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1. Introduction

An approach to categorification of quantum groups, their representations, and quan-
tum invariants at a prime p root of unity was outlined in [5] and further developed in [13].
These works suggest that one should look for p-differentials on structures categorifying
objects at generic values of the quantum parameter. There has been some progress in
this program for quantum sl [3,4,8,9,14-16].

In particular, a categorification of the braid group action on the Burau representation
at a prime root of unity was constructed in [14]. The authors considered a p-DG structure
on the algebra A! which describes a singular block of category O(gl,,) corresponding to
the Young subgroup S x S,,—1. Ignoring the p-DG structure, this categorical action is a
consequence of Koszul duality and Khovanov and Seidel’s action of the braid group on
the homotopy category of modules over the zigzag algebra A,,. Whereas the projective
modules play the role of the Temperley-Lieb algebra in [11], the simple objects form
an exceptional sequence of objects on the other side of Koszul duality. As a result, one
must find projective resolutions of the simple objects of A!, in order to construct the
braid group action directly. In the context of the p-differential, one must find cofibrant
replacements of the simple objects. This was the main technical step in [14].

Partially motivated by the construction in [14], a deformation W = W (n, 1) of A} was
considered in [12] and the authors showed that there is a categorical braid group action
on the homotopy category of W-modules. This result was extended in [7] to a categorical
braid group action on the homotopy category of a deformation of more general Webster
algebras for sly, for which W is a special case (hence the notation).

In this note, we return to the simplified setting of W. There is a p-DG structure
on this algebra (see [22]). We show that there are braiding complexes in a homotopy
category of p-DG W-modules using key ideas from [10]. Using some results from p-DG
theory we extend the main result of [12] to the p-DG setting.

Theorem. There is a categorical action of the braid group on n strands on the relative
p-DG homotopy category of W.

Deforming the algebra A! allows us to replace the p-DG derived category in [14]
with the relative p-DG homotopy category here. This theorem should be compared to
[14, Theorem 5.14], albeit in the weaker context of the relative homotopy category.
However, the authors believe that the results will become useful towards building a p-
DG link homology theory, as proposed in [17]. These further questions will be addressed
in subsequent works of the authors.
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In [7] a braid group action on the homotopy category of deformed Webster algebras
was constructed by exhibiting an action of the Khovanov-Lauda-Rouquier 2-category
[6,18], and then using symmetric Howe duality. We expect the main result here holds on
the level of generality of [7]. One would need to consider a p-DG version of the Khovanov-
Lauda-Rouquier category and show the braiding of Rickard complexes [1] holds in the
presence of the p-differential.

In recent work [20], the main result of [7] was proved by relating the deformed algebra
to various objects in Lie theory and geometry. It would be interesting to import the p-
DG structure to the categories of Gelfand-Tsetlin modules and perverse sheaves studied
there.

1.1. Acknowledgments

Y. Q. is partially supported by the NSF grant DMS-1947532. J. S. is partially
supported by the NSF grant DMS-1807161 and PSC CUNY Award 63047-00 51.
Y. Q. and Y. Y. were partially supported by the Research Institute for Mathematical
Sciences, an International Joint Usage/Research Center located in Kyoto University.

2. Some exact functors on p-complexes

In this section, we gather some necessary background material for later use. Further
details of this section can be found in [8, Section 2.1] and [17, Section 2.1].

2.1. Eztension functors

Let k be a field of finite characteristic p > 0 and A be a k-algebra. We think of
A as a graded algebra by setting all elements of A to be of degree zero. A p-complex
of A-modules U = @®;czU? is then a graded A-module, equipped with a degree-two
endomorphism 9y satisfying 97, = 0. A morphism of p-complexes f : U—V consists of
A-module maps f; : U'—V?, i € Z, that commute with the p-differentials on U and V.
A morphism f : U—V of p-complexes is called null-homotopic if there is a collection
of A-linear maps h; : U'—V?=2P+2 guch that, for any i € Z,

p—1
fi= Zagilfkhw%aé- (2.1)

k=0

When p = 2, these notions reduce to the usual notion of (co)chain complexes of A-
modules over characteristic two, with the differential degree doubled. Furthermore, just
as the usual homotopy category of chain complexes is triangulated, the homotopy category
of p-complezxes, obtained from the (abelian) category of p-complexes modulo the class of
null-homotopic morphisms, is also triangulated. Let us denote this p-homotopy category
by C(A,d).
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In this subsection, we recall a functor relating the usual homotopy category C(A,d)
of A with its p-homotopy category C(A, ).

To do this, recall that a usual chain complex of A-modules M consists of a collection
of A-modules and homorphisms d; : M*— M1 called coboundary maps

d; di—1

i—2 ) . d; ) diy2
e — > ML M ML

i+2
Mt .

dit1

satisfying d; od;_1 = 0 for all ¢ € Z. A morphism of chain complexes f : M — N consists
of a sequence f; : M*— N’ that commute with the differentials. A map is null-homotopic
if there is a sequence of A-module maps f; : M‘—sN?, i € Z, of A-modules, as depicted
in the diagram below,

. di—2 -1 di—1 A d; it dit1 A2 dit2 o
| e fl | - e
hi—l/ i—1 hi i hi+1/fi+1 hit2  fit2  hits
. Nifl Nz Ni+1 Ni+2
di—2 diy1 d; dit1 diyo

which satisfy f; = d;y1 0 h; + hiq1 0 d; for all ¢ € Z. The homotopy category C(A,d), by
construction, is the quotient of chain complexes over A by the ideal of null-homotopic
morphisms.

We define the p-extension functor

P:C(A,d)—C(A,D) (2.2)
as follows. Given a complex of A-modules, we repeat every term sitting in odd homo-

logical degrees (p — 1) times while keeping terms in even homological degrees unaltered.
More explicitly, for a given complex

dag—2 dag—1 dog dag41 dag42
e S MR T g2k R 2R T ) p2k+2 -
the extended complex looks like
dok—2 dag—1
. M2k—1 . M2k—1 M2k
b2k )

( d dak
M2k+1 M2I~c+1 2k+;1 M2k+2 21"+2;

Likewise, for a chain-map
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dak—3 Ap2k—2 dog_2 a2k-1 dag—1 12k day
fzzvz f21V1 fik ,
. N2k:—2 N2k—1 N2k
dok—3 dok—2 dok—1 dag

the obtained morphism of p-DG A-modules is given by

dok—3 dog—2 dok—1 dok
. M2k72 M2k71 . M2k71 M2k
f2z®—2 levl levl f@k
. N2k—2 N2k—1 . N2k—1 N2k
dok—3 dog—2 dog—1 dag

This is clearly a functor from the abelian category of cochain complexes over A into the
category of p-complexes of A-modules, which we call P.

Next, one may check that P preserves ideals of null-homotopic morphisms. Indeed,
suppose f = dh + hd is a null-homotopic morphism in C(A,d). We first extend, for any
i1 € Z and h; : M;— N;_1, to a collection of maps

A

P(h); : P(M);—P(N)i_2pio

as follows. On unrepeated terms, P(h) sends M2* to the copy of N2*~1 sitting as the
leftmost term in the repeated N?*~1’s, while on the repeated terms, it only sends the
rightmost M?2¥+1 to the unrepeated N?* and acts by zero on the other repeated M2++1s,
Schematically, this has the effect:

dap—3 dog—2
L 23 D g2k L g2k

dap—1 dag
U T B S U - LN R—
O/A/Mkl/lm/o
=S T ~ N2k-2 o N2l = = N2kt >~ N2k > N2EHl ——
d?k:*.’i d2k72 d?k’*l dzl\'

Lemma 2.1. The functor P sends null-homotopic morphisms in C(A4, d) to null-homotopic
morphisms in C(A, 9).

Proof. The proof now is an easy exercise. See [17, Lemma 2.2] for more details. O
This lemma implies that P descends to a functor
P:C(A,d)—C(A,D), (2.3)

which we call the p-extension functor. A key property of this functor that we will use is
the following.
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Proposition 2.2. [17, Proposition 2.3] The functor P is exact.
2.2. Relative homotopy categories

For any graded or ungraded algebra B over k, denote by dy the zero super differential
and by 0y the zero p-differential on B, while letting B sit in homological degree zero.
When B is graded, the homological grading is independent of the internal grading of B.
For a graded module M over a graded algebra B, we let M{n} denote the module M,
where the internal grading has been shifted up by n.

Suppose (A,04) is a p-DG algebra, i.e., a graded algebra equipped with a differential
04 of degree two, satisfying

() =0,  Da(ab) = da(a)b+ ada(b), (2.4)

for all a,b € A. In other words, A is an algebra object in the module category of the
graded Hopf algebra H = k[J]/(0P), where the primitive degree-two generator 0 € H
acts on A by the differential 04.

Then, we may form the smash product algebra A# H in this case. As a k-vector space,
A#H is isomorphic to A ® H, subject to the multiplication rule determined by

(a®0)(b®d) = ab® d* + ada(b) ® 0. (2.5)

Notice that, by construction, A ® 1 and 1 ® H sit in A#H as subalgebras.

A module over A#H is also called a p-DG module. We will consider the usual cochain
complex or p-complexes of p-DG modules. In such a complex, the usual differential or
the p-differential are required to respect the H-actions. Likewise, the null-homotopies in
these cases intertwine A# H-actions.

There is an exact forgetful functor between the usual homotopy categories of chain
complexes of graded A# H-modules

]:d : C(A#H, do)—)C(A, do)

An object K* in C(A#H,dy) lies inside the kernel of the functor if and only if, when
forgetting the H-module structure on each term of K®, the complex of graded A-modules
Fa(K,) is null-homotopic. The null-homotopy map on F4(K*®), though, is not required
to intertwine H-actions.

Likewise, there is an exact forgetful functor

Fo : C(A#H, 9y)—C(A, dy).

Similarly, an object K*® in C(A#H, ) lies inside the kernel of the functor if and only
if, when forgetting the H-module structure on each term of K°®, the p-complex of A-
modules F(K*®) is null-homotopic. The null-homotopy map on F(K*®), though, is not
required to intertwine H-actions.
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Definition 2.3. Given a p-DG algebra (A,04), the relative homotopy category is the
Verdier quotient

o o C(A#Ha dO)
C7(A, do) 1= s,

Likewise, the relative p-homotopy category is the Verdier quotient

C(A#Ha 30)

C%(4,00) = Ker(Fy)

The superscripts in the definitions are to remind the reader of the H-module structures
on the objects.

The categories C?(A,dy) and C?(A, dy) are triangulated with the triangulated struc-
tures inherited from those of C(A#H,dy) and C(A#H, dp). For instance, distinguished
triangles in the quotient category are declared to be those that are isomorphic to dis-
tinguished triangles in C(A#H,dy) and C(A#H, dp) respectively. Recall that the latter
distinguished triangles arise from short exact sequences of (p-)cochain complexes over
A#H that are termwise split exact [13, Lemma 4.3].

By construction, there is a factorization of the forgetful functor

C(A#H, dy) — C(A,dg)  C(A#H,Dy) — C(A, )

\ / , \ /
CO(A, do) C2(A, )

Proposition 2.4. [17, Proposition 2.13] The p-extension functor P : C(A#H,dy)—
C(A#H, dp) descends to an exact functor, still denoted P, between the relative homotopy
categories:

P :CoA,dy)—C?(A, ) .
3. Deformed Webster algebras

3.1. The p-DG algebra

We begin by recalling the definition of a particular deformed Webster algebra W (n, 1).
More general versions of these algebras W(s,n) can be found in [12,7]. The p-DG struc-
tures on these algebras were introduced in [22]. The algebras are deformations of the
algebras introduced by Webster in [21].

Definition 3.1. Let n > 0 be an integer. Let Seq(1”,1) be the set of all sequences i =
(41, .-, in+1) where n of the entries are 1 and the other entry is the symbol b. Therefore, we
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have |Seq(1",1)| = n+ 1. Denote by i, the j-th entry of i. Each transposition o; € Sy,41
naturally acts on the set of sequences.

W = W(n,1) is the graded algebra over the ground field k generated by e(i), where
i€ Seq(1™,1), z;, where 1 < j <n, y and 9, where 1 < j < n, satisfying the relations
below.

> el =1 (3.1)

ieSeq(1n,1)
e(i)e(j) = die(i) (3

Yie(i) = e(o; (i) vy (3

pie(i) =0 ifij =141 =1 (3.
Ve =Petpy if [ — 4] > 1 (3
(3

(3

x; and y are central
wjze(i) = (.17] - y)@(i) if (1]7 ij+1) = (17 b)a (ba 1)

The degrees of the generators are

deg(e(i)) =0, deg(z;) =2, deg(y)=2, deg(y;)=1.

In some contexts, it is natural to impose the so-called cyclotomic relation
e(i)=0 if i =b. (3.8)

Quotienting W by the cyclotomic relation yields an algebra denoted by W.

We now recall the diagrammatic description of the deformation of the Webster algebra
W = W(n,1). Consider collections of smooth arcs in the plane connecting n red points
and 1 black point on one horizontal line with n red points and 1 black point on another
horizontal line. The red points correspond to the 1’s in the sequence i of e(i) and the
black point corresponds to b in the sequence i. The n red points and 1 black point on
the line appear in the order in which they appear in i of e(i). The arcs are colored in
a manner consistent with their boundary points. Arcs are assumed to have no critical
points (in other words no cups or caps). Arcs are allowed to intersect (as long as they
are both not solid red), but no triple intersections are allowed. Arcs can carry dots. Two
diagrams that are related by an isotopy that does not change the combinatorial types of
the diagrams or the relative position of crossings are taken to be equal. We give W (n, 1)
the structure of an algebra by concatenating diagrams vertically as long as the colors of
the endpoints match. If they do not, the product of two diagrams is taken to be zero.
For two diagrams D; and Ds, their product D;Ds is realized by stacking D; on top of
Ds.
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The generator e(i) is represented by vertical strands comprised of n red strands and
one black strand. For instance, in the case i = (1,1, b, 1), the generator e(i) is represented

by

The generator y is represented by a black dot and z; is represented by a red dot on

the jth red strand:

The generator 1;e(i) is represented by a black-red crossing on the left of the diagram
below if i; = 1 and ij41 = b or a black-red crossing on the right if i; = b and i;4; = 1:

>< | :

Note that a red-red crossing does not appear due to relation (3.4).

X

Far away generators commute. The relations (3.6) and (3.7) involving red-black

LA
>

strands are

= = , (3.10)

G BAH

The cyclotomic relation (3.8) translates to: a black strand, appearing on the far left of

XL

any diagram, annihilates the entire picture:

‘ =0 (3.12)

Note that setting red dots to be zero, we recover Webster’s algebra, and so we may think
of the polynomial algebra generated by red dots as a polynomial deformation space of
the Webster algebra.

For i = 0,...,n, there is a sequence (1% b,1"~%). Denote by e; the idempotent
e(1%,b,1777%);
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e =e(li,b,1m"i) = | " S (3.13)

1 % i+1 n

Over a base field k of finite characteristic p > 0, a p-differential graded (p-DG) algebra
structure was introduced on a generalization of W in [22].

Definition 3.2. The p-derivation 0 : W — W of degree 2 satisfying the Leibniz rule:
O(ab) = 9(a)b + ad(b)
for any a,b € W is defined on the generators of the algebra W by
Ae) =0, Azi) =i, y)=y* 0by)=z5e,-1 +yje;
and extended by the Leibniz rule to the entire algebra.

An easy exercise shows that 0P = 0.
In the diagrammatic description, we have

= +2 , (3.14a)

(1
0 // :/, ) \\ :h\\. (3.14b)

A basis for the cyclotomic deformed Webster W (n, 1) was given in [12] (see also [20]
and [19]). We slightly modify this basis and a representation of the algebra for the case

3.2. A basis

where the cyclotomic condition is omitted.

Proposition 3.3. Let
Ry =Kklx1,...,zn),  Vai=Rolyil,  Va=ED Vo

There is an action of W(n,1) on V,, determined by

f(x,yi) € Vi ifj =i
0 if j #1i
xphe;  f(%,4:) € Vi = aph f(X,1:) € Vi,

€; - f(xayj) € Vn,j = {
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y™e; : f(X, i) € Vi =yt f(%,95) € Vi,
piei : f(X,1:) € Vi = f(%,9i-1) € Vijic1

Yivr€i s f(X,9:) € Vi = (Yir1 — Tig1) F(X,Yit1) € Vasiga -

In the diagrammatic description, we have
b .
‘11+ +a1 +a+1+ +a : f(xvyi)evn,i »—>xf1-~-m‘,ﬁ"yff(x,yi)eVn,i
1 i i+1 n

f(x,y) € Vi = f(X,yi-1) € Vi,iza

f(x,y:) € Vi = (Yit1 — Tip1) f(X,Yi41) € Viig1-

1 i—1 1 i+1 n

1 i i+1i42 n
Proof. This is a straightforward check. 0O

Next we will define elements which form a basis of W (n, 1).
Let a = (a1,...,ay) € VA and b € Z>¢. For 0 < i < j < n, define

NEi,j (a7 b) = HZ:1 OEZ’“ yb%‘w]’q g6

ai a; b ajy1 n
Ce e ifi= i,
o 1 [ i+1 n
B b
ai i ;41 a;j aj+1 an
1 i i+1 j j+1 n

For 0 <i < j < n, define

SE; j(a,b) = [Tiey 23" y"vis1ti - je;
a a; G aj aj41 an
_ . b Ce
1 i i+1 J j+1 n

The proof of the next proposition is similar to the proof of [12, Proposition 2, Corollary
1]. See also [19, Proposition 4.9] and [20, Definition 2.7].
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Proposition 3.4. We have the following facts about W (n, 1) and its representation V,.

1. The action of W(n, 1) on V,, is faithful.
2. W(n,1) has a basis

{NE;(a,b),SEy j(a’,0")|0<i < j<n,0<i <j <n,a,a’ € Z%,,b,0' € Zxo} .
4. Braid invariant
4.1. Bimodules

We recall the (W, W)-bimodules W; fori=1,...,n—1,and W; ;41 fori=1,...,n—
2 introduced in [12]. These bimodules were generalized in [7]. While all diagrams are
supposed to be braid-like, we will occasionally, for visual reasons, have some pictures
with cups and caps. These pictures could easily be converted to braid-like diagrams.

In order to define the bimodules W; and W; ; 11, we introduce the algebra W ((1™); ., 1)
which is also a particular deformed Webster algebra and has been shown in [12, Section
3.4] to be isomorphic to a subalgebra of W.

Let (1™); , be the sequence whose n — k entries are 1 and i-th entry from left is k,

(IM)ik = (17 b, 1k,

and let Seq((1™);k,1) be the set of all sequences i = (41, ..., in_k4+2) composed of the
sequence (1™); x into which the symbol b is inserted.
For instance, the set Seq((1%)a,2,1) is

{(b7 1’ 27 1)’ (17 b? 27 1)7 (1’ 2’ b? 1)7 (17 27 15 b)}'
Definition 4.1. W ((1™); %, 1) is the graded algebra over the ground field k generated by

o e(i), where i € Seq((1"); %, 1),
o xj,wherel <j<iori<j<n-—-k+1,

* Y
o Yj, where 1 <j<n—-k+1,
e E(d), where 1 <d <k

satisfying the relations below.

i€Seq((1™)4,%x,1)

e(i)e(j) = die(i) (4.2)
Yje(i) = e(o;(i))y; (4.3)
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¢je(i) =0 if (ij7ij+1) = (171)7(17k)7(k’1> (4'4)
Ve = ety if |j— €] > 1 (4.5)
xj,y and E(d) are central (4.6)
(aij)e(i) if (ij7ij+l) = (1,5),(5,1),
2e(i) = - .
vje) D (~1)*E(a)y* (i) if (ij,1;41) = (k,b), (b, k). S
a=0

The degrees of the generators are

deg(e(i)) =0, deg(z;) =2, deg(y) =2, deg(E(d))=2d, deg(¢je(i))=a
if (ij7ij+1) = (ba a‘)? (a‘v b)7

where a is 1 or k.

We have a translation from (1");; to (1) which is obtained by replacing k of
the sequence (1"); by (1,...,1). This translation naturally induces the map ¢ :
——

k
Seq((1")iks 1) — Seq((1"),1).
We define the inclusion map ® from W((1"), &, 1) to W((1"),1) by mapping idempo-
tents e(i) for i € Seq((1™); %, n) by

D(e(i)) = e(o(1)),

mapping generators x; by

@(1‘)— T if1<j<i,
! Tigho1 ifi<j<n—k+1,

mapping generators 1; by

Yilej—1+¢€j) j<i,
Q(Y;) = S ithis1  Vjpk—1€j4k—1 + Vjph—1Vjrh—2 - Yjej_1  J =1,
Vitk—1(€jth—2 + €j4k—1) Jj>i

(where we recall the definition of e; is given in (3.13)), and mapping generators E(d) by

i d d
(E(d) = Z Ty Ty
di+da+-+dp=d
iy di >0
This inclusion map gives rise to a left action of W ((1");2,1) on &W((1™),1) and a right
action on W ((1"),1)é;, where &; is >, €;.
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Definition 4.2. We define the bimodule W; as the tensor product of two deformed Webster
algebras W ((1™),1) over W((1™);2,1).

Wi = W((1"),1)é; @w (an), ., W ("), 1).
The following proposition follows directly from definitions.

Proposition 4.3. In the bimodule W;, we have the following equalities.

er,®e=0 fk#4 e Qe =¢01=1R¢;, y®l=1Qy, (4.8)

Z’£®€j :].@1'[6]' 1f€¢2,2+1, (l’i+$i+1)®€j :1®($i+$i+1)€j,

TiTit1 Q€5 = 1® T;Ti4+1€j5, (49)
Ye®e; =1@¢e; HlF0i+1, v ®ej =1 @ i1ihiey,
Vi1 @ e; = 1 @ iy, (4.10)
where j # 1.
A graphical description of the bimodules W; for ¢ = 1,...,n — 1 was introduced in

[12]. We consider collections of smooth arcs in the plane connecting n red points and
1 black point on one horizontal line with n red points and 1 black point on another
horizontal line. The i¢th and (i 4+ 1)st red dots on one horizontal line must be connected
to the ith and (i 4+ 1)st red dots on the other horizontal line by a diagram which has a
thick red strand in the middle, which is given in (4.11). The arcs are colored in a manner
consistent with their boundary points and are assumed to have no critical points (in
other words no cups or caps). They are allowed to intersect, but no triple intersections
are allowed. Arcs are allowed to carry dots. Two diagrams that are related by an isotopy
that does not change the combinatorial types of the diagrams or the relative position of
crossings are taken to be equal. The elements of the vector space W; are formal linear
combinations of these diagrams modulo the local relations for W along with the relations
given in (4.12) and (4.13) which correspond to relations in Proposition 4.3.
The elements e; ® e;, where 0 < j <7 or i < j < n, are represented by diagrams

ej®ej=| """ olew;. (4.11)
1 j 41 i1 itl 42 n

The second and third equations of (4.9) in terms of diagrams are
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T.7.7.0. 7.1

b
i i+1 7 i+1 ) i+1 1 i+1
(4.12)

The second and third equations of (4.10) in terms of diagrams are

r'JHH = r-J”H . (4.13)

i it+1 i it+1 i i+1 i it+1
The bimodule W; naturally inherits a p-DG structure from W as follows:
Ow, = 0w @Ild+1d® ow .

One may twist the p-DG structure on W; to obtain a new p-DG bimodule W, *. As
bimodules, W; = W, * but the p-DG structure on the generator is twisted as follows:

6(1 ® Gj) = 7(1‘1' + $1’+1) ® € (414)

In terms of a diagrammatic description, this twisted differential is
A L )--1 -1 @1

We use the notation W, “* because the differential is twisted by the first elementary
symmetric function in the dots corresponding to the bimodule generator connected to
the thick red strand.

We will also need the bimodules W ;4 fori=1,...,n—2.

Definition 4.4. We define the bimodule W; ;11 as the tensor product of two deformed
Webster algebras W ((17),1) over W((1");3,1).

Wiiv1 == W((1"),1)éi+1 @w((1r):.5.1) Eiirt W((1"), 1),

where éi,i+1 = E €j.
JFii+1

The following proposition follows directly from definitions.
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Proposition 4.5. In the bimodule W; ;;, we have the following equalities.

er®e =0 fk#L e, ®Re=¢01=1R¢;, Qe =1 xe;

0 A0+ 1,0+ 2, (4.16)
beRe; =1@pe; fl£0i+1i+2 yol=10y, (4.17)
Z xfx§+1$f+2 ®e;=1® Z z?z?+1xf+26j where d = 1,2,3,  (4.18)
a+b+c=d a+btc=d
a,b,c>0 a,b,c>0
YigoVip10; @ e = 1 @ Yipothiv1vie;,  Vihit190ie ® ej = 1 @ PYirhi1vi42e;,
(4.19)

where j # 4,7+ 1.

For a diagrammatic description of W; ;i 1, we consider collections of smooth arcs in
the plane connecting n red points and 1 black point on one horizontal line with n red
points and 1 black point on another horizontal line. The ith, (¢ + 1)st and (i + 2)nd
red dots on one horizontal line must be connected to the ith, (i + 1)st and (i + 2)nd
red dots on the other horizontal line by a diagram which has a thick red strand in the
middle, which is given in (4.20). The arcs are colored in a manner consistent with their
boundary points and are assumed to have no critical points (in other words no cups or
caps). They are allowed to intersect, but no triple intersections are allowed. Arcs are
allowed to carry dots. Two diagrams that are related by an isotopy that does not change
the combinatorial types of the diagrams or the relative position of crossings are taken
to be equal. The elements of the vector space W ;41 are formal linear combinations of
these diagrams modulo the local relations for W along with the relations given in (4.21),
(4.22), (4.23) and (4.24).

The elements e; ® e;, where 0 < j <iori+1 < j <n, are represented by

ej®ej=| " H € Wiit1 - (4.20)

LA

1 +3 n

The generating equations in (4.18) in terms of diagrams are

.T\P \l\ . .1 . o)
\l\ + .T\P + \l\ 1.1 0 w22)
I R e A e e
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T-

(4.23)

1

The equations in (4.19) in terms of diagrams are

Il If
I I = . (4.29)
— | 1 |

i i+1i+2 i it1lit2 i i+1i+2 i oi+1i+2

The bimodule W; ;41 naturally inherits a p-DG structure from W where one sets the
differential on the generator (4.20) to be zero.

Remark 4.6. We will sometimes denote the elements in the equalities of in (4.24) as a
crossing between a black strand and a thick red strand. We take a similar convention for
diagrams in (4.13).

4.2. Bases for bimodules

We construct bases of the bimodules just introduced.

Let
n
b
Ni(a,b,0) = [[arote @ ate
k=1
ai a; b dit+1 an,
c
1 i i+l n
Ny(a) = szl TpF i1 @ Yig1e;
ai a;  Qi+1  ap
1 7 1+1 n

For0<j<nand 0 </ <nunless j=/{¢=1i,let
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[Tecy 23 g etpo—r -+ pj 1 @afe; ifj <l and j#i
oo, 2y Yrp1thegn - @ xbe; ifj>¢ and j#i
Nz(a,b,c,5,0) = {[lie, zi+y® @ ale; ifj=40j#1

HZ:l ffZ’“y” ® x$pethe—1 - Yiy1e;, fj<l and j=1
[Tecy 235y @ aitpoy1tpoyo - hie; if j >0 and j=i.

For j < £ and j # i, diagramatically R3(a, b, c, j, £) is given by

ax a; Qi1 b an

~ %HW

T e

b1 b2 bl b2 b3

could be written as a linear combination of elements of the form

a1 as aip a2 a2
.*r" t ay,az,az > 0,
>
H allaa20_107 and H ¢ € {0’1,2},
‘-H " { ’ }’ C2 € {07 1}7
Cc1 C1 C2

respectively.
Proof. This is a well-known result. See for example [2, Section 2.2]. O
Proposition 4.8. The set
{N1(a,b,c),Ra(a),N3(a, b, c,j,0)|a,...,an, b€ Z,c€{0,1},0< 5 <n,0<{<n}
is a spanning set of W;.

Proof. We will only highlight interesting features of the proof, which include cases where
the black strand begins and ends in between the two red strands connected to the thick
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red strand. First we will show that ;11 ®;112;¢€; is in the span of the proposed spanning
set. The diagram for this element is

). (4.25)

Using relations (3.11), we have the following equations
E E = H — H ) (4.26)
2 2 = - (4.27)

Subtracting equation (4.27) from equation (4.26) yields

WAL -

Using symmetric function relations on (4.28) we get

DEDSGRG

Thus a diagram with a portion as in (4.25) is in the span.
Consider a portion of a diagram of the form

). (4.29)

Then using relations (3.11), we have

PR
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which shows that a picture (4.29) is in the span of the proposed spanning set since we
already showed the first term above is already in the proposed spanning set. O

In order to prove that the elements in Proposition 4.8 are actually a basis of W;, we
will construct a (W (n, 1), W(n,1))-bimodule homomorphism ¢;: W; — Homy(V;,, V,,).
Consider the divided difference operator
o , i
D;: kly;lz1, ..., zn] = k[yjl[z1, ..., 20] f—-—
LTj — Ti41
where f% is the polynomial obtained from f by exchanging the variables x; and x;11
and keeping all other variables the same.

Proposition 4.9. There is a bimodule homomorphism ¢;: W; — Homg(V,,, V;,) inherited
from the representation of W(n,1) on V;, determined by

Proof. It is a routine check using the fact that symmetric functions are invariant under
the action of a divided difference operator. O

Proposition 4.10. The spanning set in Proposition 4.8 is a basis of W;.

Proof. Clearly a collection of vectors in this bimodule could be linearly dependent only
if the configuration of boundary points is the same. We will focus on the most interesting
case. For simplicity, assume there is a dependence relation of the form

air b a2 a b as a as

+ K2

ap,az H

o (| 22

ay,az,b ai,az2,b H

= 0. (4.30)

Applying the bimodule homomorphism ¢; from above on the element 1 yields
kgl,az,b(yl - xl)z?lxg2yi7 + k217a2mi”11‘g’2 = O :

This implies that k?ll’a%b = kilm = 0 and thus kél,az,b = 0. Therefore the elements in
(4.30) are in fact linearly independent.
Checking linear independence for the other elements in the spanning set proceeds in

a similar manner. 0O
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Proposition 4.11. The following elements span W ;41
a1 q; @i+l @49 On
Ji(a,b,ci,ci01) = b>0,¢,=0,1,2,¢;41 = 0,1,

Ci Cit1

ar g, Qit1 Qiy2 dn
D(a,cicip1) = ¢ =0,¢41=0,1,

Ci Cit1

a1 q; %+l a;yo On

Dg(a,b,ci,ci_,_l) = ‘ bZO,Ci :07132701'—1—1 :0,1,

Ci Cit1

ar  q; %+1 a;p9 On
u(a,cicip1) = | o ¢ =0,c41 =0,1,

Ci Cit1

ar  q; %i+1 a;po On

:5(a»ciaci+1) = (Ci»ci+1) = (070)»(170)’(05 1)7(151)7

Ci Cit1

ar  q; %+l a;p9 On
jﬁ(a,b,Ci,Ci+1) = bZO,Cl‘ :0,1,2,Ci+1 ZO,].,

Ci Cit1

ar  q; %+l a9 On
37(a,b7ci,ci+1) = bZO,C,‘ZO,l,ZCiJA:O,l,

Ci Cit1
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ar  q; %+1 a;y9 On

js(avciaci-‘rl) = (ciyci-‘rl) = (0’0)7(1’0)7(071)7(270)a

Ci Ci+1

a; Ai+1 aH_g b an
bZO,Ci :Ovla27ci+1 20717
3 (abczycz+17]7 = OS.],ESN
unless {j,¢} C {i,i + 1},
Ci Ci41

where the diagram in Jg(a, b, ¢;, ¢;+1, J, £) represents any picture where the black strand
begins after the jth red strand and ends after the ¢th red strand and has a minimal
number of intersections with the red strands.

Proof. Once again, we highlight features of the proof that only involve cases where the
black strand begins and ends in the segments connecting red boundary points connected
to the thick red strands. First note that by Lemma 4.7, we could assume that the red
dots appear in the following configuration

a1 q; %+l a@;y0 On

Ci Ci+1

where all a; € Z>o, ¢; € {0,1,2}, and ¢; 41 € {0,1}.
Next we will explain why we could assume that in (4.31) that there are no black dots.

ay a; Ai+1 Aj42 Gy
(4.31)

Ci Ci+1

Using relations we have
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so a black dot produces a linear combination of other elements in the proposed spanning
set.

Next we will explain why we may assume that ¢; = 0 in (4.31). As in (4.32) we have
a relation

2 1 1
Subtracting (4.33) from (4.32) yields
1 1
1 1

By Lemma 4.7, the third to last and last diagrams above are in the proposed span, and
thus

is in the span of other elements of the proposed spanning set.
Next we will show that we could assume that there are no black dots on diagrams of
the form

‘ : (4.34)
Using bimodule relations (3.11) and (4.24) we have

EE B

Thus we may assume that there are no black dots on diagrams of the form (4.34).
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Next we will show that elements of the form
(4.36)

are already in the span of the proposed spanning set. Using relations (3.11), the left side
of (4.37) below could be rewritten as two double crossings of the black strand and the
two bottom left red strands. Relations (4.24), then allow us to move the black strand up
through the thick red strand. Applying relations (3.11) then implies (4.37).

TRRILEND

Using (4.37) and (4.35) repeatedly, we get

Thus (4.36) is in the span of the proposed spanning set.
Similar techniques show that the other elements stated in the proposition complete a
spanning set. O

In order to prove that the elements in Proposition 4.11 are actually a basis of W ; 1,
we use a (W(n, 1), W(n, 1))-bimodule homomorphism ~; ;41: W; ;41 — Homy(V,, V).

Proposition 4.12. There is a bimodule homomorphism 7; ;+1: W; ;41 — Homy(V,, V)
inherited from the representation of W(n,1) on V;, determined by

H e : f eV, — DZ.DZ+1DZ(f) eV, .
1 i i+1i4+2 n

Proof. This is a routine calculation. O
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The next two results contain important facts used later on, but the proofs are just
lengthy computations that the reader interested in a smooth flow of the text could safely
ignore.

Proposition 4.13. The spanning set in Proposition 4.11 is a basis of W ;1.

Proof. If €jvi€1, €hvoea € Wy 41, where €1, €], €2, €5 are idempotents, then there could
only be a dependence relation if €| = €, and €; = e5. Using this fact, there are several
cases to check. We supply the details for two non-trivial cases.

First consider a dependence relation of the form

al az as aiq a2 as ai az as
b b b
1 2 3
kauamas,b + kalva27a37b + kja17a2,a3,b
21 2 1 1
a; 22 aj ar 22 az a1 @2 as
b b b
4 5 6
+ kal’amaSab + kal,azya&b + kal,az,as,b ‘ (4.38)
1 1
1ifa3 g
1

a ai

+ kgl,az,aa l 0.

Apply the homomorphism v; ;41 to (4.38) and evaluate on 1 to get

+ k]

ai,a2,as3

1 ai, a2, a3, b 7 ai a2, a3 __
kal,ag,ag,b(yl - xl)‘rl .’172 CL'3 yl + kal,az,agm]. ./L'2 $3 -
This forces
1 1.7 _
kal,a2,a37b - kal,az,ag =0.

Then the dependence relation becomes
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ap 92 ag ar 22 az a; 22 ag
k?zl,ag,ag,b bﬁ + k(?;l,az,ag,b bﬁ + kgl,az,ag,b bﬁ
2 11 1
ap_ 22 a3 a; 2 ag ar 22 ag
+ k05,17ll2,a3,b bﬁ + kgl,ag,ag,b bﬁ + k21,a2,a3 | l =0.
1

(4.39)
Now apply i i+1 to (4.39) and evaluate on z; to get
kgl,a2,a3,b<y1 - ml)x(flxgzmgayll) = 0 :
This implies
kg/l,aZ:anb =0
and the dependence relations becomes
a; 22 aj a1 22 as a; 22 aj
b b b
k§17a27a37b ﬁ + kilaa’-’aa?nb ﬁ + k217a27a3,b ‘
2 1 1
(4.40)

ai 3

ar 22 a3 a2 ¢
+ kS b + kS =0
ai,az,as3,b ai,a2,a3 - :

Now apply i i+1 to (4.40) and evaluate on x5 to get

2 ai a2, a3, b 8 ai ,,a2,.a3 __
kal,az,ag,b(yl —1‘1).171 Lo T3" Y1 +ka1,a2,a3x1 Lo" T3 =0.
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This implies that kgha?’a&b = kgl,amas = 0 and the dependence relation becomes
ar 92 ag ar 22 az a1 @2 as
b b b
4 5 6 —
kal,amas,b + kal,az,lls,b + kahaz,as,b =0.
1 1
(4.41)

Now apply 7;,i+1 to (4.41) and evaluate on zox3 to get

5 ay a2 a3 b .
kal,az,ag,b(yl - xl)xl Lo ‘TS V= 0.

Thus k5 = 0 and the dependence relation becomes

a1 @2 as ar 92 as
o an.anb b + KS anash ; =0. (4.42)
1
Apply ;41 to (4.42) and evaluate on zqz2 to get
kil,ag,ag,,b(yl - $1)$?1$§2x§3y’1’ =0.
Thus k;‘l,%as’b = 0 which implies kgh%%b = 0. It is straightforward to show that each

element in the spanning set gets sent to something non-zero under -y; ;41 by evaluating
on an appropriate element. For instance,

ap_ 92 aj
Yiyit1 (1) = (y1 — x1)yz ] a5 w5, (4.43)

21

Thus these elements of the spanning set are non-zero and linearly independent.
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Next we will consider a dependence relation of the form

a;_ 92 aj
b
a17a2,(13, a17a27a31
2

as
+ a17a2,a3, ‘ | al,aQ,a3, ‘ I
11
a9 as as
+ k217a27a3, l | + k217027a37 l I <4'44)
+ k217a27as l | + k217a27a3 l |
9 10 _
+ kal7a2aa3 | | + kal@z@z l | = 0.

Applying the homomorphism ~; ;41 to (4.44) and evaluating on 1 yields the equation

1 ai a2, a3, b 7 ai ,a2,.a3 __
kal,ag,ag,b(yl 1).’E1 Lo T3" Y1 +ka1,a2,a3$1 Lo"T3™ =

Thus k1 = k7 = 0 and the dependence relation becomes
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a;_ 92 a3 a;_ 92 ag
‘ l b‘ | b
3 4
alya23a37 + ka17a25a3) + kal,aQ,a3,

5 { | 6 { | l |
+ kahaz,as, + ka1,a27a3, a17a2,as 4 45
+ k a1,a2,a3 | | al,az,as l |

Now apply i i+1 to (4.45) and evaluate on z; to get

3 az .a3,b 8 a2 .43 _
kal,az,ag,b(yl 1’1)331 To"T3" Yy + kal as, agml Lo"T3™ =
Thus kal amsas.b = = k% 4,0, = 0 and the dependence relation becomes

a;_ 92 ag
‘ I b‘ I
4 5
t1170127a37 + ka11a27a3a + ka17a271137
1
aq as ar 92  as
+ kS b + k) + kL
ay,az,a3,b a1,a2,a3 ap,az2,as3
1

Now apply 7 i+1 to (4.46) and evaluate on z2 to get

(4.46)

2 az a3, b 9 az a3 __
kal,az,ag,b(yl 1‘1)11?1 R N ka17a2,a3‘r1 Lo" T3 =0.

Thus k2 =k = 0 and the dependence relation becomes

ai,az,a3,b — Vai,az,a3
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ar 22 as a; 22 ag ar 22 aj
a ’ + K ’ + kg b
ai,az2,a3,b ai,a2,a3,b ai,a2,a3,b
1 1
L a (4.47)
10 _
+ kahaz,as =0.

Now apply 7ii+1 to (4.47) and evaluate on z% to get

kgl,az,ag,b(yl - xl)xilllxgmxgg‘y% + k;?,ag,agx?lxg2x§3 =0.
Thus kil,@,ag,b = k}l?ﬂ%as = 0 and the dependence relation becomes
a; 92 ag a; 22 aj
31,112,(13,17 ’ ‘ + kgl,a27a3,b X =0. (448)

1

Finally apply i ;+1 to (4.48) and evaluate on z1z2 to get

4 ay .as, a3, b __
kal,ag,ag,b(yl - xl)‘rl x2 .',L'3 yl - 0 .

6

ap,a2,as,

Thus &} , = 0 and consequently k

a1.az.05, » = 0. Therefore these spanning elements

are also linearly independent.

The other cases are checked in a similar fashion. 0O
Proposition 4.14. The following elements span the bimodule W; @w W11 Qw W;.
a1 a; b ai+1. (7)) a.n

Ji(a,b,r,8,t) = |- Il a; € L>0,b € L>g,1,5,t € {0,1},

1 7 i+1 142 l
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jz(a, 8) =
I3(a)
ai
®

Ja(a,byrys,t) =
1
35(a,r,t) =

ai

a; Q41542
i i+l 42
ai a; @41 0542
® 'Hfu
1 i i+l 42
a; @iv1 b a2 On
'T’ ® ®
TR}
7 +1 1+2 n
a; Ai1 A2

YQ

an

n

Y. Qi et al. / Journal of Algebra 598 (2022) 470-517

® ®
a¢€ZZo,S€{O,1},
S

Gnp

a; € Zzo,

a; € Zzo,b S ZZ(),T,S,t S {0, 1},

a; € ZZ(),T,t S {0,1},



Y. Qi et al. / Journal of Algebra 598 (2022) 470-517 501

ay a; b Ait1Gir2  9An

Je(a,b,r,s,t) = |- a; € L>0,b € L>g,r,s,t € {0,1},

TN

1 v i+l 42 n

a1 a; Qi1 Ai42 [e2%

Jr(a,rt) = |- a; € Z>o,m,t € {0, 1},

1 i i+l 42 n
ay a; @it1Qit2 an
® ® ®
Js(a,t) = |--- @ a; € Z>o,t € {0,1},
1 tz‘J:\A i+2 n
a1 ai‘iﬁﬂrj’ b Qi a‘n
Jo(a,b,r,s,t) = |- a; € L>0,b € L>g,1,5s,t € {0,1},

t
1 i il 2 n



502 Y. Qi et al. / Journal of Algebra 598 (2022) 470-517

ai a; Qi1 A2 (7%

® %Hr_,. ®

Jlg(a,r,t) = s || s a; € ZZ(),T,t S {0,1},

t® " _
1 7 +1 42 n
ai a; Qi1 Q42 [e2%
5 LAY o)
|
—
Jll(a,r) = r || a; GZZ(),T‘E {0,1},
H.J
|
1 7 +1 1+2 n
‘1.1 a; i1 %i+2 b a.n

a; € Zzo,bG Zzo,
r,s,t€{0,1} 0<j5,4<n

|
4
” unless (j,£) = (i,4), (i,i + 1),
Rﬁﬁ (i+1,0), (i +1,i+1),

t
1 v il 42 n

le(avba T757ta.jv é) =

where the diagram in Jio(a,b,r,s,t,7,£) represents any picture where the black strand
begins after the jth red strand and ends after the /th red strand and has a minimal
number of intersections with the red strands. Note that it could equally well be positioned

in a northwest-southeast configuration.

Proof. By Lemma 4.7, we may assume that any red dot configuration in the part of the
picture connecting the 4, i + 1, and i 4+ 2 red boundary points is a linear combination of

elements
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a;

T

e

T

Git1 Qit2
®

503

(4.49)

where r, s,t € {0, 1}. Next we will show that we do not need any black dots on a diagram

of the form

i b iy aiqo
®

This follows from the calculation

2
l l i
| |
I [ i
Next note that
2
il I i
| — m_ . -
] i i

Thus

(4.50)
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is already in the span of the proposed spanning set. Similarly,

T

is also already in the span of the proposed spanning set.
Next we will show that we do not need black dots on a diagram of the form

a; Q41 Q42
e ¢
|

(X

T
ot

i i+1 42

This follows from the calculation

Next note that
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b

which shows that

implies that

-7

is in the span of the proposed spanning set. A longer computation using the equality



506 Y. Qi et al. / Journal of Algebra 598 (2022) 470-517

implies that

is in the proposed span.
Now consider elements of the form

a; Aj41 b Aj4-2
®

By Lemma 4.7, one may assume that r,s,¢t € {0,1} and a;,a;41, ai+2,0 € Z>p. Next
note that the equation

7Y X 771 L
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implies that a black dot on a diagram

507

TN 0N Tl T
I _FH - | _ I
T n TUl T
A — A A
implies that
T
I
I
S

is already in the span of the proposed spanning set.

By Lemma 4.7, we may assume that dots on diagrams of the following form have the

configuration

a; p Yi+1di+2

r

7

where r,s,t € {0,1} and b, a;, a;4+1,6i42 €

i+1 42

Z>¢. Next note that
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}
)
)
)

implies that

}

is in the span of the proposed spanning set. The equation

}
)
)
}

implies that

}

is in the span.
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Next note that

T L1 U 1
= a ~ S
implies that
I

is in the span. The equation
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implies that

is in the span.

Similar manipulations show that the set of elements in the statement of the proposi-

tion, do in fact provide a spanning set for the bimodule.

O

We will prove that the spanning set above is indeed a basis. This will utilize a bimodule

homomorphism introduced in the next section.
4.3. Bimodule homomorphisms
There is a bimodule homomorphism
e W, - W

determined by
H.J
I~
f’H

It is clear that €; commutes with 9.
There is a bimodule homomorphism

ti: W — Wt {-2}

(4.51)
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T B

The fact that ¢; is a well-defined bimodule homomorphism is shown in [12, Proposition
17].

It is clear that ¢;: W — W;{—2} does not commute with 9. However, we do have the
following variation.

determined by

Proposition 4.15. The bimodule homomorphism ¢;: W — W, “*{—2} commutes with
the action of 0.

Proof. We first check the proposition in the case that there is no black strand in between
the ith and (i + 1)st red strands. By definition

1; 00 =0.

On the other hand,

) .T\(J H‘f-i‘
~ r"*.

ZQ’HH(.J H‘f-i‘ 2’7‘(4_’7‘(.9+Hr +H‘f-l‘
r-H f')Hoz —~ JJHo f')Hn

where the four last terms come from the twisted p-DG structure on W, ' (see (4.15)).
The second case we must consider is when the black strand lies between the 7th and
(i + 1)st red strands. Once again
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Lioa ‘ ‘ ‘
- | é; | e

We must show that 9(X) = 0. By definition

K?;’

where the last four terms come from the twisting on W, “*. It follows that

where the second, fifth, and sixth terms in (4.52) combine to become the second term in
(4.53). Using the first set of relations of (3.9) and (4.13), we get that the above simplifies

RS

Proposition 4.16. There are bimodule homomorphisms o j4+1: Wi i1 — W;Q@w Wit Qw
Wi and 1,0 Wi 41 — Wip1 @w W; @w Wit defined on the bimodule generator (4.20)
by

Let
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NOT
-

Q41 = r—‘ | (4.54)
~
AN L
S
NV T
S
—~

Q1,5+ = ‘ (4.55)
A
AN | T
S

These homomorphisms commute with the action of 0.

Proof. It is straightforward to check that these are bimodule maps. The differential 9
annihilates both the generator (4.20) and its image under the homomorphisms. 0O

There is a bimodule homomorphism W; @w W;11 @w W; — W;{2} defined as a
composition of the maps e and A constructed in [12]. It is defined on generators in (4.56)

and (4.57).
T TV
A

- -

F)IL 0, F)IL — (4.56)
Yl YA
~ ~
ISR

HIH | ‘ ® (4.57)

Sl
INEAT INTA

4
The proof of the next result is similar to the proofs of Propositions 4.10 and 4.13, so

we just supply the general strategy.

Proposition 4.17. The spanning set in Proposition 4.14 is a basis of W; @w W11 @w W;.
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Proof. Let B;- be elements in the spanning set which are in the image of multiplication
on the left by e; and on the right by e;.

In order to prove that the elements of B!, | are linearly independent, one writes down
a dependence relation and uses the bimodule homomorphisms ¢; from Proposition 4.9,
and the bimodule homomorphism defined in (4.56) and (4.57) to conclude that all the
coefficients in the dependence relation are zero. One proves in a similar way the linear
independence of elements in B} and B;"".

e

By applying the element

1 i+1 i+2 n
on top, the linear independence of elements in Bfii follows from the linear independence
of Bl ;.

Showing that all other sets B; are linearly independent is routine. 0O
4.4. Braid group action

As a consequence of the results of Section 4.3, there are complexes of (W, W)#H-
modules

Si= Wi —= W, = W s W {2} .
Lemma 4.18. There exists an isomorphism of (W, W)#H-modules
Wi @w Wi 2 W; © W {2}
Proof. First note that using isotopies, black strands can be moved out of the way in
these bimodules as in [12, Lemma 5]. Thus the proof reduces to the proof of [10, Lemma

4.3]) or [17, Lemma 3.5]. O

Lemma 4.19. There is a short exact sequence of (W, W)#H-modules which splits as
(W, W)-bimodules

0—=Wiit1 = W; Qw Wip1 @w W; — I/Vl-e1 — 0.

Proof. The map W; ;11 — W; Qw W11 @w W; is just given by «; ;41 defined in (4.54).

Recall there is a map W; @w W11 @w W; — W, defined on generators in (4.56)
and (4.57). This is clearly a surjection and a straightforward calculation shows that this
surjection is a p-DG map.
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Note that

515

is in the kernel of W; @w W;11 @w W; — W', By a graded dimension count utilizing
the bases of the bimodules from Propositions 4.10, 4.13, 4.17, we get the exactness of

the sequence of the lemma.

Now we define a splitting map W; ®@w W1 @w W; = W, ;41 by

T

-

| =0,

S

|
|
I-H
| =0,

A

1
-

+HH

et

S

T
T
I

-

~N
AT

— 0,

Note that this splitting does not respect the p-DG structure.
Next we define a splitting map WS — W, @w W11 Qw W; by

| 1
A

1
—

|
A

T

-

(4.58)

(4.59)

(4.60)

Note that this splitting map does not respect the p-DG structure either. All of these
splitting maps are bimodule homomorphisms since they are compositions of bimodules

maps described in detail in [12].
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Thus there is a short exact sequence of (W, W)# H-bimodules which splits as (W, W)-
bimodules. O

The next crucial proposition is proved in a similar manner as in [10, Theorems 4.2,
4.4].

Proposition 4.20. The complexes of (W, W)# H-modules satisfy the following relations
in the relative homotopy category.

1. 3,08, 2Id= X0 X,
2. EioEj%EjoEifor\ifj|>l,
3. EZOEJOEng]OEzOZJf0r|2*‘]|:1

We point out that, as in the usual homotopy category case, relative homotopy classes
of p-DG bimodules over two p-DG algebras A and B give rise to functors from C?(B, dy)
to C?(A, do). Therefore, Proposition 4.20 can be regarded as an isomorphism of functors
on the relative homotopy category of p-DG W-modules.

Proof. The first isomorphism follows as in [10, Theorem 4.2] or [17, Proposition 3.7]
which use versions of Lemma 4.18.

The second item is clear.

The third isomorphism follows as in [10, Theorem 4.4] or [17, Proposition 3.9] which
use versions of Lemma 4.19. O

Applying the p-extension functor P, we obtain p-complexes of p-DG (W, W)-
bimodules T} := P(%;) and T/ := P(X}) in the relative p-homotopy category C?(W, dy).
Explicitly, these complexes look like:

To= (Wi = S W S w) (4.61)
T = (W S Wi -2} S S W -)), (4.62)

where the repeated terms appear p — 1 times. It should be pointed out that T; and T
are just cones of the p-DG bimodule maps ¢; and ¢; in the relative homotopy category of
p-DG (W, W)-bimodules. This is because P is exact (Proposition 2.4), and thus it sends
the cones ¥; and X to cones in the relative p-homotopy category.

Theorem 4.21. The p-complexes of p-DG (W, W)-bimodules satisfy the following isomor-
phisms of functors on the relative p-homotopy category C?(W, dy).

L T,0T! 21d =T/ 0T,
2. T;0T; 2T, 0T, for |i — j| > 1,
3. TyoTjoT; 2T;0T; 0Ty for |i — j| = 1.

Proof. This follows from Proposition 4.20 by applying the functor P from Section 2. O
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