithm that converges to the globally optimal
solution of (14) [48, Thm. 3.1].

Remark 1: Note that if a term in the cost function (14a) is
split as Fj(µj) = Fj,1(µj) +Fj,2(µj), then the problem can
be rewritten using the term Fj,1(µj,1) + Fj,2(µj,2) by also
replacing the constraint Pj(M) = µj with Pj(M) = µj,1
and Pj(M) = µj,2. By repeating the above argument, but
where the two constraints are relaxed with the multipliers
λj,1 and λj,2, we obtain a similar expressions for M and the
Lagrangian dual, but where uj is replaced with the product
uj,1 � uj,2. This is useful in cases where the equations (17)
are difficult to solve for Fj but fast to solve for Fj,1 and
Fj,2 separately.

Remark 2: The assumption that F ∗j and G∗ are differen-
tiable is essentially equivalent with that Fj and G are strictly
convex [3, Cor. 18.12]. This assumption can be relaxed, in
which case the gradients in (17) must be replaced by the
corresponding subgradients. The nonlinear equations (17)
will therefore be replaced by monotone inclusion problems;
see, e.g., [3] for more on convex optimization and monotone
inclusion problems.

As pointed out in Section II-B, directly computing the
projections Pj(K �U), which are needed in (17), is com-
putationally challenging. Nevertheless, problem (14) is a
graph-structured multi-marginal optimal transport problem,
with underlying graph-structure illustrated in Figure 1a. By
adapting the arguments in [30], we have the following result.

Theorem 1 ([30]): Let K = exp(−C̃/ε), with C̃ defined
as in (14d) and ε > 0, and let U be as in (15). Define
Kj = exp(−Cj/ε), j = 1, . . . , T , and K = exp(−C/ε),
and let

Ψ̂j =

{
U−1,0K, j = 1,(

Ψ̂j−1 �Kj−1

)
diag(uj−1)K, j = 2, . . . , T ,

and

Ψj =

{
KT diag(uT )KT , j = T − 1,

(Ψj+1 �Kj+1) diag(uj+1)KT , j = 0, . . . , T − 2.

Then, the projections of the tensor K � U needed in (17)
are given by

P−1,0(K�U) = U−1,0 �Ψ0,

PT (K�U) = uT �
(

Ψ̂T �KT
)T

1,

Pj(K�U) = uj �
(

Ψ̂j �Ψj �Kj

)T
1,

for j = 1, . . . , T − 1.

Algorithm 1 Scheme for solving potential multi-species
mean field games without fixed final distribution.
Input: Initial guess u1, . . . , uT , U−1,0

1: Update ΨT −1 ← KT diag(uT )KT

2: for j = T − 2, . . . , 0 do
3: Update Ψj ← (Ψj+1 �Kj+1)diag(uj+1)KT

4: end for
5: while Not converged do
6: Update U−1,0 ← R(−1,0)./Ψ0

7: Update Ψ̂1 ← U−1,0K
8: for j = 1, . . . , T − 1 do
9: wj ← (Ψ̂j �Ψj �Kj)

T1
10: Update uj by solving (17a).
11: Update Ψ̂j+1 ← (Ψ̂j �Kj)diag(uj)K
12: end for
13: wT ← (Ψ̂T �KT )T1
14: Update uT by solving (17b).
15: Update ΨT −1 ← KT diag(uT )KT

16: for j = T − 2, . . . , 0 do
17: Update Ψj ← (Ψj+1 �Kj+1)diag(uj+1)KT

18: end for
19: end while
Output: u1, . . . , uT , U−1,0

Summarizing the above derivations, a convergent algo-
rithm for solving discretized potential multi-species mean
field game problems, cast on the form (14), is given in
Algorithm 1. From the algorithm, it can be seen that one
update of all variables uj , j = 1, . . . , T , and U−1,0 requires
solving T nonlinear equations of dimension N and an
operation with LN elements, respectively. For computing
the corresponding projections needed, all 2T matrices Ψ̂j

and Ψj need to be updated once, and each update has
complexity O(LN2). This can be compared with the (at
least) LNT variables in the primal problem (14). A more
detailed account of the computational complexity is deferred
to the forthcoming paper [44], cf. [30].

Remark 3: In certain cases it might be of interest to
impose terminal distributions on the different species in (9),
i.e., to impose ρ`(1, ·) = ρ1,` for some given distribution
ρ1,`, for ` = 1, . . . , L. In this case, the cost functions G
and G` can be removed, as they will only contribute with
a constant value. Moreover, in the reformulation (14) of the
corresponding discretized problem, these terminal distribu-
tions can be imposed by adding the bi-marginal constraint

P−1,T (M) = R(−1,T ), (18)

where R(−1,T ) = [ρT ,1, . . . , ρT ,L]T . The underlying graph-
structure for this problem is illustrated in Figure 1b, and by
adapting the arguments above, we get that such problems
can be solved by Algorithm 2.

IV. NUMERICAL EXAMPLE

In this section we consider a numerical example, consist-
ing of a potential multi-species game with L = 4 species
and with a 2-dimensional state space. More precisely, the
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µ−1

µ1µ0 µT−1 µT

P−1,0(M) = R(−1,0) C1 CT −1 CT

C C

(a) Graph for the multi-species density optimal control problem
without fixed final distribution for the different species.

µ−1

µ1µ0 µT−1 µT

P−1,0(M) = R(−1,0) C1 CT −1 P−1,T (M) = R(−1,T )

C C

(b) Graph for the multi-species density optimal control problem
with fixed final distribution for the different species.

Fig. 1: Illustration of the computational graphs for the multi-species density optimal control problem, with and without
fixed final distribution for the different species. Grey circles correspond to known densities, and white circles correspond to
densities which are to be optimized over.

Algorithm 2 Scheme for solving potential multi-species
mean field games with fixed final distribution.
Input: Initial guess u1, . . . , uT −1, U−1,0, U−1,T

1: Update ΨT −1 ← U−1,TKT

2: Steps 2–12 in Algorithm 1.
3: Update U−1,T ← R(−1,T )./Ψ̂T
4: Update ΨT −1 ← U0,TKT

5: Steps 16–19 in Algorithm 1.
Output: u1, . . . , uT −1, U−1,0, U−1,T

densities have support on [0, 3]× [0, 3] which we discretize
into 100 × 100 grid points {xi,k}100

i,k=1, i.e., with cell size
∆x = 0.032. Moreover, we discretize the time interval into
T + 1 = 40 time steps, i.e., with a time index j = 0, . . . , 39
and discretization size ∆t = 1/39. We consider the linear-
quadratic case, with the dynamics given by f(x) ≡ 0 and
B(x) = I . This means that the cost of moving mass on
the discretized grid is constant over time and given by
C = [|xi1,k1−xi2,k2 |2]100

i1,i2,k1,k2=1, i.e., corresponding to the
squared Wasserstein-2 distance on the discrete 2-dimensional
grid. Using this setup, we consider the example

min
M`∈R(1002)40

+ ,

µ
(`)
j ∈R

1002

+

4∑
`=1

〈C,M`〉+ εD(M`) +

39∑
j=1

〈c̃`, µ(`)
j 〉


+ 3‖µ19 − µ̃1‖22 + 3‖µ39 − µ̃2‖22 (19a)

subject to Pj(M`) = µ
(`)
j , j = 0, . . . , 39,

` = 1, 2, 3, 4, (19b)
4∑
`=1

µ
(`)
j = µj , j = 0, . . . , 39, (19c)

µj ≤ κj , j = 1, . . . , 39, (19d)

µ
(`)
0 = ρ

(`)
0 , ` = 1, 2, 3, 4, (19e)

for ε = 10−2, and where µ̃1 and µ̃2 are given in Figure 2a;
in particular, µ̃2 is a uniform distribution with the same
total mass as the total distribution µj . Moreover, the species-
dependent linear costs c̃` = cj,`, which we here take to be
constant over time steps j, are given in Figure 2b. Finally,
the capacity constraints κj , in (19d), are illustrated in Fig-

ure 2c. The multi-marginal optimal transport reformulation,
which has a computational graph as illustrated in Figure 1a,
is solved using Algorithm 1. The latter is adapted as in
Remark 1 to handle both the costs on the total marginals
in (19a) and the inequality constraints in (19d); details on
the Fenchel duals of the functions involved are deferred
to Appendix A. Results are shown in Figure 3, where the
initial distributions ρ(`)

0 for the different agents can be seen
in the left-most column (showing time point j = 0). Note
that the solution is relatively smooth, which is due to the
smoothing effect from the noise term in the SDE (8), but
with sharper characteristics around the edges of the spatially
varying linear cost.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we present an efficient numerical algorithm
for solving potential multi-species mean field games by
utilizing the connection between potential mean field games
and optimal transport. In particular, when reformulating the
mean field game as an entropy-regularized multi-marginal
optimal transport problem, the latter has a highly structured
cost which can be utilized in order to develop an efficient
numerical solution method. This is part of a larger frame-
work of structured tensor optimization problems, which has
applications in many different areas of control and estimation
[22], [29], [30], [44]. In future work, we intend to relax
the controllability assumption used here, and also relax the
assumption that all species obey the same dynamics in order
to allow for more heterogeneous sets of agents.

APPENDIX

A. Fenchel duals used in the numerical example
Let x ∈ RN , A ⊂ RN , and let IA(x) denote the indicator

function on a set A, i.e., the function

IA(x) :=

{
0, if x ∈ A
∞, else.

Indicator functions can be used to impose constraints in
minimization problems, since including IA(x) in the cost
function is equivalent with imposing the constraint x ∈ A.
Now, let A = {x ∈ RN | 0 ≤ x ≤ x̂} for some x̂ ∈ RN+ .
The Fenchel dual of g(x) = I{0≤·≤x̂}(x) is

g∗(y) = sup
x
〈x, y〉 − I{0≤·≤x̂}(x) = 〈x̂,max(y, 0)〉,
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(a) Target densities at time points j = 19
and j = 39, for the total density.

(b) The linear cost c̃` for the different
species; blue means cost 0, while yellow
means a cost of 0.009 = 390∆x∆t.

(c) The capacity constraints κj at the differ-
ent time points; blue means zero (obstacle)
while yellow means infinite capacity.

Fig. 2: Figures describing the setup in the numerical example in Section IV.

Fig. 3: Time evolution of total density and densities of the individual species, for the numerical example in Section IV.

with (sub)gradient given by

∇g∗(y) =

{
x̂i, if yi > 0

0, else.

This means that the equations in (17) take the form

0 = −y � w +∇g∗(−ε log(y))

which has the solution y = max(w./x̂,1), where the max
is to be interpreted element-wise.

Next, let x, z ∈ RN , σ ∈ R+, and let g(x) = σ‖x− z‖22.
Then [3, Ex. 13.2.(i) and Prop. 13.22.(i)] gives that

g∗(y) =
1

4σ
‖y‖22 + 〈z, y〉 =

〈
y,

1

4σ
y + z

〉
,

the gradient of which is given by

∇g∗(y) =
1

2σ
y + z.

The equations in (17) hence take the form

0 = −y � w − ε

2σ
log(y) + z. (20)

Such equations can be solved component-wise, by using that
for scalars y, a, b, and c, we have that ay + b log(y) = c is
equivalent with ỹ + log( ba ỹ)− log( ba ) = c

b − log( ba ), where
ỹ = y ab . The latter leads to the equation ỹ + log(ỹ) = c

b −
log( ba ) and therefore y = b

a ω( cb − log( ba )), where ω is the
Wright omega function. The latter is defined as ω(x) being
the solution to y + log(y) = x, and is closely related to the
Lambert W function, see, e.g., [18] and [17], respectively. In
particular, the solution to (20) is therefore given by

y =
( ε

2σ
1./w

)
� ω

(
2σ

ε
z − log

( ε

2σ
1./w

))
.
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