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Abstract— The options framework for hierarchical reinforce-
ment learning has increased its popularity in recent years and
has made improvements in tackling the scalability problem
in reinforcement learning. Yet, most of these recent successes
are linked with a proper options initialization or discovery.
When an expert is available, the options discovery problem can
be addressed by learning an options-type hierarchical policy
directly from expert demonstrations. This problem is referred
to as hierarchical imitation learning and can be handled as an
inference problem in a Hidden Markov Model, which is done
via an Expectation-Maximization type algorithm. In this work,
we propose a novel online algorithm to perform hierarchical
imitation learning in the options framework. Further, we discuss
the benefits of such an algorithm and compare it with its
batch version in classical reinforcement learning benchmarks.
We show that this approach works well in both discrete
and continuous environments and, under certain conditions,
it outperforms the batch version.

I. INTRODUCTION

Hierarchical Reinforcement Learning (HRL) addresses the
scalability problem in classical Reinforcement Learning (RL)
[1] by dividing the agent policy in decisions that are tempo-
rally extended over several steps (higher-level) and in others
taken at each step (lower-level). Most of the recent successes
of HRL [2] rely in learning a good hierarchical structure
which divides the main problems in sub-problems and tackles
them separately by means of single options [3]. In the liter-
ature, the hierarchical learning problem is either decoupled
in option initialization, also called option discovery, and in
optimal option selection [4], [5], [6], or it is performed in
an end-to-end fashion where the entire hierarchy is learnt
while solving the task [7], [8]. When for a specific task an
expert is available, initializing policies by direct observation
of the expert behavior is beneficial to speed up the learning
[9]. The procedure of learning policies from expert data is
called imitation learning [10], [11] and, in hierarchical frame-
works, recent works have focused on inferring not only the
expert policy but also its underlying hierarchical structure.
These studies are generally divided in: Hierarchical Inverse
Reinforcement Learning (HIRL), which infers a hierarchical
reward function either from expert demonstrations (state-
action pairs) [12], or only observations (states) [13]; and
Hierarchical Imitation Learning, (HIL) which directly learns
the expert policy in a hierarchical fashion [14], [15], [16],
[17]. In this paper, we assume that the expert follows an
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Fig. 1: Graphical model for the options framework.

options-type hierarchical policy and we formulate an online
algorithm to perform end-to-end HIL. We leverage the idea
that the Options Probabilistic Graphical Model (OPGM) in
Fig. 1 can be handled as a special case of a Hidden Markov
Model (HMM) [18], [19] and that inference in HMM can be
performed via an Expectation-Maximization (EM) recursion,
also known as the Baum-Welch (BW) algorithm [20], [21].
Given the expert demonstrations, this algorithm alternates
between an Expectation step (E-step), which computes a
surrogate of the log-likelihood, and a Maximization step
(M-step), which maximizes such a function over the policy
space. By alternating the E-step and the M-step several times,
the BW algotrithm is able to find a policy which (locally)
maximizes the log-likelihood.

Related Work and Contributions: Works related to our
method are [22], [23], [24], which exploit a batch version of
the BW algorithm to perform end-to-end HIL. In these algo-
rithms, the E-step is carried out through a forward-backward
recursion [25], which needs a sweep through the entire data
set at each iteration. As such, for environments where many
training samples are required, this procedure is expensive
and motivates the development of an online algorithm which
processes the data on-the-fly. In addition to efficiency, online
algorithms are also memory-wise efficient, since, at each
iteration, a single sample is processed and then discarded.
Note that we examine the two algorithms in competition;
however, batch and online versions are complementary and
in practical applications can be used together in sequence.
We now summarize the main contributions of this work: (i)
the batch version of the BW algorithm for HIL in [22], [23],
[24] requires to process the entire data set at each E-step;
to tackle this issue, we build upon the works in [26], [27]
for the HMM setting and develop an online recursion for
the OPGM in Fig. 1 which processes the data on-the-fly. To
the best of our knowledge, this is the first online end-to-end
algorithm for HIL. (ii) Both [26] and [27] make assumptions
on the policy parameterization, we relax these assumptions
and formulate a recursion that can use Neural Networks (NN)
as functions approximations to parameterize the hierarchical
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policy. (iii) We compare the two versions of the BW for HIL
algorithm via empirical experiments on classical OpenAi RL
benchmarks [28].1

Outline: In Section II, we introduce the OPGM and the
imitation learning problem. Section III introduces the batch
BW as in [22], [23], [24] and in Section IV we formulate the
recursion for the online BW for HIL and provide an overview
of the algorithm. Finally, Section V presents the regulariza-
tion penalties we add to the cost function in order to obtain
versatile options and Section VI compares empirically online
and batch versions.

Notation: We use uppercase letters (e.g., St) for random
variables, lowercase letters (e.g., st) for values of random
variables, script letters (e.g., S) for sets, and bold lowercase
letters (e.g., θ) for vectors. Let [t1 : t2] be the set of integers
t such that t1 ≤ t ≤ t2; we write St such that t1 ≤ t ≤ t2 as
St1:t2 . Moreover, we refer to 1[St = st] as the indicator
function, which is 1 when St = st and zero otherwise
and to δ(·) as the Kronecker delta. Finally, E[·] represents
expectation, P(·) probability, |S| the cardinality of a set, and
|| · ||2 the `2-norm.

II. PRELIMINARIES

In the following we introduce the OPGM as illustrated
in Fig. 1 and the imitation learning problem. The index
t represents time and (St, At, Ot, Bt) denote state, action,
option and termination indicator at time t, respectively. For
all t, St is defined on the set of states S , possibly infinite,
At and Ot are respectively defined on the set of actions A
and the set of options O, both finite, and Bt is defined on
the binary set B = {0, 1}. Moreover, define the parameter
θ := (θhi ∈ Θhi,θlo ∈ Θlo,θb ∈ Θb) where Θ := (Θhi ×
Θlo × Θb) ⊂ Rd. Given any (O0, S1) = (o0, s1), the joint
distribution on the rest of the OPGM is determined by the
following components: an unknown environment transition
probability function P : S × A → ∆S where ∆S denotes
the space of probability distributions over S , and a triplet
of stationary policies {πθhi

hi , π
θlo

lo , π
θb

b } where πθhi

hi is the
high level policy parameterized by θhi, πθlo

lo the low level
policy parameterized by θlo and πθb

b the termination policy
parameterized by θb. The hierarchical decision process starts
at t = 0, where the agent decides whether to terminate or
not the current option o0. This decision is encoded in the
termination indicator b1 sampled from πθb

b (·|s1, o0), where
πθb

b : S × O → ∆B. If b1 = 1, the option o0 terminates
and the next sample o1 is sampled from πθhi

hi (·|s1), where
πθhi

hi : S → ∆O; otherwise, if b1 = 0, the option o0

continues and o1 = o0. Next, the action a1 is sampled
from πθlo

lo (·|s1, o1), where πθlo

lo : S × O → ∆A, and
the agent interacts with the environment through the low
level policy associated with the option o1. Finally, the next
state s2 is sampled from P (·|s1, a1), and the rest of the
samples (s3:T , a2:T , o2:T , b2:T ) are generated analogously.
The just described decision process, based on the triplet

1All the code is available at https://github.com/
VittorioGiammarino/Online_BWforHIL.

{πθhi

hi , π
θlo

lo , π
θb

b }, encodes the hierarchical agent policy in
the options framework. For the sake of completeness, we
define π̃θhi

hi as

π̃θhi

hi (ot|ot−1, st, bt) :=


πθhi

hi (ot|st), if bt = 1,

1, if bt = 0, ot = ot−1,

0, if bt = 0, ot 6= ot−1.
(1)

Fixing the initial state S1 = s1 and the initial option
O0 = o0, the joint distribution of {S2:T , A1:T , O1:T , B1:T }
becomes

Pθ
o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T )

=

[ T∏
t=1

πθb

b (bt|st, ot−1)π̃θhi

hi (ot|ot−1, st, bt)π
θlo

lo (at|st, ot)
]

×
[ T−1∏
t=1

P (st+1|st, at)
]
.

(2)

Concerning the Imitation Learning (IL) problem, it is
defined as inferring the underlying expert distribution via
a set of demonstrations (state-action samples) generated
while solving a task [29]. When we assume the expert
behavior follows a hierarchical policy with true parameters
(θ∗hi,θ

∗
lo,θ

∗
b ), and given initial conditions (o0, s1), the pro-

cess of estimating (θ∗hi,θ
∗
lo,θ

∗
b ) through a finite sequence of

expert demonstrations (s2:T , a1:T ) with T ≥ 2 is called HIL.
One way to address this problem is by solving:

max
(θhi,θlo,θb)∈Θ

L(θhi,θlo,θb), (3)

where L(θhi,θlo,θb) denotes the marginal log-likelihood
and is equivalent to the logarithm of the joint probability
of generating the expert demonstrations (s2:T , a1:T ) given
(o0, s1) and the parameters θhi,θlo,θb, i.e.,

L(θhi,θlo,θb) = log
∑

o1:T ,b1:T

Pθ
o0,s1(s2:T , a1:T , o1:T , b1:T ).

(4)
Note that, Pθ

o0,s1(s2:T , a1:T , o1:T , b1:T ) in (4) is the same
as (2), but we have dropped the random variables
S2:T , A1:T , O1:T , B1:T to streamline the notation. The op-
timization problem in (3) is hard to evaluate for our frame-
work, considering also that for a long sequence of demon-
strations Eq. (4) gets close to zero. Yet, the BW algorithm
provides an iterative procedure based on EM which solves (3)
by maximizing a surrogate of (4). The way we compute this
surrogate during the E-step determines the main difference
between the batch and our online version of the algorithm.

III. BATCH BAUM-WELCH FOR HIERARCHICAL
IMITATION LEARNING

In this section we draw the main ingredients of the
batch BW for HIL as in [23]. As mentioned, this algorithm
alternates between the E-step and the M-step: during the E-
step we compute a surrogate of (4), the Baum’s auxiliary
function [21], with respect to the previously obtained vector
of parameters θold. Then, in the M-step, we optimize this
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function with respect to a new vector of parameters θ.
Given (O0, S1) = (o0, s1), we obtain the following Baum’s
auxiliary function for the OPGM (cf. [30] for the complete
derivation)

QTo0,s1(θ|θold) =
1

T

∑
o1:T ,b1:T

Pθold

o0,s1(o1:T , b1:T |(st, at)1:T )

× log Pθ
o0,s1(s2:T , a1:T , o1:T , b1:T ).

(5)

By replacing Pθ
o0,s1(s2:T , a1:T , o1:T , b1:T ) with (2), Eq. (5)

becomes

QTo0,s1(θ|θold) =
1

T

{ T∑
t=2

∑
ot−1

∑
bt

Pθold

o0,s1(ot−1, bt|(st, at)1:T )

× log πθb

b (bt|st, ot−1)

+
T∑
t=1

∑
ot−1

∑
bt

∑
ot

Pθold

o0,s1(ot−1, bt, ot|(st, at)1:T )

× log π̃θhi

hi (ot|ot−1, st, bt)

+
T∑
t=1

∑
ot

∑
bt

Pθold

o0,s1(ot, bt|(st, at)1:T ) log πθlo

lo (at|st, ot)

+
∑
b1

Pθold

o0,s1(b1|(st, at)1:T ) log πθb

b (b1|s1, o0) + C

}
,

(6)

where C is constant with respect to θ. In (6),
Pθold

o0,s1(ot−1, bt|(st, at)1:T ) and Pθold

o0,s1(ot, bt|(st, at)1:T ) are
referred to as the smoothing distributions of the latent
variables given the expert demonstrations (st, at)1:T and
are computed, during the E-step of the batch algorithm,
via forward-backward decomposition (cf. [30] and [23]).
Moreover, C contains all constant terms (independent on θ),
Pθold

o0,s1(b1|(st, at)1:T ) log πθb

b (b1|s1, o0) is neglected, for T
large enough, for reasons linked with the forward-backward
decomposition [23], and π̃θhi

hi depends on θhi only through
πθhi

hi in (1) for bt = 1. Hence, using the convention 0 log 0 =
0, we can replace QTo0,s1(θ|θold) by

QTo0,s1(θ|θold) =
1

T

{ T∑
t=2

∑
ot−1

∑
bt

Pθold

o0,s1(ot−1, bt|(st, at)1:T )

× log πθb

b (bt|st, ot−1)

+
T∑
t=1

∑
ot

Pθold

o0,s1(ot, bt = 1|(st, at)1:T ) log πθhi

hi (ot|st)

+
T∑
t=1

∑
ot

∑
bt

Pθold

o0,s1(ot, bt|(st, at)1:T ) log πθlo

lo (at|st, ot)
}
.

(7)

We summarize the batch BW for HIL recursion in Algo-
rithm 1. As discussed, the main shortcoming of this algorithm
is the need of processing the entire set of demonstrations,
multiple times, at each iteration.

Algorithm 1 Batch Baum-Welch algorithm for HIL

1: Require: Observation sequence (st, at)1:T ; o0 ∈ O;
s1 ∈ S; N ∈ N+ and θ(0) ∈ Θ.

2: for n = 1, . . . , N do
3: Compute {Pθ(n−1)

o0,s1 (ot−1, bt|(st, at)1:T )}Tt=2 and
{Pθ(n−1)

o0,s1 (ot, bt|(st, at)1:T )}Tt=1 . E-step
4: Update θ(n) ∈ arg maxθ∈ΘQ

T
o0,s1(θ|θ(n−1)) based

on (7) . M-step
5: end for

IV. ONLINE BAUM-WELCH FOR HIERARCHICAL
IMITATION LEARNING

In the following, we replace the smoothing distributions
Pθold

o0,s1(ot−1, bt|(st, at)1:T ) and Pθold

o0,s1(ot, bt|(st, at)1:T )
in (7) with a sufficient statistic φθT which is updated as
soon as the new state-action pair (sT , aT ) becomes available.

Given O0 = o0 and S1 = s1, the sufficient statistic φθT :
O2 × B × Ã × S̃ → R, is defined as

φθT (o′, b, o, s, a) =

1

T
Eθ
o0,s1

[ T∑
t=1

1[Ot−1 = o′, Bt = b,Ot = o, St = s,At = a]∣∣∣∣(st, at)1:T

]
.

(8)

Where O is the set of options, B is the termination binary
set, Ã ⊆ A is the finite and countable set of actions taken by
the expert and S̃ ⊆ S is the finite and countable set of states
explored by the expert. Note that, to avoid confusion and
distinguish between ot as the value of the random variable
Ot at time t and ot as an element of the set O, we change
the notation compared to Section III. Hence, in (8) we use
o′, o ∈ O, b ∈ B, s ∈ S̃ , a ∈ Ã while we keep the notation
(st, at)1:T for the expert demonstrations. In Proposition 1, a
new Baum’s auxiliary function for the online BW for HIL
is obtained in terms of (8).

Proposition 1. Given φθT defined in (8), we can rewrite (5)
as

QTo0,s1(θ|θold) =
∑
o′

∑
o

∑
s

∑
a

{∑
b

φθ
old

T (o′, b, o, s, a)

× log πθb

b (b|s, o′) + φθ
old

T (o′, b = 1, o, s, a) log πθhi

hi (o|s)

+
∑
b

φθ
old

T (o′, b, o, s, a) log πθlo

lo (a|s, o)
}
,

(9)

where πθhi

hi (o|s), πθlo

lo (a|s, o) and πθb

b (b|s, o) are arbitrarily
parameterized.
Proof: See [30].

Remark 1. The new QTo0,s1(θ|θold) in (9) needs to sum over
s ∈ S̃ , a ∈ Ã, where both S̃ and Ã are a finite and countable
subsets of S and A, in place of the sum over T in (7). Note
that in many practical situations |Ã| × |S̃| < T .
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We proceed introducing the online recursion to update φθT
in (8). First, φθT can be decomposed through the following
two filters

χθ
T (o) = Pθ

o0,s1

(
OT = o

∣∣(st, at)1:T

)
, (10)

ρθT (o′, b, o, s, a, o′′) =

1

T
Eθ
o0,s1

[ T∑
t=1

1[Ot−1 = o′, Bt = b,Ot = o, St = s,At = a]∣∣∣∣OT = o′′, (st, at)1:T

]
,

(11)

where χθ
T : O → ∆O and ρθT : O3 × B × Ã × S̃ → R. It

follows that

φθT (o′, b, o, s, a) =
∑
o′′

ρθT (o′, b, o, s, a, o′′)χθ
T (o′′). (12)

Proposition 2 shows the recursion to update (10)-(11).

Proposition 2. Initialization:

χθ
0 (o) = P (O0 = o), (13)

ρθ0 (o′, b, o, s, a, o′′) = 0, (14)

Recursion: for T > 0 and the new state-action pair (sT , aT )
it holds that
χθ
T (o) =∑
o′

∑
b

πθlo

lo (aT |sT , o)π̃θhi

hi (o|b, sT , o′)πθb

b (b|sT , o′)χθ
T−1(o′)

×
(∑

o′

∑
b

∑
o

πθlo

lo (aT |sT , o)π̃θhi

hi (o|b, sT , o′)

πθb

b (b|sT , o′)χθ
T−1(o′)

)−1

,

(15)

ρθT (o′, b, o, s, a, o′′) =
∑
o′′′

∑
b′{

1

T
κ(o′ − o′′′, b− b′, o− o′′, s− sT , a− aT )

+

(
1− 1

T

)
ρθT−1(o′, b, o, s, a, o′′′)

}
×

π̃θhi

hi (o′′|b′, sT , o′′′)πθb

b (b′|sT , o′′′)χθ
T−1(o′′′)∑

o′′′
∑
b′ π̃

θhi

hi (o′′|b′, sT , o′′′)πθb

b (b′|sT , o′′′)χθ
T−1(o′′′)

.

(16)

where κ(o′ − o′′′, b − b′, o − o′′, s − sT , a − aT ) = δ(o′ −
o′′′)δ(b− b′)δ(o− o′′)δ(s− sT )δ(a− aT ).
Proof: See [30].

Based on Propositions 1-2, we formulate Algorithm 2
which is, to the best of our knowledge, the first online EM
type algorithm suitable for end-to-end HIL within the options
framework. In Algorithm 2, note that, we do not have to
specify the number of iterations (N , in Algorithm 1) as
we perform an E-step after each state-action pair available.
Additionally, we inhibit the M-step for t < Tmin to ensure
that QTo0,s1(θ|θold) is numerically well-behaved which is not
always the case for a small number of demonstrations.

Algorithm 2 Online Baum-Welch algorithm for HIL

1: Require: Observation sequence (st, at)1:T ; O0 = o;
S1 = s; θ(0) ∈ Θ.

2: for t = 0, . . . , T do
3: if t = 0 then
4: Initialize ρθ

(0)

0 (14) and χθ(0)

0 in (13)
5: end if
6: if t > 0 then
7: Compute ρθ

(t−1)

t in (16) and χθ(t−1)

t in (15)
8: if t > Tmin then
9: Compute φθ

(t−1)

t in (12) and Update θ(t) ∈
arg maxθ(t)∈Θ Q

T
o0,s1(θ(t)|θ(t−1)) with QTo0,s1(θ|θold)

in (9)
10: else
11: θ(t) = θ(t−1)

12: end if
13: end if
14: end for

V. REGULARIZATION PENALTIES

As additional requirement in HIL, we want to learn a set of
interpretable and transferable options. To achieve this goal,
we penalize the Baum’s auxiliary functions in (7) and (9)
with regularizers on both the high and low level policies
[13].

High level policy regularizers: For πθhi

hi , we introduce
two regularizers Lb and Lv in (17). By minimizing Lb, we
encourage the activation of each option with a target sparsity
value τ = 1/|O| in expectation over the training set. On the
other hand, maximizing Lv , where var denotes the variance,
we encourage the options activation to be varied and force
each option to have a high probability for certain states and
low for the rest.

Lb =
∑
o

∣∣∣∣Es[πθhi

hi (o|s)]− τ
∣∣∣∣

2
, Lv =

∑
o

vars[πθhi

hi (o|s)].

(17)

Low level policy regularizer: Additionally, we maximize
a numerical approximation (cf. Appendix in [30]) of the
Kullback–Leibler divergence (DKL) of each low level policy
over the set of demonstrations (18). This in order to enhance
differentiation in πθlo

lo given different options:

LDKL
=
∑
o

∑
o′,o6=o′

DKL

(
πθlo

lo (a|s, o)||πθlo

lo (a|s, o′)
)
. (18)

Overall, at each M-step, we solve the following optimization
problem

θ(T ) ∈ arg max
θ(T )∈Θ

QTo0,s1(θ|θold)−λbLb+λvLv+λDKL
LDKL

.

Note that, given the different ways we construct the Baum’s
auxiliary functions for Algorithm 1 and 2, respectively in
(7) and (9), the three penalties are differently implemented
in the two settings. For more details on this regard refer to
the Appendix in [30].
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Fig. 2: Performance for different environments. The y-axis shows the reward averaged over the random seeds and scaled
such that the expert achieves 1. The x-axis shows the size of the training set used for each trial. The shaded area indicates
the standard deviation over the 10 reruns for cartpole, lunar lander and pendulum and over 30 reruns for the grid world.

VI. COMPARISON AND DISCUSSION

A. Implementation and Numerical Complexity

In the following we focus on the numerical complexity
of the E-step for both Algorithms 1 and 2, since this is
where the two algorithms differ the most. Algorithm 1 uses
the forward-backward decomposition (Appendix in [30]):
at each iteration updates a vector of size T × |O| × |B|
in O(T × |O|2 × |B|). On the other hand, Algorithm 2
updates a vector of dimension |S̃| × |Ã| × |O|2 × |B| with
a numerical complexity of O(|S̃| × |Ã| × |O|3 × |B|2).
The bottleneck of the batch algorithm is T , the size of the
expert demonstrations; while, in the online algorithm it is
|S̃| × |Ã| which is the combination of states explored and
actions used by the expert. Generally, in order to obtain
satisfactory learning in stochastic environments we have
T >> |S̃| × |Ã| which implies that a single online E-step
in Proposition 2 is more efficient than a single forward-
backward decomposition. However, consider that the batch
BW (Algorithm 1) requires N iterations while, the online
(Algorithm 2) T iterations where usually T >> N . There-
fore, as acknowledged in [27], [31], this mere comparison is
not always meaningful and requires to be further investigated
via empirical experiments.

B. Experiments

We evaluate the two algorithms on 4 different tasks
from the classic RL literature: three of them come from
the OpenAI gym library [28], the cartpole, pendulum and
lunar lander; and have a continuous state-space. The last
is a grid-world type environment with discrete state-space
and high stochasticity in transition and reward. We first
generate the expert demonstrations running value iteration

on the grid-world, Q-learning on the pendulum and cartpole
[1] and a heuristic on lunar lander. After generating the
demonstrations, we use Algorithms 1 and 2 to train an
options-type hierarchical policy on the same triplet of feed-
forward fully connected neural networks. For both πθlo

lo and
πθb

b we use a number of |O| = 2 networks made of a single
hidden layer of 30 units, with ReLu activation function;
while, πθhi

hi uses the same architecture but with 100 units.
All the networks weights are initialized randomly with a
uniform distribution U(−0.5, 0.5) at the beginning of each
trial. In different trials, the algorithms are fed with a different
number of demonstrations (training samples) and they are
trained for the same amount of time, on the same hardware
and in exactly the same conditions. We run all trials 30 times
over different random seeds for the grid world and 10 times
for the others. After the training is completed, we measure
the average reward obtained over 100 episodes for each trial
given a seed and finally, average again over the seeds. More
information on the used hyperparameters are provided in the
Appendix in [30]. The results are illustrated in Figure 2.
As Figure 2 depicts, there is no tangible deterioration in
the performance when using the online setting with respect
to the batch. For the environments with a continuous state
space, i.e., lunar lander, pendulum and cart pole, where
T ≈ |S̃|× |Ã| we observe similar performance; on the other
hand, for the grid-world, which has a discrete state space,
the online algorithm outperforms its batch version since we
have T > |S̃| × |Ã|. Finally, note that these experiments are
conducted on a reasonably small number of demonstrations
T , in order to facilitate the comparison, and the training
hyperparameters (Appendix in [30]) are selected such that
the two algorithms perform an equivalent amount of gradient
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steps. For greater T , the gap would have been larger since
the forward-backward decomposition in the batch algorithm
is more expensive. Overall, the results are encouraging and
experiments on more realistic setups will be the subject of
subsequent work.

VII. CONCLUSIONS

In this work, we develop an online version of the BW
algorithm for HIL. Specifically, we formulate an online
smoothing recursion suitable for the options framework and
leverage it to obtain our online BW algorithm for HIL. In
addition, we empirically compare online and batch versions
on classical control tasks: the two algorithms show similar
performance in all the environments with a continuous state-
space; while, when the size of the training set becomes larger
compared to the portion of the state-space explored by the
expert, e.g the grid-world, we show the online algorithm
to be convenient since the forward-backward decomposition
used in the batch algorithm becomes more expensive than
the online recursion in Proposition 2.
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