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1. Introduction

An approach to categorification of quantum groups, their representations, and quan-
tum invariants at a prime p root of unity was outlined in [5] and further developed in [13]. 
These works suggest that one should look for p-differentials on structures categorifying 
objects at generic values of the quantum parameter. There has been some progress in 
this program for quantum sl2 [3,4,8,9,14–16].

In particular, a categorification of the braid group action on the Burau representation 
at a prime root of unity was constructed in [14]. The authors considered a p-DG structure 
on the algebra A!

n which describes a singular block of category O(gln) corresponding to 
the Young subgroup S1 ×Sn−1. Ignoring the p-DG structure, this categorical action is a 
consequence of Koszul duality and Khovanov and Seidel’s action of the braid group on 
the homotopy category of modules over the zigzag algebra An. Whereas the projective 
modules play the role of the Temperley-Lieb algebra in [11], the simple objects form 
an exceptional sequence of objects on the other side of Koszul duality. As a result, one 
must find projective resolutions of the simple objects of A!

n in order to construct the 
braid group action directly. In the context of the p-differential, one must find cofibrant 
replacements of the simple objects. This was the main technical step in [14].

Partially motivated by the construction in [14], a deformation W = W (n, 1) of A!
n was 

considered in [12] and the authors showed that there is a categorical braid group action 
on the homotopy category of W -modules. This result was extended in [7] to a categorical 
braid group action on the homotopy category of a deformation of more general Webster 
algebras for sl2, for which W is a special case (hence the notation).

In this note, we return to the simplified setting of W . There is a p-DG structure 
on this algebra (see [22]). We show that there are braiding complexes in a homotopy 
category of p-DG W -modules using key ideas from [10]. Using some results from p-DG 
theory we extend the main result of [12] to the p-DG setting.

Theorem. There is a categorical action of the braid group on n strands on the relative 
p-DG homotopy category of W .

Deforming the algebra A!
n allows us to replace the p-DG derived category in [14]

with the relative p-DG homotopy category here. This theorem should be compared to 
[14, Theorem 5.14], albeit in the weaker context of the relative homotopy category. 
However, the authors believe that the results will become useful towards building a p-
DG link homology theory, as proposed in [17]. These further questions will be addressed 
in subsequent works of the authors.
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In [7] a braid group action on the homotopy category of deformed Webster algebras 
was constructed by exhibiting an action of the Khovanov-Lauda-Rouquier 2-category 
[6,18], and then using symmetric Howe duality. We expect the main result here holds on 
the level of generality of [7]. One would need to consider a p-DG version of the Khovanov-
Lauda-Rouquier category and show the braiding of Rickard complexes [1] holds in the 
presence of the p-differential.

In recent work [20], the main result of [7] was proved by relating the deformed algebra 
to various objects in Lie theory and geometry. It would be interesting to import the p-
DG structure to the categories of Gelfand-Tsetlin modules and perverse sheaves studied 
there.

1.1. Acknowledgments
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supported by the NSF grant DMS-1807161 and PSC CUNY Award 63047-00 51. 
Y. Q. and Y. Y. were partially supported by the Research Institute for Mathematical 
Sciences, an International Joint Usage/Research Center located in Kyoto University.

2. Some exact functors on p-complexes

In this section, we gather some necessary background material for later use. Further 
details of this section can be found in [8, Section 2.1] and [17, Section 2.1].

2.1. Extension functors

Let k be a field of finite characteristic p > 0 and A be a k-algebra. We think of 
A as a graded algebra by setting all elements of A to be of degree zero. A p-complex
of A-modules U = ⊕i∈ZU i is then a graded A-module, equipped with a degree-two 
endomorphism ∂U satisfying ∂p

U = 0. A morphism of p-complexes f : U−→V consists of 
A-module maps fi : U i−→V i, i ∈ Z, that commute with the p-differentials on U and V . 
A morphism f : U−→V of p-complexes is called null-homotopic if there is a collection 
of A-linear maps hi : U i−→V i−2p+2 such that, for any i ∈ Z,

fi =
p−1∑
k=0

∂p−1−k
U hi+2k∂

k
V . (2.1)

When p = 2, these notions reduce to the usual notion of (co)chain complexes of A-
modules over characteristic two, with the differential degree doubled. Furthermore, just 
as the usual homotopy category of chain complexes is triangulated, the homotopy category 
of p-complexes, obtained from the (abelian) category of p-complexes modulo the class of 
null-homotopic morphisms, is also triangulated. Let us denote this p-homotopy category 
by C(A, ∂).
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In this subsection, we recall a functor relating the usual homotopy category C(A, d)
of A with its p-homotopy category C(A, ∂).

To do this, recall that a usual chain complex of A-modules M consists of a collection 
of A-modules and homorphisms di : M i−→M i+1 called coboundary maps

· · ·
di−2

M i−1 di−1
M i

di

M i+1 di+1
M i+2 di+2 · · · ,

satisfying di ◦di−1 = 0 for all i ∈ Z. A morphism of chain complexes f : M−→N consists 
of a sequence fi : M i−→N i that commute with the differentials. A map is null-homotopic 
if there is a sequence of A-module maps fi : M i−→N i, i ∈ Z, of A-modules, as depicted 
in the diagram below,

· · ·
di−2

M i−1

hi−1

di−1

fi−1

M i

hi

di

fi

M i+1

hi+1

di+1

fi+1

M i+2 di+2

hi+2 fi+2

· · ·
hi+3

· · ·
di−2

N i−1
di+1

N i

di

N i+1
di+1

N i+2
di+2

· · ·

which satisfy fi = di+1 ◦ hi + hi+1 ◦ di for all i ∈ Z. The homotopy category C(A, d), by 
construction, is the quotient of chain complexes over A by the ideal of null-homotopic 
morphisms.

We define the p-extension functor

P : C(A, d)−→C(A, ∂) (2.2)

as follows. Given a complex of A-modules, we repeat every term sitting in odd homo-
logical degrees (p − 1) times while keeping terms in even homological degrees unaltered. 
More explicitly, for a given complex

· · ·
d2k−2

M2k−1 d2k−1
M2k d2k

M2k+1 d2k+1
M2k+2 d2k+2 · · · ,

the extended complex looks like

· · ·
d2k−2

M2k−1 · · · M2k−1 d2k−1
M2k

φ2k

M2k+1 · · · M2k+1 d2k+1
M2k+2 d2k+2 · · ·

.

Likewise, for a chain-map
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· · ·
d2k−3

M2k−2 d2k−2

f2k−2

M2k−1 d2k−1

f2k−1

M2k d2k

f2k

· · ·

· · ·
d2k−3

N2k−2
d2k−2

N2k−1
d2k−1

N2k
d2k

· · ·

,

the obtained morphism of p-DG A-modules is given by

· · ·
d2k−3

M2k−2 d2k−2

f2k−2

M2k−1

f2k−1

· · · M2k−1 d2k−1

f2k−1

M2k d2k

f2k

· · ·

· · ·
d2k−3

N2k−2
d2k−2

N2k−1 · · · N2k−1
d2k−1

N2k
d2k

· · ·

.

This is clearly a functor from the abelian category of cochain complexes over A into the 
category of p-complexes of A-modules, which we call P̂.

Next, one may check that P̂ preserves ideals of null-homotopic morphisms. Indeed, 
suppose f = dh + hd is a null-homotopic morphism in C(A, d). We first extend, for any 
i ∈ Z and hi : Mi−→Ni−1, to a collection of maps

P̂(h)i : P̂(M)i−→P̂(N)i−2p+2

as follows. On unrepeated terms, P̂(h) sends M2k to the copy of N2k−1 sitting as the 
leftmost term in the repeated N2k−1’s, while on the repeated terms, it only sends the 
rightmost M2k+1 to the unrepeated N2k and acts by zero on the other repeated M2k+1’s. 
Schematically, this has the effect:

· · · M2k−3
d2k−3

M2k−2
d2k−2

M2k−1

0

· · · M2k−1
d2k−1

h2k−1

M2k
d2k

h2k

M2k+1

0

· · ·

· · · N2k−3
d2k−3

N2k−2
d2k−2

N2k−1 · · · N2k−1
d2k−1

N2k
d2k

N2k+1 · · ·

.

Lemma 2.1. The functor P̂ sends null-homotopic morphisms in C(A, d) to null-homotopic 
morphisms in C(A, ∂).

Proof. The proof now is an easy exercise. See [17, Lemma 2.2] for more details. �
This lemma implies that P̂ descends to a functor

P : C(A, d)−→C(A, ∂), (2.3)

which we call the p-extension functor. A key property of this functor that we will use is 
the following.
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Proposition 2.2. [17, Proposition 2.3] The functor P is exact.

2.2. Relative homotopy categories

For any graded or ungraded algebra B over k, denote by d0 the zero super differential 
and by ∂0 the zero p-differential on B, while letting B sit in homological degree zero. 
When B is graded, the homological grading is independent of the internal grading of B. 
For a graded module M over a graded algebra B, we let M{n} denote the module M , 
where the internal grading has been shifted up by n.

Suppose (A, ∂A) is a p-DG algebra, i.e., a graded algebra equipped with a differential 
∂A of degree two, satisfying

∂p
A(a) ≡ 0, ∂A(ab) = ∂A(a)b + a∂A(b), (2.4)

for all a, b ∈ A. In other words, A is an algebra object in the module category of the 
graded Hopf algebra H = k[∂]/(∂p), where the primitive degree-two generator ∂ ∈ H

acts on A by the differential ∂A.
Then, we may form the smash product algebra A#H in this case. As a k-vector space, 

A#H is isomorphic to A ⊗H, subject to the multiplication rule determined by

(a⊗ ∂)(b⊗ ∂) = ab⊗ ∂2 + a∂A(b) ⊗ ∂. (2.5)

Notice that, by construction, A ⊗ 1 and 1 ⊗H sit in A#H as subalgebras.
A module over A#H is also called a p-DG module. We will consider the usual cochain 

complex or p-complexes of p-DG modules. In such a complex, the usual differential or 
the p-differential are required to respect the H-actions. Likewise, the null-homotopies in 
these cases intertwine A#H-actions.

There is an exact forgetful functor between the usual homotopy categories of chain 
complexes of graded A#H-modules

Fd : C(A#H, d0)−→C(A, d0).

An object K• in C(A#H, d0) lies inside the kernel of the functor if and only if, when 
forgetting the H-module structure on each term of K•, the complex of graded A-modules 
Fd(K•) is null-homotopic. The null-homotopy map on Fd(K•), though, is not required 
to intertwine H-actions.

Likewise, there is an exact forgetful functor

F∂ : C(A#H, ∂0)−→C(A, ∂0).

Similarly, an object K• in C(A#H, ∂0) lies inside the kernel of the functor if and only 
if, when forgetting the H-module structure on each term of K•, the p-complex of A-
modules F(K•) is null-homotopic. The null-homotopy map on F(K•), though, is not 
required to intertwine H-actions.
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Definition 2.3. Given a p-DG algebra (A, ∂A), the relative homotopy category is the 
Verdier quotient

C∂(A, d0) := C(A#H, d0)
Ker(Fd)

.

Likewise, the relative p-homotopy category is the Verdier quotient

C∂(A, ∂0) := C(A#H, ∂0)
Ker(F∂) .

The superscripts in the definitions are to remind the reader of the H-module structures 
on the objects.

The categories C∂(A, d0) and C∂(A, ∂0) are triangulated with the triangulated struc-
tures inherited from those of C(A#H, d0) and C(A#H, ∂0). For instance, distinguished 
triangles in the quotient category are declared to be those that are isomorphic to dis-
tinguished triangles in C(A#H, d0) and C(A#H, ∂0) respectively. Recall that the latter 
distinguished triangles arise from short exact sequences of (p-)cochain complexes over 
A#H that are termwise split exact [13, Lemma 4.3].

By construction, there is a factorization of the forgetful functor

C(A#H, d0)
Fd C(A, d0)

C∂(A, d0)

,
C(A#H, ∂0)

F∂ C(A, ∂0)

C∂(A, ∂0)

.

Proposition 2.4. [17, Proposition 2.13] The p-extension functor P : C(A#H, d0)−→
C(A#H, ∂0) descends to an exact functor, still denoted P, between the relative homotopy 
categories:

P : C∂(A, d0)−→C∂(A, ∂0) .

3. Deformed Webster algebras

3.1. The p-DG algebra

We begin by recalling the definition of a particular deformed Webster algebra W (n, 1). 
More general versions of these algebras W (s, n) can be found in [12,7]. The p-DG struc-
tures on these algebras were introduced in [22]. The algebras are deformations of the 
algebras introduced by Webster in [21].

Definition 3.1. Let n ≥ 0 be an integer. Let Seq(1n, 1) be the set of all sequences i =
(i1, ..., in+1) where n of the entries are 1 and the other entry is the symbol b. Therefore, we 
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have |Seq(1n, 1)| = n +1. Denote by ij the j-th entry of i. Each transposition σj ∈ Sn+1

naturally acts on the set of sequences.
W = W (n, 1) is the graded algebra over the ground field k generated by e(i), where 

i ∈ Seq(1n, 1), xj , where 1 ≤ j ≤ n, y and ψj , where 1 ≤ j ≤ n, satisfying the relations 
below.

∑
i∈Seq(1n,1)

e(i) = 1 (3.1)

e(i)e(j) = δi,je(i) (3.2)

ψje(i) = e(σj(i))ψj (3.3)

ψje(i) = 0 if ij = ij+1 = 1 (3.4)

ψjψ� = ψ�ψj if |j − �| > 1 (3.5)

xj and y are central (3.6)

ψ2
j e(i) = (xj − y)e(i) if (ij , ij+1) = (1, b), (b, 1) (3.7)

The degrees of the generators are

deg(e(i)) = 0, deg(xj) = 2, deg(y) = 2, deg(ψj) = 1 .

In some contexts, it is natural to impose the so-called cyclotomic relation

e(i) = 0 if i1 = b. (3.8)

Quotienting W by the cyclotomic relation yields an algebra denoted by W .
We now recall the diagrammatic description of the deformation of the Webster algebra 

W = W (n, 1). Consider collections of smooth arcs in the plane connecting n red points 
and 1 black point on one horizontal line with n red points and 1 black point on another 
horizontal line. The red points correspond to the 1’s in the sequence i of e(i) and the 
black point corresponds to b in the sequence i. The n red points and 1 black point on 
the line appear in the order in which they appear in i of e(i). The arcs are colored in 
a manner consistent with their boundary points. Arcs are assumed to have no critical 
points (in other words no cups or caps). Arcs are allowed to intersect (as long as they 
are both not solid red), but no triple intersections are allowed. Arcs can carry dots. Two 
diagrams that are related by an isotopy that does not change the combinatorial types of 
the diagrams or the relative position of crossings are taken to be equal. We give W (n, 1)
the structure of an algebra by concatenating diagrams vertically as long as the colors of 
the endpoints match. If they do not, the product of two diagrams is taken to be zero. 
For two diagrams D1 and D2, their product D1D2 is realized by stacking D1 on top of 
D2.
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The generator e(i) is represented by vertical strands comprised of n red strands and 
one black strand. For instance, in the case i = (1, 1, b, 1), the generator e(i) is represented 
by

.

The generator y is represented by a black dot and xj is represented by a red dot on 
the jth red strand:

, .

The generator ψje(i) is represented by a black-red crossing on the left of the diagram 
below if ij = 1 and ij+1 = b or a black-red crossing on the right if ij = b and ij+1 = 1:

, .

Note that a red-red crossing does not appear due to relation (3.4).
Far away generators commute. The relations (3.6) and (3.7) involving red-black 

strands are

= , = , (3.9)

= , = , (3.10)

= − , = − . (3.11)

The cyclotomic relation (3.8) translates to: a black strand, appearing on the far left of 
any diagram, annihilates the entire picture:

· · · = 0. (3.12)

Note that setting red dots to be zero, we recover Webster’s algebra, and so we may think 
of the polynomial algebra generated by red dots as a polynomial deformation space of 
the Webster algebra.

For i = 0, . . . , n, there is a sequence (1i, b, 1n−i). Denote by ei the idempotent 
e(1i, b, 1n−i);



Y. Qi et al. / Journal of Algebra 598 (2022) 470–517 479
ei = e(1i, b, 1n−i) =
1

· · ·

i i+1

· · ·

n

. (3.13)

Over a base field k of finite characteristic p > 0, a p-differential graded (p-DG) algebra 
structure was introduced on a generalization of W in [22].

Definition 3.2. The p-derivation ∂ : W → W of degree 2 satisfying the Leibniz rule:

∂(ab) = ∂(a)b + a∂(b)

for any a, b ∈ W is defined on the generators of the algebra W by

∂(ei) = 0, ∂(xi) = x2
i , ∂(y) = y2, ∂(ψj) = xjψjej−1 + yψjej

and extended by the Leibniz rule to the entire algebra.

An easy exercise shows that ∂p ≡ 0.
In the diagrammatic description, we have

∂

⎛⎝ ⎞⎠ =
2
, ∂

⎛⎝ ⎞⎠ =
2
, (3.14a)

∂

⎛⎝ ⎞⎠ = , ∂

⎛⎝ ⎞⎠ = . (3.14b)

3.2. A basis

A basis for the cyclotomic deformed Webster W (n, 1) was given in [12] (see also [20]
and [19]). We slightly modify this basis and a representation of the algebra for the case 
where the cyclotomic condition is omitted.

Proposition 3.3. Let

Rn = k[x1, . . . , xn], Vn,i = Rn[yi], Vn =
n⊕

i=0
Vn,i.

There is an action of W (n, 1) on Vn determined by

ei : f(x, yj) ∈ Vn,j 
→
{

f(x, yi) ∈ Vn,i if j = i

0 if j �= i

xak

k ei : f(x, yi) ∈ Vn,i 
→ xak

k f(x, yi) ∈ Vn,i,
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yakei : f(x, yi) ∈ Vn,i 
→ yak
i f(x, yi) ∈ Vn,i,

ψiei : f(x, yi) ∈ Vn,i 
→ f(x, yi−1) ∈ Vn,i−1

ψi+1ei : f(x, yi) ∈ Vn,i 
→ (yi+1 − xi+1)f(x, yi+1) ∈ Vn,i+1 .

In the diagrammatic description, we have

1

a1 · · ·

i

ai
b

i+1

ai+1 · · ·

n

an : f(x, yi) ∈ Vn,i 
→ xa1
1 · · ·xan

n ybi f(x, yi) ∈ Vn,i

1

· · ·

i−1 i i+1

· · ·

n

: f(x, yi) ∈ Vn,i 
→ f(x, yi−1) ∈ Vn,i−1

1

· · ·

i i+1 i+2

· · ·

n

: f(x, yi) ∈ Vn,i 
→ (yi+1 − xi+1)f(x, yi+1) ∈ Vn,i+1.

Proof. This is a straightforward check. �
Next we will define elements which form a basis of W (n, 1).
Let a = (a1, . . . , an) ∈ Zn

≥0 and b ∈ Z≥0. For 0 ≤ i ≤ j ≤ n, define

NEi,j(a, b) :=
∏n

k=1 x
ak

k ybψjψj−1 · · ·ψi+1ei

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

a1

· · ·

i

ai b

i+1

ai+1

· · ·

n

an

if i = j,

1

a1

· · ·

i

ai

b

i+1

ai+1

· · ·
j

aj

j+1

aj+1

· · ·

n

an

if i < j .

For 0 ≤ i < j ≤ n, define

SEi,j(a, b) :=
∏n

k=1 x
ak

k ybψi+1ψi · · ·ψjei

=
1

a1

· · ·

i

ai

b

i+1

ai+1

· · ·
j

aj

j+1

aj+1

· · ·

n

an

.

The proof of the next proposition is similar to the proof of [12, Proposition 2, Corollary 
1]. See also [19, Proposition 4.9] and [20, Definition 2.7].
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Proposition 3.4. We have the following facts about W (n, 1) and its representation Vn.

1. The action of W (n, 1) on Vn is faithful.
2. W (n, 1) has a basis

{NEi,j(a, b), SEi′,j′(a′, b′)|0 ≤ i ≤ j ≤ n, 0 ≤ i′ < j′ ≤ n,a,a′ ∈ Zn
≥0, b, b

′ ∈ Z≥0} .

4. Braid invariant

4.1. Bimodules

We recall the (W, W )-bimodules Wi for i = 1, . . . , n − 1, and Wi,i+1 for i = 1, . . . , n −
2 introduced in [12]. These bimodules were generalized in [7]. While all diagrams are 
supposed to be braid-like, we will occasionally, for visual reasons, have some pictures 
with cups and caps. These pictures could easily be converted to braid-like diagrams.

In order to define the bimodules Wi and Wi,i+1, we introduce the algebra W ((1n)i,k, 1)
which is also a particular deformed Webster algebra and has been shown in [12, Section 
3.4] to be isomorphic to a subalgebra of W .

Let (1n)i,k be the sequence whose n − k entries are 1 and i-th entry from left is k,

(1n)i,k = (1i−1, k, 1n−i−k+1),

and let Seq((1n)i,k, 1) be the set of all sequences i = (i1, ..., in−k+2) composed of the 
sequence (1n)i,k into which the symbol b is inserted.

For instance, the set Seq((14)2,2, 1) is

{(b, 1, 2, 1), (1, b, 2, 1), (1, 2, b, 1), (1, 2, 1, b)}.

Definition 4.1. W ((1n)i,k, 1) is the graded algebra over the ground field k generated by

• e(i), where i ∈ Seq((1n)i,k, 1),
• xj , where 1 ≤ j < i or i < j ≤ n − k + 1,
• y,
• ψj , where 1 ≤ j ≤ n − k + 1,
• E(d), where 1 ≤ d ≤ k

satisfying the relations below. ∑
i∈Seq((1n)i,k,1)

e(i) = 1 (4.1)

e(i)e(j) = δi,je(i) (4.2)

ψje(i) = e(σj(i))ψj (4.3)
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ψje(i) = 0 if (ij , ij+1) = (1, 1), (1, k), (k, 1) (4.4)

ψjψ� = ψ�ψj if |j − �| > 1 (4.5)

xj , y and E(d) are central (4.6)

ψ2
j e(i) =

⎧⎪⎨⎪⎩
(y − xj)e(i) if (ij , ij+1) = (1, b), (b, 1),
k∑

a=0
(−1)aE(a)yk−ae(i) if (ij , ij+1) = (k, b), (b, k).

(4.7)

The degrees of the generators are

deg(e(i)) = 0, deg(xj) = 2, deg(y) = 2, deg(E(d)) = 2d, deg(ψje(i)) = a

if (ij , ij+1) = (b, a), (a, b),

where a is 1 or k.

We have a translation from (1n)i,k to (1n) which is obtained by replacing k of 
the sequence (1n)i,k by (1, . . . , 1︸ ︷︷ ︸

k

). This translation naturally induces the map φ :

Seq((1n)i,k, 1) → Seq((1n), 1).
We define the inclusion map Φ from W ((1n)i,k, 1) to W ((1n), 1) by mapping idempo-

tents e(i) for i ∈ Seq((1n)i,k, n) by

Φ(e(i)) = e(φ(i)),

mapping generators xj by

Φ(xj) =
{
xj if 1 ≤ j < i,

xj+k−1 if i < j ≤ n− k + 1,

mapping generators ψj by

Φ(ψj) =

⎧⎪⎪⎨⎪⎪⎩
ψj(ej−1 + ej) j < i,

ψjψj+1 · · ·ψj+k−1ej+k−1 + ψj+k−1ψj+k−2 · · ·ψjej−1 j = i,

ψj+k−1(ej+k−2 + ej+k−1) j > i

(where we recall the definition of ei is given in (3.13)), and mapping generators E(d) by

Φ(E(d)) =
∑

d1+d2+···+dk=d
d1,...,dk≥0

xd1
i xd2

i+1 · · ·xdk

i+k−1.

This inclusion map gives rise to a left action of W ((1n)i,2, 1) on êiW ((1n), 1) and a right 
action on W ((1n), 1)êi, where êi is 

∑
j �=i ej .
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Definition 4.2. We define the bimodule Wi as the tensor product of two deformed Webster 
algebras W ((1n), 1) over W ((1n)i,2, 1).

Wi := W ((1n), 1)êi ⊗W ((1n)i,2,1) êiW ((1n), 1).

The following proposition follows directly from definitions.

Proposition 4.3. In the bimodule Wi, we have the following equalities.

ek ⊗ e� = 0 if k �= �, ej ⊗ ej = ej ⊗ 1 = 1 ⊗ ej , y ⊗ 1 = 1 ⊗ y, (4.8)

x� ⊗ ej = 1 ⊗ x�ej if � �= i, i + 1, (xi + xi+1) ⊗ ej = 1 ⊗ (xi + xi+1)ej ,

xixi+1 ⊗ ej = 1 ⊗ xixi+1ej , (4.9)

ψ� ⊗ ej = 1 ⊗ ψ�ej if � �= i, i + 1, ψi+1ψi ⊗ ej = 1 ⊗ ψi+1ψiej ,

ψiψi+1 ⊗ ej = 1 ⊗ ψiψi+1ej , (4.10)

where j �= i.

A graphical description of the bimodules Wi for i = 1, . . . , n − 1 was introduced in 
[12]. We consider collections of smooth arcs in the plane connecting n red points and 
1 black point on one horizontal line with n red points and 1 black point on another 
horizontal line. The ith and (i + 1)st red dots on one horizontal line must be connected 
to the ith and (i + 1)st red dots on the other horizontal line by a diagram which has a 
thick red strand in the middle, which is given in (4.11). The arcs are colored in a manner 
consistent with their boundary points and are assumed to have no critical points (in 
other words no cups or caps). They are allowed to intersect, but no triple intersections 
are allowed. Arcs are allowed to carry dots. Two diagrams that are related by an isotopy 
that does not change the combinatorial types of the diagrams or the relative position of 
crossings are taken to be equal. The elements of the vector space Wi are formal linear 
combinations of these diagrams modulo the local relations for W along with the relations 
given in (4.12) and (4.13) which correspond to relations in Proposition 4.3.

The elements ej ⊗ ej , where 0 ≤ j < i or i < j ≤ n, are represented by diagrams

ej ⊗ ej =

1

· · ·

j j+1

· · ·

i−1 i i+1 i+2

· · ·

n

∈ Wi . (4.11)

The second and third equations of (4.9) in terms of diagrams are
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i i+1

+

i i+1

=

i i+1

+

i i+1

,

i i+1

=

i i+1

.

(4.12)
The second and third equations of (4.10) in terms of diagrams are

i i+1

=

i i+1

,

i i+1

=

i i+1

. (4.13)

The bimodule Wi naturally inherits a p-DG structure from W as follows:

∂Wi
:= ∂W ⊗ Id + Id ⊗ ∂W .

One may twist the p-DG structure on Wi to obtain a new p-DG bimodule W−e1
i . As 

bimodules, Wi = W−e1
i but the p-DG structure on the generator is twisted as follows:

∂(1 ⊗ ej) = −(xi + xi+1) ⊗ ej (4.14)

In terms of a diagrammatic description, this twisted differential is

∂

⎛⎜⎝
⎞⎟⎠ = − − . (4.15)

We use the notation W−e1
i because the differential is twisted by the first elementary 

symmetric function in the dots corresponding to the bimodule generator connected to 
the thick red strand.

We will also need the bimodules Wi,i+1 for i = 1, . . . , n − 2.

Definition 4.4. We define the bimodule Wi,i+1 as the tensor product of two deformed 
Webster algebras W ((1n), 1) over W ((1n)i,3, 1).

Wi,i+1 := W ((1n), 1)êi,i+1 ⊗W ((1n)i,3,1) êi,i+1W ((1n), 1),

where êi,i+1 =
∑

j �=i,i+1

ej .

The following proposition follows directly from definitions.
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Proposition 4.5. In the bimodule Wi,i+1, we have the following equalities.

ek ⊗ e� = 0 if k �= �, ej ⊗ ej = ej ⊗ 1 = 1 ⊗ ej , x� ⊗ ej = 1 ⊗ x�ej

if � �= i, i + 1, i + 2, (4.16)

ψ� ⊗ ej = 1 ⊗ ψ�ej if � �= i, i + 1, i + 2, y ⊗ 1 = 1 ⊗ y, (4.17)∑
a+b+c=d
a,b,c≥0

xa
i x

b
i+1x

c
i+2 ⊗ ej = 1 ⊗

∑
a+b+c=d
a,b,c≥0

xa
i x

b
i+1x

c
i+2ej where d = 1, 2, 3, (4.18)

ψi+2ψi+1ψi ⊗ ej = 1 ⊗ ψi+2ψi+1ψiej , ψiψi+1ψi+2 ⊗ ej = 1 ⊗ ψiψi+1ψi+2ej ,

(4.19)

where j �= i, i + 1.

For a diagrammatic description of Wi,i+1, we consider collections of smooth arcs in 
the plane connecting n red points and 1 black point on one horizontal line with n red 
points and 1 black point on another horizontal line. The ith, (i + 1)st and (i + 2)nd 
red dots on one horizontal line must be connected to the ith, (i + 1)st and (i + 2)nd 
red dots on the other horizontal line by a diagram which has a thick red strand in the 
middle, which is given in (4.20). The arcs are colored in a manner consistent with their 
boundary points and are assumed to have no critical points (in other words no cups or 
caps). They are allowed to intersect, but no triple intersections are allowed. Arcs are 
allowed to carry dots. Two diagrams that are related by an isotopy that does not change 
the combinatorial types of the diagrams or the relative position of crossings are taken 
to be equal. The elements of the vector space Wi,i+1 are formal linear combinations of 
these diagrams modulo the local relations for W along with the relations given in (4.21), 
(4.22), (4.23) and (4.24).

The elements ej ⊗ ej , where 0 ≤ j < i or i + 1 < j ≤ n, are represented by

ej ⊗ ej =

1

· · ·

j j+1

· · ·

i−1 i i+3

· · ·

n

∈ Wi,i+1 . (4.20)

The generating equations in (4.18) in terms of diagrams are

+ + = + + , (4.21)

+ + = + + , (4.22)
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= . (4.23)

The equations in (4.19) in terms of diagrams are

i i+1 i+2

=

i i+1 i+2

,

i i+1 i+2

=

i i+1 i+2

. (4.24)

The bimodule Wi,i+1 naturally inherits a p-DG structure from W where one sets the 
differential on the generator (4.20) to be zero.

Remark 4.6. We will sometimes denote the elements in the equalities of in (4.24) as a 
crossing between a black strand and a thick red strand. We take a similar convention for 
diagrams in (4.13).

4.2. Bases for bimodules

We construct bases of the bimodules just introduced.
Let

ℵ1(a, b, c) =
n∏

k=1

xak

k ybψi ⊗ ψix
c
iei

=

1

a1

· · ·

b

i
c

i+1

ai ai+1

· · ·

n

an

ℵ2(a) =
∏n

k=1 x
ak

k ψi+1 ⊗ ψi+1ei

=

1

a1

· · ·

i i+1

ai ai+1

· · ·

n

an

.

For 0 ≤ j ≤ n and 0 ≤ � ≤ n unless j = � = i, let
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ℵ3(a, b, c, j, �) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏n
k=1 x

ak

k ybψ�ψ�−1 · · ·ψj+1 ⊗ xc
iej if j < � and j �= i∏n

k=1 x
ak

k ybψ�+1ψ�+2 · · ·ψj ⊗ xc
iej if j > � and j �= i∏n

k=1 x
ak

k yb ⊗ xc
iej if j = �, j �= i∏n

k=1 x
ak

k yb ⊗ xc
iψ�ψ�−1 · · ·ψi+1ei if j < � and j = i∏n

k=1 x
ak

k yb ⊗ xc
iψ�+1ψ�+2 · · ·ψiei if j > � and j = i.

For j < � and j �= i, diagramatically ℵ3(a, b, c, j, �) is given by

1

a1

· · ·
b

i
c

i+1

ai ai+1

· · ·
n

an

· · ·

· · ·

j �

.

Lemma 4.7. For any b1, b2, b3 ≥ 0, the elements

b1 b2

and

b1 b3b2

could be written as a linear combination of elements of the form

c1

a1 a2

a1, a2 ≥ 0,
c1 ∈ {0, 1}, and

c1

a1 a2

c2

a2

a1, a2, a3 ≥ 0,
c1 ∈ {0, 1, 2},
c2 ∈ {0, 1},

respectively.

Proof. This is a well-known result. See for example [2, Section 2.2]. �
Proposition 4.8. The set

{ℵ1(a, b, c),ℵ2(a),ℵ3(a, b, c, j, �)|a1, . . . , an, b ∈ Z, c ∈ {0, 1}, 0 ≤ j ≤ n, 0 ≤ � ≤ n}

is a spanning set of Wi.

Proof. We will only highlight interesting features of the proof, which include cases where 
the black strand begins and ends in between the two red strands connected to the thick 
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red strand. First we will show that ψi+1⊗ψi+1xiei is in the span of the proposed spanning 
set. The diagram for this element is

. (4.25)

Using relations (3.11), we have the following equations

− = − , (4.26)

− = − . (4.27)

Subtracting equation (4.27) from equation (4.26) yields

− = − . (4.28)

Using symmetric function relations on (4.28) we get

= + − .

Thus a diagram with a portion as in (4.25) is in the span.
Consider a portion of a diagram of the form

. (4.29)

Then using relations (3.11), we have

= + −
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which shows that a picture (4.29) is in the span of the proposed spanning set since we 
already showed the first term above is already in the proposed spanning set. �

In order to prove that the elements in Proposition 4.8 are actually a basis of Wi, we 
will construct a (W (n, 1), W (n, 1))-bimodule homomorphism φi : Wi → Homk(Vn, Vn).

Consider the divided difference operator

Di : k[yj ][x1, . . . , xn] → k[yj ][x1, . . . , xn] f 
→ f − fsi

xi − xi+1

where fsi is the polynomial obtained from f by exchanging the variables xi and xi+1
and keeping all other variables the same.

Proposition 4.9. There is a bimodule homomorphism φi : Wi → Homk(Vn, Vn) inherited 
from the representation of W (n, 1) on Vn determined by

1

· · ·

i i+1

· · ·

n

: f ∈ Vn 
→ Di(f) ∈ Vn .

Proof. It is a routine check using the fact that symmetric functions are invariant under 
the action of a divided difference operator. �
Proposition 4.10. The spanning set in Proposition 4.8 is a basis of Wi.

Proof. Clearly a collection of vectors in this bimodule could be linearly dependent only 
if the configuration of boundary points is the same. We will focus on the most interesting 
case. For simplicity, assume there is a dependence relation of the form

k1
a1,a2,b

ba1 a2

+ k2
a1,a2,b

ba1 a2

+ k3
a1,a2

a1 a2

= 0 . (4.30)

Applying the bimodule homomorphism φ1 from above on the element 1 yields

k2
a1,a2,b(y1 − x1)xa1

1 xa2
2 yb1 + k3

a1,a2
xa1

1 xa2
2 = 0 .

This implies that k2
a1,a2,b

= k3
a1,a2

= 0 and thus k1
a1,a2,b

= 0. Therefore the elements in 
(4.30) are in fact linearly independent.

Checking linear independence for the other elements in the spanning set proceeds in 
a similar manner. �
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Proposition 4.11. The following elements span Wi,i+1

�1(a, b, ci, ci+1) =

a1

· · ·b

ci ci+1

ai+1ai ai+2

· · ·

an

b ≥ 0, ci = 0, 1, 2, ci+1 = 0, 1,

�2(a, ci, ci+1) =

a1

· · ·

ci ci+1

ai+1ai ai+2

· · ·

an

ci = 0, ci+1 = 0, 1,

�3(a, b, ci, ci+1) =

a1

· · · b

ci ci+1

ai+1ai ai+2

· · ·

an

b ≥ 0, ci = 0, 1, 2, ci+1 = 0, 1,

�4(a, ci, ci+1) =

a1

· · ·

ci ci+1

ai+1ai ai+2

· · ·

an

ci = 0, ci+1 = 0, 1,

�5(a, ci, ci+1) =

a1

· · ·

ci ci+1

ai+1ai ai+2

· · ·

an

(ci, ci+1) = (0, 0), (1, 0), (0, 1), (1, 1),

�6(a, b, ci, ci+1) =

a1

· · · b

ci ci+1

ai+1ai ai+2

· · ·

an

b ≥ 0, ci = 0, 1, 2, ci+1 = 0, 1,

�7(a, b, ci, ci+1) =

a1

· · ·

ai+1ai ai+2

· · ·

an

b
b ≥ 0, ci = 0, 1, 2, ci+1 = 0, 1,
ci ci+1
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�8(a, ci, ci+1) =

a1

· · ·

ci ci+1

ai+1ai ai+2

· · ·

an

(ci, ci+1) = (0, 0), (1, 0), (0, 1), (2, 0),

�9(a, b, ci, ci+1, j, �) =

a1

· · ·
b

ci ci+1

ai+1ai ai+2

· · ·

an

b ≥ 0, ci = 0, 1, 2, ci+1 = 0, 1,
0 ≤ j, � ≤ n

unless {j, �} ⊂ {i, i + 1},

where the diagram in �9(a, b, ci, ci+1, j, �) represents any picture where the black strand 
begins after the jth red strand and ends after the �th red strand and has a minimal 
number of intersections with the red strands.

Proof. Once again, we highlight features of the proof that only involve cases where the 
black strand begins and ends in the segments connecting red boundary points connected 
to the thick red strands. First note that by Lemma 4.7, we could assume that the red 
dots appear in the following configuration

a1

· · ·

ci ci+1

ai+1ai ai+2

· · ·

an

,

where all ai ∈ Z≥0, ci ∈ {0, 1, 2}, and ci+1 ∈ {0, 1}.
Next we will explain why we could assume that in (4.31) that there are no black dots.

a1

· · ·

ci ci+1

ai+1ai ai+2

· · ·

an

(4.31)

Using relations we have

= +

2

−

1

−

1

+ , (4.32)
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so a black dot produces a linear combination of other elements in the proposed spanning 
set.

Next we will explain why we may assume that ci = 0 in (4.31). As in (4.32) we have 
a relation

= +

2

−

1

−

1

+ . (4.33)

Subtracting (4.33) from (4.32) yields

= +

1

+

1

−

1

−

1

− + .

By Lemma 4.7, the third to last and last diagrams above are in the proposed span, and 
thus

is in the span of other elements of the proposed spanning set.
Next we will show that we could assume that there are no black dots on diagrams of 

the form

. (4.34)

Using bimodule relations (3.11) and (4.24) we have

= + − . (4.35)

Thus we may assume that there are no black dots on diagrams of the form (4.34).
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Next we will show that elements of the form

(4.36)

are already in the span of the proposed spanning set. Using relations (3.11), the left side 
of (4.37) below could be rewritten as two double crossings of the black strand and the 
two bottom left red strands. Relations (4.24), then allow us to move the black strand up 
through the thick red strand. Applying relations (3.11) then implies (4.37).

2

− − + =

2

− − + . (4.37)

Using (4.37) and (4.35) repeatedly, we get

= + −

2

− − + + .

Thus (4.36) is in the span of the proposed spanning set.
Similar techniques show that the other elements stated in the proposition complete a 

spanning set. �
In order to prove that the elements in Proposition 4.11 are actually a basis of Wi,i+1, 

we use a (W (n, 1), W (n, 1))-bimodule homomorphism γi,i+1 : Wi,i+1 → Homk(Vn, Vn).

Proposition 4.12. There is a bimodule homomorphism γi,i+1 : Wi,i+1 → Homk(Vn, Vn)
inherited from the representation of W (n, 1) on Vn determined by

1

· · ·

i i+2

· · ·

ni+1

: f ∈ Vn 
→ DiDi+1Di(f) ∈ Vn .

Proof. This is a routine calculation. �
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The next two results contain important facts used later on, but the proofs are just 
lengthy computations that the reader interested in a smooth flow of the text could safely 
ignore.

Proposition 4.13. The spanning set in Proposition 4.11 is a basis of Wi,i+1.

Proof. If ε′1v1ε1, ε′2v2ε2 ∈ Wi,i+1, where ε1, ε′1, ε2, ε
′
2 are idempotents, then there could 

only be a dependence relation if ε′1 = ε′2 and ε1 = ε2. Using this fact, there are several 
cases to check. We supply the details for two non-trivial cases.

First consider a dependence relation of the form

k1
a1,a2,a3,b

b

2 1

a2a1 a3

+ k2
a1,a2,a3,b

b

2

a2a1 a3

+ k3
a1,a2,a3,b

b

1 1

a2a1 a3

+ k4
a1,a2,a3,b

b

1

a2a1 a3

+ k5
a1,a2,a3,b

b

1

a2a1 a3

+ k6
a1,a2,a3,b

b

a2a1 a3

+ k7
a1,a2,a3

1

a2a1 a3

+ k8
a1,a2,a3

a2a1 a3

= 0 .

(4.38)

Apply the homomorphism γi,i+1 to (4.38) and evaluate on 1 to get

k1
a1,a2,a3,b(y1 − x1)xa1

1 xa2
2 xa3

3 yb1 + k7
a1,a2,a3

xa1
1 xa2

2 xa3
3 = 0 .

This forces

k1
a1,a2,a3,b = k7

a1,a2,a3
= 0 .

Then the dependence relation becomes
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k2
a1,a2,a3,b

b

2

a2a1 a3

+ k3
a1,a2,a3,b

b

1 1

a2a1 a3

+ k4
a1,a2,a3,b

b

1

a2a1 a3

+ k5
a1,a2,a3,b

b

1

a2a1 a3

+ k6
a1,a2,a3,b

b

a2a1 a3

+ k8
a1,a2,a3

a2a1 a3

= 0 .

(4.39)

Now apply γi,i+1 to (4.39) and evaluate on x1 to get

k3
a1,a2,a3,b(y1 − x1)xa1

1 xa2
2 xa3

3 yb1 = 0 .

This implies

k3
a1,a2,a3,b = 0

and the dependence relations becomes

k2
a1,a2,a3,b

b

2

a2a1 a3

+ k4
a1,a2,a3,b

b

1

a2a1 a3

+ k5
a1,a2,a3,b

b

1

a2a1 a3

+ k6
a1,a2,a3,b

b

a2a1 a3

+ k8
a1,a2,a3

a2a1 a3

= 0 .

(4.40)

Now apply γi,i+1 to (4.40) and evaluate on x2 to get

k2
a1,a2,a3,b(y1 − x1)xa1

1 xa2
2 xa3

3 yb1 + k8
a1,a2,a3

xa1
1 xa2

2 xa3
3 = 0 .
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This implies that k2
a1,a2,a3,b

= k8
a1,a2,a3

= 0 and the dependence relation becomes

k4
a1,a2,a3,b

b

1

a2a1 a3

+ k5
a1,a2,a3,b

b

1

a2a1 a3

+ k6
a1,a2,a3,b

b

a2a1 a3

= 0 .

(4.41)
Now apply γi,i+1 to (4.41) and evaluate on x2x3 to get

k5
a1,a2,a3,b(y1 − x1)xa1

1 xa2
2 xa3

3 yb1 = 0 .

Thus k5 = 0 and the dependence relation becomes

k4
a1,a2,a3,b

b

1

a2a1 a3

+ k6
a1,a2,a3,b

b

a2a1 a3

= 0 . (4.42)

Apply γi,i+1 to (4.42) and evaluate on x1x2 to get

k4
a1,a2,a3,b(y1 − x1)xa1

1 xa2
2 xa3

3 yb1 = 0 .

Thus k4
a1,a2,a3,b

= 0 which implies k6
a1,a2,a3,b

= 0. It is straightforward to show that each 
element in the spanning set gets sent to something non-zero under γi,i+1 by evaluating 
on an appropriate element. For instance,

γi,i+1

⎛⎜⎜⎜⎜⎜⎝
b

2 1

a2a1 a3
⎞⎟⎟⎟⎟⎟⎠ (1) = (y1 − x1)yb1x

a1
1 xa2

2 xa3
3 . (4.43)

Thus these elements of the spanning set are non-zero and linearly independent.
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Next we will consider a dependence relation of the form

k1
a1,a2,a3,b

2 1

a2a1 a3

b + k2
a1,a2,a3,b

2

a2a1 a3

b

+ k3
a1,a2,a3,b

1 1

a2a1 a3

b + k4
a1,a2,a3,b

1

a2a1 a3

b

+ k5
a1,a2,a3,b

1

a2a1 a3

b + k6
a1,a2,a3,b

a2a1 a3

b

+ k7
a1,a2,a3

2

a2a1 a3

+ k8
a1,a2,a3

1

a2a1 a3

+ k9
a1,a2,a3

1

a2a1 a3

+ k10
a1,a2,a3

a2a1 a3

= 0 .

(4.44)

Applying the homomorphism γi,i+1 to (4.44) and evaluating on 1 yields the equation

k1
a1,a2,a3,b(y1 − x1)xa1

1 xa2
2 xa3

3 yb1 + k7
a1,a2,a3

xa1
1 xa2

2 xa3
3 = 0 .

Thus k1 = k7 = 0 and the dependence relation becomes
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k2
a1,a2,a3,b

2

a2a1 a3

b + k3
a1,a2,a3,b

1 1

a2a1 a3

b + k4
a1,a2,a3,b

1

a2a1 a3

b

+ k5
a1,a2,a3,b

1

a2a1 a3

b + k6
a1,a2,a3,b

a2a1 a3

b + k8
a1,a2,a3

1

a2a1 a3

+ k9
a1,a2,a3

1

a2a1 a3

+ k10
a1,a2,a3

a2a1 a3

= 0 .

(4.45)

Now apply γi,i+1 to (4.45) and evaluate on x1 to get

k3
a1,a2,a3,b(y1 − x1)xa1

1 xa2
2 xa3

3 yb1 + k8
a1,a2,a3

xa1
1 xa2

2 xa3
3 = 0 .

Thus k3
a1,a2,a3,b

= k8
a1,a2,a3

= 0 and the dependence relation becomes

k2
a1,a2,a3,b

2

a2a1 a3

b + k4
a1,a2,a3,b

1

a2a1 a3

b + k5
a1,a2,a3,b

1

a2a1 a3

b

+ k6
a1,a2,a3,b

a2a1 a3

b + k9
a1,a2,a3

1

a2a1 a3

+ k10
a1,a2,a3

a2a1 a3

= 0 .

(4.46)

Now apply γi,i+1 to (4.46) and evaluate on x2 to get

k2
a1,a2,a3,b(y1 − x1)xa1

1 xa2
2 xa3

3 yb1 − k9
a1,a2,a3

xa1
1 xa2

2 xa3
3 = 0 .

Thus k2
a ,a ,a ,b = k9

a ,a ,a = 0 and the dependence relation becomes

1 2 3 1 2 3
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k4
a1,a2,a3,b

1

a2a1 a3

b + k5
a1,a2,a3,b

1

a2a1 a3

b + k6
a1,a2,a3,b

a2a1 a3

b

+ k10
a1,a2,a3

a2a1 a3

= 0 .

(4.47)

Now apply γi,i+1 to (4.47) and evaluate on x2
1 to get

k5
a1,a2,a3,b(y1 − x1)xa1

1 xa2
2 xa3

3 yb1 + k10
a1,a2,a3

xa1
1 xa2

2 xa3
3 = 0 .

Thus k5
a1,a2,a3,b

= k10
a1,a2,a3

= 0 and the dependence relation becomes

k4
a1,a2,a3,b

1

a2a1 a3

b + k6
a1,a2,a3,b

a2a1 a3

b = 0 . (4.48)

Finally apply γi,i+1 to (4.48) and evaluate on x1x2 to get

k4
a1,a2,a3,b(y1 − x1)xa1

1 xa2
2 xa3

3 yb1 = 0 .

Thus k4
a1,a2,a3,b

= 0 and consequently k6
a1,a2,a3,b

= 0. Therefore these spanning elements 
are also linearly independent.

The other cases are checked in a similar fashion. �
Proposition 4.14. The following elements span the bimodule Wi ⊗W Wi+1 ⊗W Wi.

,a)1ג b, r, s, t) =

1

a1

· · ·

l

an

· · ·

i
t

i+1 i+2

s

r

ai ai+1 ai+2b

ai ∈ Z≥0, b ∈ Z≥0, r, s, t ∈ {0, 1},



500 Y. Qi et al. / Journal of Algebra 598 (2022) 470–517
,a)2ג s) =

1

a1

· · ·

n

an

· · ·

i i+1 i+2

s

ai ai+1 ai+2

ai ∈ Z≥0, s ∈ {0, 1},

(a)3ג =

1

a1

· · ·

n

an

· · ·

i i+1 i+2

ai ai+1 ai+2

ai ∈ Z≥0,

,a)4ג b, r, s, t) =

1

a1

· · ·

n

an

· · ·

i
t

i+1 i+2

s

r

ai ai+1 ai+2b

ai ∈ Z≥0, b ∈ Z≥0, r, s, t ∈ {0, 1},

,a)5ג r, t) =

1

a1

· · ·

n

an

· · ·

i
t

i+1 i+2

r

ai ai+1 ai+2

ai ∈ Z≥0, r, t ∈ {0, 1},
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,a)6ג b, r, s, t) =

1

a1

· · ·

n

an

· · ·

i
t

i+1 i+2

s

r

ai ai+1 ai+2b

ai ∈ Z≥0, b ∈ Z≥0, r, s, t ∈ {0, 1},

,a)7ג r, t) =

1

a1

· · ·

n

an

· · ·

i
t

i+1 i+2

r

ai ai+1 ai+2

ai ∈ Z≥0, r, t ∈ {0, 1},

,a)8ג t) =

1

a1

· · ·

n

an

· · ·

i
t

i+1 i+2

ai ai+1 ai+2

ai ∈ Z≥0, t ∈ {0, 1},

,a)9ג b, r, s, t) =

1

a1

· · ·

n

an

· · ·

i
t

i+1 i+2

s

r

ai ai+1 ai+2b

ai ∈ Z≥0, b ∈ Z≥0, r, s, t ∈ {0, 1},
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,a)10ג r, t) =

1

a1

· · ·

n

an

· · ·

i
t

i+1 i+2

r

ai ai+1 ai+2

ai ∈ Z≥0, r, t ∈ {0, 1},

,a)11ג r) =

1

a1

· · ·

n

an

· · ·

i i+1 i+2

r

ai ai+1 ai+2

ai ∈ Z≥0, r ∈ {0, 1},

,a)12ג b, r, s, t, j, �) =

1

a1

· · ·

n

an

· · ·

i
t

i+1 i+2

s

r

ai ai+1 ai+2 b

ai ∈ Z≥0, b ∈ Z≥0,

r, s, t ∈ {0, 1} 0 ≤ j, � ≤ n

unless (j, �) = (i, i), (i, i + 1),
(i + 1, i), (i + 1, i + 1),

where the diagram in 12ג(a, b, r, s, t, j, �) represents any picture where the black strand 
begins after the jth red strand and ends after the �th red strand and has a minimal 
number of intersections with the red strands. Note that it could equally well be positioned 
in a northwest-southeast configuration.

Proof. By Lemma 4.7, we may assume that any red dot configuration in the part of the 
picture connecting the i, i + 1, and i + 2 red boundary points is a linear combination of 
elements
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t

s

r

ai ai+1 ai+2

(4.49)

where r, s, t ∈ {0, 1}. Next we will show that we do not need any black dots on a diagram 
of the form

ai ai+1 ai+2b

. (4.50)

This follows from the calculation

− =

2

−

1

−

1

+ .

Next note that

− =

2

−

1

−

1

+ .

Thus
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is already in the span of the proposed spanning set. Similarly,

is also already in the span of the proposed spanning set.
Next we will show that we do not need black dots on a diagram of the form

i i+1 i+2

ai ai+1 ai+2

.

This follows from the calculation

− =

2

−

1

−

1

+ .

Next note that
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− = −

which shows that

is in the span of the proposed spanning set. The equality

− =

2

−

1

−

1

+

implies that

is in the span of the proposed spanning set. A longer computation using the equality
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− = −

implies that

is in the proposed span.
Now consider elements of the form

t

s

r

ai ai+1 ai+2b

.

By Lemma 4.7, one may assume that r, s, t ∈ {0, 1} and ai, ai+1, ai+2, b ∈ Z≥0. Next 
note that the equation

− = −
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implies that a black dot on a diagram

is already in the span of the proposed spanning set. The equation

− = −

implies that

is already in the span of the proposed spanning set.
By Lemma 4.7, we may assume that dots on diagrams of the following form have the 

configuration

i
t

i+1 i+2

s

r

ai ai+1 ai+2b

where r, s, t ∈ {0, 1} and b, ai, ai+1, ai+2 ∈ Z≥0. Next note that
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− = −

implies that

is in the span of the proposed spanning set. The equation

− = −

implies that

is in the span.
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Next note that

− = − .

Thus a diagram with a black dot on

is already in the span of the proposed spanning set. The equation

− = −

implies that

is in the span. The equation
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− = −

implies that

is in the span.
Similar manipulations show that the set of elements in the statement of the proposi-

tion, do in fact provide a spanning set for the bimodule. �
We will prove that the spanning set above is indeed a basis. This will utilize a bimodule 

homomorphism introduced in the next section.

4.3. Bimodule homomorphisms

There is a bimodule homomorphism

εi : Wi → W

determined by


→ . (4.51)

It is clear that εi commutes with ∂.
There is a bimodule homomorphism

ιi : W → W−e1
i {−2}
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determined by


→ − , 
→ − .

The fact that ιi is a well-defined bimodule homomorphism is shown in [12, Proposition 
17].

It is clear that ιi : W → Wi{−2} does not commute with ∂. However, we do have the 
following variation.

Proposition 4.15. The bimodule homomorphism ιi : W → W−e1
i {−2} commutes with 

the action of ∂.

Proof. We first check the proposition in the case that there is no black strand in between 
the ith and (i + 1)st red strands. By definition

ιi ◦ ∂

⎛⎜⎝
⎞⎟⎠ = 0 .

On the other hand,

∂ ◦ ιi

⎛⎜⎝
⎞⎟⎠

= ∂

⎛⎜⎜⎝ −

⎞⎟⎟⎠

=

2

−

2

−

2

− + +

2
= 0

where the four last terms come from the twisted p-DG structure on W−e1
i (see (4.15)).

The second case we must consider is when the black strand lies between the ith and 
(i + 1)st red strands. Once again
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ιi ◦ ∂

⎛⎜⎝
⎞⎟⎠ = 0 .

Let

X = − ∈ W−e1
i .

We must show that ∂(X) = 0. By definition

∂(X) = + − − − −

+ +

(4.52)

where the last four terms come from the twisting on W−e1
i . It follows that

∂(X) = − − + (4.53)

where the second, fifth, and sixth terms in (4.52) combine to become the second term in 
(4.53). Using the first set of relations of (3.9) and (4.13), we get that the above simplifies 
to

∂(X) = − = 0. �

Proposition 4.16. There are bimodule homomorphisms αi,i+1 : Wi,i+1 → Wi⊗WWi+1⊗W

Wi and αi+1,i : Wi,i+1 → Wi+1⊗W Wi⊗W Wi+1 defined on the bimodule generator (4.20)
by
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αi,i+1 : 
→ (4.54)

αi+1,i : 
→ . (4.55)

These homomorphisms commute with the action of ∂.

Proof. It is straightforward to check that these are bimodule maps. The differential ∂
annihilates both the generator (4.20) and its image under the homomorphisms. �

There is a bimodule homomorphism Wi ⊗W Wi+1 ⊗W Wi → Wi{2} defined as a 
composition of the maps ε and � constructed in [12]. It is defined on generators in (4.56)
and (4.57).


→ 0 , 
→ (4.56)


→ , 
→ (4.57)

The proof of the next result is similar to the proofs of Propositions 4.10 and 4.13, so 
we just supply the general strategy.

Proposition 4.17. The spanning set in Proposition 4.14 is a basis of Wi⊗W Wi+1⊗W Wi.
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Proof. Let Bi
j be elements in the spanning set which are in the image of multiplication 

on the left by ei and on the right by ej .
In order to prove that the elements of Bi

i+1 are linearly independent, one writes down 
a dependence relation and uses the bimodule homomorphisms φi from Proposition 4.9, 
and the bimodule homomorphism defined in (4.56) and (4.57) to conclude that all the 
coefficients in the dependence relation are zero. One proves in a similar way the linear 
independence of elements in Bi

i and Bi+1
i .

By applying the element

1

· · ·

i+1 i+2

· · ·

n

,

on top, the linear independence of elements in Bi+1
i+1 follows from the linear independence 

of Bi
i+1.

Showing that all other sets Bi
j are linearly independent is routine. �

4.4. Braid group action

As a consequence of the results of Section 4.3, there are complexes of (W, W )#H-
modules

Σi = Wi

εi
W , Σ′

i = W
ιi

W−e1
i {−2} .

Lemma 4.18. There exists an isomorphism of (W, W )#H-modules

Wi ⊗W Wi
∼= Wi ⊕W e1

i {2}

Proof. First note that using isotopies, black strands can be moved out of the way in 
these bimodules as in [12, Lemma 5]. Thus the proof reduces to the proof of [10, Lemma 
4.3] or [17, Lemma 3.5]. �
Lemma 4.19. There is a short exact sequence of (W, W )#H-modules which splits as 
(W, W )-bimodules

0 → Wi,i+1 → Wi ⊗W Wi+1 ⊗W Wi → W e1
i → 0.

Proof. The map Wi,i+1 → Wi ⊗W Wi+1 ⊗W Wi is just given by αi,i+1 defined in (4.54).
Recall there is a map Wi ⊗W Wi+1 ⊗W Wi → Wi defined on generators in (4.56)

and (4.57). This is clearly a surjection and a straightforward calculation shows that this 
surjection is a p-DG map.
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Note that

is in the kernel of Wi ⊗W Wi+1 ⊗W Wi → W e1
i . By a graded dimension count utilizing 

the bases of the bimodules from Propositions 4.10, 4.13, 4.17, we get the exactness of 
the sequence of the lemma.

Now we define a splitting map Wi ⊗W Wi+1 ⊗W Wi → Wi,i+1 by


→ 0 , 
→ 0 , (4.58)


→ 0 , 
→ . (4.59)

Note that this splitting does not respect the p-DG structure.
Next we define a splitting map W e1

i → Wi ⊗W Wi+1 ⊗W Wi by


→ , 
→ . (4.60)

Note that this splitting map does not respect the p-DG structure either. All of these 
splitting maps are bimodule homomorphisms since they are compositions of bimodules 
maps described in detail in [12].
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Thus there is a short exact sequence of (W, W )#H-bimodules which splits as (W, W )-
bimodules. �

The next crucial proposition is proved in a similar manner as in [10, Theorems 4.2, 
4.4].

Proposition 4.20. The complexes of (W, W )#H-modules satisfy the following relations 
in the relative homotopy category.

1. Σi ◦ Σ′
i
∼= Id ∼= Σ′

i ◦ Σi,
2. Σi ◦ Σj

∼= Σj ◦ Σi for |i − j| > 1,
3. Σi ◦ Σj ◦ Σi

∼= Σj ◦ Σi ◦ Σj for |i − j| = 1.

We point out that, as in the usual homotopy category case, relative homotopy classes 
of p-DG bimodules over two p-DG algebras A and B give rise to functors from C∂(B, d0)
to C∂(A, d0). Therefore, Proposition 4.20 can be regarded as an isomorphism of functors 
on the relative homotopy category of p-DG W -modules.

Proof. The first isomorphism follows as in [10, Theorem 4.2] or [17, Proposition 3.7]
which use versions of Lemma 4.18.

The second item is clear.
The third isomorphism follows as in [10, Theorem 4.4] or [17, Proposition 3.9] which 

use versions of Lemma 4.19. �
Applying the p-extension functor P, we obtain p-complexes of p-DG (W, W )-

bimodules Ti := P(Σi) and T ′
i := P(Σ′

i) in the relative p-homotopy category C∂(W, ∂0). 
Explicitly, these complexes look like:

Ti :=
(
Wi

=−→ · · · =−→ Wi
εi−→ W

)
(4.61)

T ′
i :=

(
W

ιi−→ W−e1
i {−2} =−→ · · · =−→ W−e1

i {−2}
)
, (4.62)

where the repeated terms appear p − 1 times. It should be pointed out that Ti and T ′
i

are just cones of the p-DG bimodule maps εi and ιi in the relative homotopy category of 
p-DG (W, W )-bimodules. This is because P is exact (Proposition 2.4), and thus it sends 
the cones Σi and Σ′

i to cones in the relative p-homotopy category.

Theorem 4.21. The p-complexes of p-DG (W, W )-bimodules satisfy the following isomor-
phisms of functors on the relative p-homotopy category C∂(W, ∂0).

1. Ti ◦ T ′
i
∼= Id ∼= T ′

i ◦ Ti,
2. Ti ◦ Tj

∼= Tj ◦ Ti for |i − j| > 1,
3. Ti ◦ Tj ◦ Ti

∼= Tj ◦ Ti ◦ Tj for |i − j| = 1.

Proof. This follows from Proposition 4.20 by applying the functor P from Section 2. �
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