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Abstract

During COVID‐19, misinformation on social media has affected people's adoption of

appropriate prevention behaviors. Although an array of approaches have been

proposed to suppress misinformation, few have investigated the role of dis-

seminating factual information during crises. None has examined its effect on sup-

pressing misinformation quantitatively using longitudinal social media data.

Therefore, this study investigates the temporal correlations between factual in-

formation and misinformation, and intends to answer whether previously pre-

dominant factual information can suppress misinformation. It focuses on two

prevention measures, that is, wearing masks and social distancing, using tweets

collected from April 3 to June 30, 2020, in the United States. We trained support

vector machine classifiers to retrieve relevant tweets and classify tweets containing

factual information and misinformation for each topic concerning the prevention

measures’ effects. Based on cross‐correlation analyses of factual and misinformation

time series for both topics, we find that the previously predominant factual in-

formation leads the decrease of misinformation (i.e., suppression) with a time lag.

The research findings provide empirical understandings of dynamic relations be-

tween misinformation and factual information in complex online environments and

suggest practical strategies for future misinformation management during crises and

emergencies.
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1 | INTRODUCTION

Crisis communication plays a critical role in organizing effective re-

sponses and mitigating the impacts of crises (Clark‐Ginsberg & Petrun

Sayers, 2020). It intends to form people's correct perceptions about

preventative measures (Qiu & Chu, 2019) and motivate risk mitiga-

tion behaviors in response to crisis events (Gilk, 2007; Utz

et al., 2013). Social media platforms facilitate crisis communication by

allowing people to seek, interpret, and disseminate information

timely during crisis events (Silver & Andrey, 2019). Studies on crisis

informatics that leverage social media data have been burgeoning

across hazard types including natural hazards (Niles et al., 2019),

public health crises (Yu et al., 2020), and extreme events (Stieglitz

et al., 2018). In addition to the multiple benefits of using social media

in crisis communication, concerns have also been raised for its un-

desirable role in propagating misinformation (i.e., inaccurate or mis-

leading information) during these crises and emergencies (Vosoughi

et al., 2018).
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During COVID‐19, social media has been ignited with diverse

information. The increasing rate of reported incidents along with

massive, related dialog has triggered divergent reactions and inter-

actions across stakeholders at various levels (Shimizu, 2020; Wang

et al., 2021). Specifically, under the social distancing policy, more

people have turned to social media for support (Nabity‐Grover

et al., 2020). However, the credibility of social media information is

worrisome as misinformation spreads widely and quickly (Depoux

et al., 2020; Pulido et al., 2020), which posed severe challenges to

public health. Based on existing definitions of online misinformation

in previous public health studies (Barua et al., 2020; Loomba

et al., 2021; Pennycook et al., 2021; Wu et al., 2019), we define

misinformation as false information that is against the relevant sci-

entific facts related to the two measures' effects in preventing the

infection of SAR‐CoV‐2. After the worldwide outbreak of SAR‐CoV‐2

in 2019, 24.8% of tweets about COVID‐19 contained misinformation

(Kouzy et al., 2020). Unlike factual information, which matched sci-

entific facts towards the correct prevention measures of the crises

(Castillo et al., 2011), most misinformation contains false content

towards the prevention measures and produces misperceptions

about disease prevention (van der Meer & Jin, 2020).

Misinformation during public health crises is harmful because it

misdirects people's response behaviors while the effectiveness of in-

tervention policies depends heavily on individuals' response behaviors.

Collective individuals' prevention strategies, such as wearing facemasks

and social distancing, have the potential to reduce the risk of infection

(Chu et al., 2020; Lewnard & Lo, 2020). However, Individuals' crisis

response behaviors can be significantly affected by information ob-

tained from the Internet and social media (Swire‐Thompson &

Lazer, 2020). Additionally, some factors, such as recommendation al-

gorithms and bots, have made misinformation widely propagated in the

digital environments (Orabi et al., 2020; Zhang & Ghorbani, 2020). In-

dividuals misled by such misinformation may avoid following correct

recommendations and put their health at high risk (Earnshaw &

Katz, 2020). For example, widespread online misinformation about

coronavirus treatment “injecting disinfectant” has caused 30 poisoning

cases in New York City within 18 h (Slotkin, 2020). Specifically, mis-

information has a severe impact on vulnerable groups during the

COVID‐19: mistrust and lack of access to factual information sources

have made different vulnerable groups easily to be affected by mis-

information (Clark‐Ginsberg & Petrun Sayers, 2020). Because of the vast

spread and negative societal impacts of misinformation during emer-

gency response, it is urgent to formulate effective strategies to suppress

misinformation on social media platforms.

Previous literature in the domain of crisis informatics has pro-

posed several strategies for combating misinformation on social

media, including checking information authenticity (Safieddine et al.,

2016), controlling bot accounts (Shao et al., 2018), tracking sources

of misinformation (Jang et al., 2018), identifying misinformation to-

pics (Vicario et al., 2019), broadening exposure to diverse views

(Wang & Song, 2020), and providing news and science literacy edu-

cation, such as guidelines of social media uses in crisis events

(Kaufhold et al., 2019; Trethewey, 2020; Tully, Bode, et al., 2020).

The first five strategies can be implemented by social media com-

panies and domain experts, while the last one puts the onus on the

public and authoritative agencies. However, the effectiveness of fact‐

checking and bot control has been limited to suppressing preknown

misinformation and cannot limit the production or sharing of mis-

information that has not been detected (Shao et al., 2018). Control-

ling bot accounts also cannot mitigate the misinformation generated

and shared by human accounts (Silva et al., 2020). In the study field of

public health, fact‐checking, and literacy education (Walter

et al., 2021) have been used as the main strategies to suppress health

misinformation on social media. Multiple methods were utilized for

the misinformation detection, such as training a Random Forest

classifier for examining whether the temporal trend of online in-

formation dissemination is similar to the trend of fake news (Previti

et al., 2020), and comparing text similarity between reported mis-

information and social media posts using a neural network model (Yu

et al., 2017).

In comparison with the detection‐based “reactive” strategies,

literacy education (e.g., news and information literacy) has a greater

potential to suppress misinformation “proactively” (Tully, Vraga,

et al., 2020). The effectiveness of literacy education has been no-

table, and experiments have shown that the provision of accurate

information made about 20% of the experiment participants change

their misperceptions of the research topics (Vraga et al., 2020). Ad-

ditionally, literacy education is effective in reducing the public's ig-

norance and misconceptions on other topics, such as climate change

(Cook et al., 2014), and helps individuals judge the truthfulness of

information (Kahne & Bowyer, 2017). One example of literacy edu-

cation used on social media platforms is to disseminate factual in-

formation about crises and provide correct strategies for crisis

prevention (Almaliki, 2019). This approach was also found to correct

people's mistrust of misinformation effectively (Vraga et al., 2020).

Specifically, in the public health domain, this strategy has been used

to suppress misinformation, especially in vaccination promotion and

SARS‐CoV‐2 prevention (Chen et al., 2020; Danielson et al., 2019).

The widely generated and disseminated messages containing factual

information become “predominant” when the proportion of tweets

containing factual information is higher than 50% meaning social

media users can be exposed to a higher percentage of factual

information.

However, little research has investigated the temporal correla-

tion between misinformation and factual information during crises

empirically, and the existing research remains insufficient on whether

predominant factual information can effectively suppress mis-

information on social media platforms. None has used longitudinal

social media data to investigate the temporal relationship between

misinformation and factual information quantitatively. It is unclear

how effectively the previously predominant factual information (e.g.,

increased number or proportion) can reduce the overall volume and

proportion of misinformation on social media during crises. Con-

sidering the existing research gaps and the importance of studying

social media misinformation combatting strategies, this manuscript

has two primary questions.
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#1: What is the temporal relation between the daily volume/

proportion of tweets that contained factual information and

misinformation for individual topics of prevention measures

during COVID‐19?

#2: Can previous predominant factual information suppress mis-

information on Twitter during COVID‐19?

We chose two topics, that is, “wearing masks” and “social dis-

tancing,” for detailed empirical investigations (Chu et al., 2020;

Lewnard & Lo, 2020) due to their much‐identified misinformation on

Twitter, which hindered people from following preventative mea-

sures (Krause et al., 2020). Recent medical studies have shown the

potential positive influence of the two prevention measures on mi-

tigating the risks of the SARS‐CoV‐2's infection (Chu et al., 2020;

Lewnard & Lo, 2020). Thereby, particularly for the two public health

topics in the US pandemic response context, our classification criteria

are built based on the potential public‐health consequences of the two

information categories. We regard tweets as factual information if they

regard the two critical prevention measures as effective in mitigating

COVID‐19 infection, endorse relevant credible information and af-

firm the negative consequences of not following them; and as mis-

information, if they oppose or manipulate messages from credible

sources (e.g., public health agencies and authorities), manipulating

contents relevant to negative impacts of these measures, and contain

verified falsehoods (van der Meer & Jin, 2020; Wilson &

Starbird, 2020). If people receive and follow the misinformation re-

garding COVID‐19 prevention, they may behave inappropriately in

response to the COVID‐19 or to share such opinions on social media

platforms, and their health status would be highly risky (Earnshaw &

Katz, 2020). Acting on misperceptions of these measures, such as not

wearing a mask or socially distancing in public places, could poten-

tially accelerate the spread of the virus; one experiment showed that

a lack of appropriate prevention measures nearly doubled the num-

ber of infections (Lewnard & Lo, 2020). We utilized key‐expressions

and support vector machine (SVM) to extract relevant tweets from

the collected data and categorized them into those containing (a)

factual information and (b) misinformation under each topic. We

generated the series about the daily volume and proportion of these

two information categories, then conducted cross‐correlations be-

tween the time series of two information categories. The research

findings can provide strategies for combating social media mis-

information during future public health crises and other extreme

events.

2 | DATA COLLECTION AND METHODS

2.1 | Case description and data collection

This study focused on the misinformation about SARS‐CoV‐2 pre-

vention measures on Twitter and evaluated the influence of factual

information on the spread of misinformation in the United States.

The study period covers 89 days, from April 3 to June 30, 2020. We

chose this period because U.S. CDC published the announcement

that encouraged the public to wear masks and keep social distancing

(CDC, 2020), and the number of US cases of coronavirus surpassed

three million during the second wave of the pandemic (Dong

et al., 2020). During this time, a large volume of misinformation

spread widely and caused an infodemic (Hernández‐García &

Giménez‐Júlvez, 2020). The misinformation about the prevention

measures, such as messages that manipulate agencies' risk commu-

nication regarding the effectiveness of the two recommended pre-

vention measures and posts that encourage the public to engage in

risky behaviors (Pennycook et al., 2020), may hinder the use of

proper prevention measures. Meanwhile, factual information was

also disseminated to inform individuals of the proper response

measures and to suppress the misinformation.

Over the 3 months, we collected tweets with keywords “cor-

onavirus” and “covid” using an open Twitter streaming API (Twit-

ter, 2021) and retrieved 22,111,831 English tweets from the raw

data. In addition, we used Hydrator (Documenting the Now, 2020) to

extract the full text of each tweet before further text mining as

tweets collected from the streaming API mostly were truncated. With

the basic data sets, we conducted analyses in three steps using a set

of text mining and machine learning methods: (i) retrieving relevant

tweets, (ii) classifying tweets as containing misinformation and as

containing factual information, and (iii) investigating the cross‐

correlation between time series of the two information categories

(Figure 1).

2.2 | Retrieving relevant tweets for the two
preventative measures

We conducted two steps to extract tweets that are relevant to each

topic, including initial keyword‐based filtering and supervised classi-

fication using SVM. We define “relevant tweets” as (i) tweets that

directly expressed opinions/beliefs on the studied topics, such as

“wearing masks is (not) useful”; (ii) tweets involving suggestions,

policies, or opinions in a certain area; or (iii) tweets that endorsed

suggestions, policies, and opinions about the preventative measures

(including known/demonstrable falsehoods and factual information).

First, we used key‐expression filtering to retrieve tweets containing

the keywords and expressions for each topic (see Table 1). To gen-

erate the final keyword list, we first collected key expressions about

the topics from the websites of the US CDC (2020) and the WHO

(2020). Then we used both the keywords (e.g., “wearing masks”) and

their expression patterns to collect the potentially relevant tweets.

For example, we used the expression pattern “'mask' + 'protect oth-

ers'” to retrieve tweets containing both “mask” and “protect others,”

so both “masks can effectively protect others” and “to protect others,

masks are necessary” would be retrieved by this expression pattern.

Using this list of key patterns and expressions, we retrieved

3000 sample tweets from the collected data and further enriched this

list by adding the high‐frequency expressions from the retrieved

tweet texts.
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However, the key expressions could still retrieve irrelevant tweets.

For example, the tweet “Coronavirus: 3M to Produce 35,000,000 Re-

spirator Masks a Month in the U.S.” contains “coronavirus” and “mask”,

but it is about mask production instead of behaviors of wearing masks, so

we regard it as irrelevant. Other examples of irrelevant tweets include:

“Coronavirus, social distancing, Floyd protests|Homeland Security

Newswire.” This tweet contains keywords about social distancing (i.e.,

“social distancing”) but the three rules about relevance classification deem

it irrelevant because it does not contain opinions or suggestions about

social distancing.

To overcome the limitations of key expressions in retrieving re-

levant tweets, considering the high‐level performance of SVM in text

classification, of which the accuracy was higher than 90% (Gopi

et al., 2020; Liu et al., 2013), we conducted the second step of re-

levance classification using an SVM‐based classifier. We set the

parameters of SVM models by default. This process was illustrated in

Figure 2, showing how the example tweet was transformed to the

vector for relevance classification. The training data sets were ran-

domly extracted from the raw data set over the whole study period.

As shown in Figure 2, tweets were firstly cleaned by removing all

stopwords such as “the”, “is”, “which” and meaningless characters like

emojis, “@”, and “#”. The cleaned text was tokenized to unigrams,

bigrams, and trigrams using the NLTK Tokenizer. Then, we normal-

ized the terms by transforming them to lower case and stemming

Relevance 

Classification

Containing 

Information

Classification

Raw Tweets

Manually-tagged Tweets Tweets without tags

Word Lists of Tweets

SVM Classifier
Irrelevant 

Tweets
Relevant Tweets

Word Pattern of N-grams

Word Lists of Tweets

Word Pattern of N-grams
Prepro-

cessing

Prepro-

cessing

Vectors for Each TweetVectors for Each Tweet

Training Data of 

Containing Information 

Classification

Training Data of 

Relevance Classification

SVM Classifier

Tweets Containing 

Factual Information

Tweets Containing 

Misinformation

Twitter Streaming API

& Hydrator

F IGURE 1 Schematic process of tweets analysis

TABLE 1 Final keywords list for each topic and number of filtered tweets

Topics Key‐expressions Data volume

Mask ‘wear a mask’, ‘wearing a mask’, ‘wearing face mask’, ‘wear face masks’, ‘wear your mask’, ‘mask‐wearing could
prevent’, ‘mask’ + ‘second waves study’, ‘mask in public’, ‘mask protects you’, ‘mask’ + ‘please please please’,
‘mask’ + ‘prevent the spread’, ‘mask’ + ‘prevent you from’, ‘mask’ + ‘slow the spread’, ‘use of facemask’, ‘mask
won't help’, ‘masks at all times’, ‘masks are useless’, ‘mask is useless’, ‘face coverings’, ‘facemask use’, ‘healthy
people’, ‘masks can’, ‘N95 masks’, ‘prevent COVID‐19’, ‘please wear’, ‘mask’ + ‘protect others’, ‘mask’ +
‘protect themselves’, ‘mask’ + ‘protect yourself’, ‘mask’ + ‘protects you’, ‘wear mask’, ‘wearing masks’, ‘need
mask’, ‘wore mask’, ‘no mask’, ‘mask’ + ‘effectiveness’, ‘mask’ + ‘efficiency’, ‘mask’ + ‘compulsory’,
‘WearAMask’, ‘mask’ + ‘reduce onward transmission’.

424,566

Social Distancing ‘social distancing’, ‘2 arms’, ‘6 feet’, ‘6‐foot distance’, ‘avoid crowded places’, ‘avoid crowds’, ‘avoid gathering’,
‘avoid hugging’, ‘avoid kissing’, ‘avoid pooled rides’, ‘close contact’, ‘common areas’, ‘create space between
others’, ‘face‐to‐face contact’, ‘increase space between individuals’, ‘keep a safe space’, ‘keep distance’, ‘keep
space’, ‘limit contact’, ‘limit errands’, ‘physical distance’, ‘physical guide’, ‘safe social activities’, ‘social distance’,
‘stay apart’, ‘stay distanced’, ‘physical distancing’, ‘around others’.

100,695
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these terms. For example, “EFFECTIVE” was normalized and stem-

med to “effect”. Finally, we used Term Frequency‐Inverse Document

Frequency (TF‐IDF) (Ramos, 2003) to vectorize the list of tokens. The

output vectors of the training data were used to train the SVM‐based

classifier.

Two annotators (i.e., two authors) labeled the tweets in the

training data independently regarding (i) whether the tweets were

relevant to wearing masks or social distancing, and (ii) whether the

tweet contained factual information or misinformation (for

Section 2.3) based on the aforementioned criteria and definitions.

The annotation outcomes were compared, if some labels were not

consistent, the annotators would discuss and determine the final la-

bels together. The labeled tweets were then utilized to train the SVM

classifier. We also utilized k‐folder cross‐validation to evaluate the

performance of the SVM model by dividing each training data set into

10 subsets of the same size. The outcome of the training model and

the cross‐validation are shown in Table 2. The row of “mean accu-

racy” represents the average level of accuracies of training processes

with the 10 subsets of training data. The outcome indicates that the

trained SVM model is accurate and reliable.

2.3 | Classifying tweets containing factual
information and misinformation

After manually annotating tweets containing the two categories of

information based on the criteria described in Section 1, we trained

another SVM model to classify tweets under each topic over the

4.5 months for further temporal correlation analyses. Table 3 shows

the criteria and examples of factual information and misinformation

when annotating the tweets. The training outcome of the SVM‐based

classifier is shown in Table 4. We utilized the same k‐folder cross‐

validation to evaluate the performance of the SVM model. The re-

sults are shown in Table 4. The row of “mean accuracy” represents

the average level of accuracy of the training process with the ten

subsets of training data. The outcome indicates that the SVM model

trained for classifying information categories is reliable.

2.4 | Cross‐Correlation analysis of factual and
misinformation time series

Time‐series analyses have been widely used in analyzing data and

information mined from social media platforms (e.g., Wang &

Taylor, 2018). We employed a cross‐correlation analysis of two time

series to identify lags (h) of the predominant daily volume/proportion

of factual information (ft h+ / fpt h+ ) that might be useful predictors of

daily volume/proportion of misinformation (mt/mpt) for tweets re-

levant to “wearing masks” and “social distancing” topics separately.

For example, when one or more ft h+ , with h negative, are predictors

ofmt, it is sometimes said that f leadsm; when one or more, ft h+ with

h positive, are predictors of mt, it is sometimes said that f lags m.

The cross‐correlation analysis is performed based on the plot of

cross‐correlation function (CCF) (e.g., Figures 5 and 6) between the

time series of factual information and misinformation (i.e., daily tweet

count and daily proportion) for each topic. Values of the x‐axis (i.e.,

time lags) of the peaks in CCF plots indicate potential significant time

lags on the predictor (i.e., factual information). Before running CCF, a

prewhitening procedure using an autoregressive integrated moving

average (ARIMA; Box et al., 2015) model is used to remove the

common trends of time series of two information categories and to

help better interpret the CCF. The final model is constructed with the

final chosen lags based on the CCF plot and the ARIMA model.

To perform prewhitening, we fit the ARIMA model to the pre-

dictor (ft h+ / fpt h+ ) and use the fitted model structure to filter out the

response (m mp/t t). The ARIMA also requires stationarity (i.e., the

mean and variance do not change over time). We conducted

the Augmented Dickey–Fuller (ADF) test (Said & Dickey, 1984) and

the analysis is performed using the adf.test function from the “tseries”

R package (Trapletti & Hornik, 2020). If p value of the ADF test is less

than 0.05, the time series is stationary; if p value of ADF test is equal

F IGURE 2 Preprocessing steps for tweets

TABLE 2 Training and testing data set's sizes and classification
performance for relevant tweets

Wearing mask Social distancing

Training data set 1192 2099

Testing data set 300 300

Accuracy 0.8833 0.9133

Precision 0.9099 0.9462

Recall 0.9380 0.9535

Mean accuracy 0.8879 0.9243

Standard deviation 0.0194 0.0119

WANG ET AL. | 5



to or larger than 0.05, the time series is not stationary. As the

function cannot pass missing values, we imputed missing data using

Kalman smoothing (Bishop & Welch, 2001; Harvey, 1990; Grewal

et al., 2020), a nonparametric method without model assumptions

and is conducted purely from the data so the imputed values are stick

to the observed data. This process employed a na_kalman function

from the package “imputeTS” (Moritz & Bartz‐Beielstein, 2017). If the

time series is stationary, the ARIMA model is fitted using the sarima

function from the “astsa” package (Stoffer, 2020). To be noted, the

functions from the “astsa” package can handle the missing values

themselves. They employ the basic ACF and ARIMA functions, where

missing values are dealt with by Intervention Detection and the

model structure (Kalman filtering), respectively.

To select the best ARIMA and final cross‐correlation models, we

start the fitting with all the candidate time lags, then use backward

selection. The ARIMA model selection criteria are based on Akaike

information criterion (AIC; Akaike, 1998), and Bayesian information

criterion (BIC; Schwarz, 1978) (For AIC and BIC, the smaller the

better), and ensure the residuals to be independent (ACF around

zero) and random (Ljung‐Box test with p > 0.05) (Ljung & Box, 1978).

The final cross‐correlation model is linear, so our selection is based

on adjusted R2 (Draper & Smith, 1998), ensuring the residuals to be

independent (ACF around zero) in model validation. Essential time

series plots including CCF, autoregressive function (ACF), and partial

autoregressive function (pACF), were made using the R built‐in

package “stats.” All the statistical analyses were performed in

R language (R Core Team, 2020).

TABLE 3 Annotation criteria and example tweets of factual information and misinformation

Information
category Criteria Example tweets for “wearing masks” Example tweets for “social distancing”

Factual
information

Containing information about the
(potential) positive influence of

wearing masks (or social distancing)
in reducing the infection risk of
SARS‐CoV‐2

“The study found that if people wear
masks whenever they are in public it is

twice as effective at reducing the R
value than if masks are only worn after
symptoms appear”

“Coronavirus plea from Johns Hopkins:
please take social distancing

seriously to save lives.”

Endorsing information about the
prevention measures from credible
sources (e.g., public health agencies)

“@CDCgov The vulnerable are not 100%
protected from COVID‐19 even if they
just stay home because those they live

with can bring it home to them when

they buy groceries. My article

emphasizes the importance of wearing

masks in public.”

“Important information on COVID‐19
from @cdcgov Wash your hands,
stay at home if you're feeling ill.

Practice social distancing and avoid

large crowds to stop the spread!!”

Describing the potential public health
consequence(s) of not conducting
wearing masks (or social distancing)

“If masks have been found to save lives,
not wearing a mask does the opposite,
You could literally be killing people by

refusing to take this simple step to
protect others.”

“The longer we do not comply with
social distancing, then the longer we
will have to do it.”

Misinformation Manipulating information about the
potential negative influence of
wearing masks (or social distancing)
on preventing SARS‐CoV‐2.

“A Surgical Mask Won't Protect You From
#Coronavirus.”

“Social distancing won't stop
'accelerating' coronavirus pandemic,
WHO warns.”

Manipulating information about health

authorities' messages to opposing
the effectiveness of these
measures.

“An email proves Fauci knew masks were

ineffective for COVID‐19.”
“Bill Gates and White House health

advisor Dr Anthony Fauci violating
social distancing norms and not
wearing masks.”

Containing other falsehood information
verified by the fact‐checking
websites (e.g., Poynter)

“Criminals give contaminated masks from
door‐to‐door to make people fall

asleep and rob them.”

“There was no real scientific basis for
believing that” social distancing
would be necessary, “since it had
never been studied.”

TABLE 4 Training and testing datasets and classification
performance for information categories

Wearing mask Social distancing

Training data set 1684 941

Testing data set 300 300

Accuracy 0.9641 0.8333

Precision 0.9447 0.8507

Recall 0.9305 0.9495

Mean accuracy 0.9404 0.8210

Standard deviation 0.0148 0.0108
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3 | RESULTS

3.1 | Tweets containing factual information and
misinformation

We utilized the key‐expressions (Table 1) and the trained SVM‐based

classifiers to retrieve “relevant” tweets for case topics (i.e., wearing masks

and social distancing) from the tweets collected from April 3 to June 30

(using methods described in Sections 2.2 and 2.3). We have 12 days with

missing data from April 21–28 and June 6–9 due to the tropical‐storm‐

incurred power outages in Florida and computer resetting, which has a

very minor impact on the following analyses based on 3‐month data. The

changes in the daily volume of tweets that contain misinformation and

factual information are plotted in Figure 3.

Based on the daily data volume of the classified tweets (Figure 3), we

found that tweets relevant to “wearing masks” kept growing over the

period April 3–May 30, potentially caused by the increasing public at-

tention on the reasonability and implementation of wearing masks. The

second period of growth might be intensified by the event of George

Floyd on May 25 (Dave et al., 2020), when people protested for the

policemen's violence in Minneapolis. Additionally, as the number of US

cases surpassed 100,000 on May 28 (Dong et al., 2020), CDC highly

recommended individuals wearing masks in public space, which might

have contributed to the increased discussions as well. In comparison, the

number of “social distancing” tweets did not change drastically and grew

from April 3 to June 6 steadily, then decreased gradually. Based on the

health literature (e.g., Lewnard & Lo, 2020), social distancing was proved

as an effective strategy and continuously promoted by public health

agencies, and the discussion of social distancing on Twitter was growing

from early April to early June. The prevention measure was promoted by

the persistent recommendation of the related public health policies (Chui

et al., 2020), but the popularity level of the discussion was not as high as

“wearing masks.” To understand the proportion of factual information and

misinformation in the two data sets containing topic‐relevant tweets, we

also calculated the daily proportion for each topic (Figure 4).

3.2 | Cross‐correlation between “wearing masks”
factual information and misinformation time series

To explore the relation between misinformation and factual in-

formation for the “wearing masks” topic over time, we employed

F IGURE 3 Daily number of tweets containing misinformation and factual information (a: wearing masks; b: social distancing)

F IGURE 4 Daily percentage of tweets containing misinformation and factual information (a: wearing masks; b: social distancing)
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cross‐correlation analysis of time series in both original‐number and

percentage scales, including (a) daily tweet number containing mis-

information (mt) and factual information ( ft); and (b) daily proportion

of misinformation (mpt) and factual information ( fpt). The initial CCF

plots are included in Figure S1 in the Supporting Information Material

for time series in both scales showed unclear peaks of time lags, so

prewhitening is conducted. The CCF plots after the prewhitening

process are in Figure 5.

Specifically, for “wearing mask,” the ADF test (p = .495 > .05)

indicates that the time series (ft) is not stationary (Fuller, 2009), so we

took the first‐order difference of predictor between the daily values

of adjacent dates (f f−t t−1). The purpose is to remove the trend and

seasonality in the time series which stabilizes the mean of the time

series (Rasheed, 2020). Then the ADF test (p < .01) shows the time

series of the predictor's first‐order difference is stationary. Thus,

we considered integration with Order 1. Our final ARIMA model

chose AR with Order 6, because of the integration of Order 1, we

considered time lag (t = 1, 2, 3, 4, 6, 7) eliminating t = 5 after model

selection (see Section 2). The final cross‐correlation model is listed

in Equation (1) with detailed coefficients and significance levels in

Table S1 and satisfactory ACF and pACF tests for model validation in

Figure S3. The adjusted R2 for the final model is 0.4879 with

p = .0007726.

For fpt and mpt, after imputing missing values, the ADF test

has a p < .05, indicating stationary. The prewhitened CCF plot

(Figure S1b) indicated potential important time lags (h) at 0 and

−12. Based on the fitting outcomes of the ARIMA model, time

lags at −1 and −12 were also considered. Notably, time lag at 0 is

omitted due to the collinearity with the response variable. Thus,

we chose the final model based on adjusted R2 and ACF tests

(Figure S4) and the model is listed in Equation (2) with detailed

coefficients and significance in Table S2 and satisfactory ACF and

pACF tests for model validation (Figure S4). For the final model,

the adjusted R2 is .1824, and the p = .0007726.

Based on the final fitted cross‐correlation models (Equations 1

and 2) and the significance of coefficients inTables S1 and S2, we find

evidence that predominant factual information (i.e., tweet number and

percentage) leads to the decrease of misinformation significantly when

lag (h) is −1 (1 day) or 7 (1 week). However, we also find that factual

tweets from the previous 3 days and the same day have a positive

significant correlation with the number of tweets containing mis-

information; the number of misinformation tweets can also negatively

impact the number of factual tweets in the future with a time lag at 7.

Additionally, the number of tweets containing misinformation is also

positively related to the time (t) significantly. For the daily percentage

of misinformation tweets, previous dominant factual information in

percentages with a time lag at −1 can all significantly decrease the

percentage of misinformation for wearing masks tweets.








m m f f f

f f t

N σ

= 982.691 − 0.09132 + 0.36578 + 0.12195 − 0.046

−0.16853 − 0.04395 + 5.67228 + ϵ

ϵ ~ (0, )

t t t t t

t t t

t

−3 −3 −4

−7 +7

2
(1)




mp fp fp

N σ

= 0.6484 − 0.377 − 0.1379 + ϵ

ϵ ~ (0, )

t t t t

t

−1 −12

2 (2)

3.3 | Cross‐correlation between “social distancing”
factual and misinformation time series

Similarly, we conducted cross‐correlation analyses and an ADF test

for the time series of “social distancing” tweets containing mis-

information and factual information. The CCF plots for the two scales

(daily number and proportion) shown in Figure S2 indicate that pre-

whitening is necessary. The CCF plots after the prewhitening process

are in Figure 6.

For original tweet number under each information category (mt

and ft), the ADF test on ct has a p value of .3532 (nonstationary).

F IGURE 5 Cross‐correlation of mt and ft of wearing masks after prewhitening based on different lags (a: original scale; b: percentage scale)
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After taking the first‐order difference of the predictor, the p value of

the ADF test is smaller than .01. Thus, an order (1) integration is

considered. The ARIMA (12, 1, 0) model omitting orders 1, 8, 9, and 10

are used. The preliminary model based on adjusted R2 is listed in

Equation (3). Coefficients and significance inTable S3, the adjusted R2

is 0.7671, and the model p e= 1.922 − 06.

For the daily proportion of each information category (mpt and

fpt), the ADF test has p value of .5337 after imputation, and p < .01

after taking first‐order differences (indicating stationarity). Thus,

Order 1 integration is considered. An ARIMA (19, 1, 0) keeping orders

at 1 to 4, and 19 is chosen. The prewhitened CCF plot is shown in

Figure 6. Lags to be considered include −2, −5, −12, and 11. The final

model considering both adjusted R2 and p values is listed in Equation

(4) with coefficients and significance inTable S4 and satisfactory ACF

and pACF tests for model validation (Figure S6). The adjusted R2 is

0.8654, and the model p e< 2.2 − 16.

Based on the final fitted cross‐correlation models (Equation 4

and 5) and the significance of coefficients in Tables S3 and S4 we

find evidence that for the topic of “social distancing,” pre-

dominant factual information (i.e., tweet number and proportion)

leads the decrease of misinformation significantly when lag (h) is

−2, −12 for the number of tweets and −1 for the proportion of

tweets. However, we find that the proportion of misinformation

tweets can also negatively impact the proportion of factual

tweets in the future with a time lag of 1 day. The number of

tweets containing misinformation is also positively related to the

time (t) significantly.











m m f f

f f

f f f t

N σ

= −13.00137 + 0.41524 − 0.2104 + 0.14772

+ 0.01694 + 0.15307

+0.21147 − 0.44504 + 0.12427 + 3.26323 + ϵ

ϵ ~ (0, )

t t t t

t t

t t t t

t

−1 −2 −4

−5 −7

−8 −12 −14

2

(3)








mp fp fp

fp t

N σ

= 1.0749 − 0.45844 − 0.5834

− 0.03397 − 0.0001962 + ϵ

ϵ ~ (0, )

t t t

t t

t

−1 +1

+11

2

(4)

4 | DISCUSSION AND CONCLUSION

4.1 | Findings and contributions

COVID‐19, the worldwide drastic pandemic, has ignited online

platforms and caused an “infodemic” on various channels;

misinformation about prevention measures of coronavirus also

spread widely and has affected the adoption of proper prevention

measures. Although studies (e.g., Wang, et al., 2020) have

found that effective risk and crisis communication with

factual information can positively impact the performance of

public health campaigns and government agencies have also

disseminated factual messages on social media platforms actively,

the temporal relationship and the potential suppression effects of

factual information on misinformation have not been investigated

empirically.

This study analyzed large‐quantity longitudinal social media

data using supervised machine learning methods and cross‐

correlation time‐series analyses. It quantitatively investigated the

temporal correlation between factual information and misinforma-

tion over days and whether predominant factual information can

suppress misinformation on Twitter. Our analyses found evidence

about the suppression effects of previously predominant factual

information on misinformation for the two preventive‐measure to-

pics on Twitter. Specifically, in tweets relevant to topics of “wearing

masks” and “social distancing,” we found that the increasing per-

centage of factual information from the previous day led a decrease

in the percentage of misinformation significantly. The increasing

number of tweets containing factual information from a previous

day led a decrease in the number of tweets containing mis-

information significantly, while the significant time lags (h) for the

two topics are different. In addition to the "suppression" effect of

factual information (in scales of number and percentage) on mis-

information, we also found that; (a) the number of misinformation‐

relevant tweets increased significantly over time for both topics; (b)

the number of factual tweets from the same day had a positive

F IGURE 6 Cross‐correlation ofmt and ft of social distancing after prewhitening based on different lags (a: original scale; b: percentage scale)
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significant correlation with the number of misinformation tweets;

and (c) the number of misinformation tweets also had significant

correlations with the number of factual tweets in future days but

the effects varied when the time lags were different.

This study advances the existing knowledge body of crisis com-

munication and misinformation, especially for studies focused on

public health crises. Although high‐volume/proportion factual in-

formation has the potential to reduce the misinformation on social

media platforms (Iosifidis & Nicoli, 2020; Jin et al., 2020), little re-

search has found empirical evidence to support the strategies of

leveraging predominant factual information in suppressing mis-

information. To the best of our knowledge, we are among the first

to quantify the suppression effect of factual information over

time by analyzing real‐world social media posts (tweets) during the

COVID‐19 pandemic. Compared to the survey outcomes of previous

research, this longitudinal data set reflects the information change of

general Twitter users towards COVID‐19 prevention measures in

real‐world situations rather than in experimental scenarios. The re-

search findings can guide public health authorities, emergency re-

sponders, and other crisis managers to actively disseminate and

endorse factual information in online platforms to suppress mis-

information increases aggregately over time and to achieve crisis and

risk communication goals more effectively. Specifically, benign social

bots may be used to communicate factual information to social media

users (Hofeditz et al., 2019) and tailor messages based on users'

misinformation exposure status and risk perception (Reyes

et al., 2021; Tully, Bode, et al., 2020). Crisis managers could also

encourage the public to endorse (e.g., repost) useful factual in-

formation and actionable knowledge to increase their diffusion speed

and effects (Gao et al., 2021). Strategies could also be implemented

at critical timings to ensure effectiveness (Rich & Zaragoza, 2020).

Message frames, wording, and other visual techniques can also be

studied to achieve literacy education success on social media (Tully,

Vraga, et al., 2020).

Additionally, the research framework provides insights into data‐

driven methods for studying different information campaigns during

crises and emergencies on social media, as we mined and revealed

the temporal patterns of both factual information and misinformation

on Twitter during COVID‐19. Crisis and risk communication studies

and practices focused on disaster preparedness would also benefit

from the findings to adopt proactive strategies to suppress mis-

information as misinformation (e.g., rumors and myths) are also a

parcel of disaster responses, such as the disaster mythology during

Hurricane Katrina (Jacob et al., 2008). The research also contributes

to a better understanding of social media's complex role in emer-

gency and crisis management as well as the dynamic and divergent

public responses in digital platforms.

4.2 | Limitations and future work

There are a few potential limitations of this study that have opened

opportunities for future research. First, it focused on English tweets

collected by a keyword‐based Twitter Streaming API. Future work

might use accurate translation algorithms to process tweets in other

languages before conducting English‐based natural language pro-

cessing. Data from other social networking platforms could also be

considered if they become available. Second, the existing supervised

machine learning methods, including SVM, cannot achieve 100%

accuracy when classifying data. We have put considerable effort into

raising the classifier's accuracy to the level between 85% and 95%,

such as increasing the volume of training data, comparing classifica-

tion algorithms, and manually annotating the training data, and

overall, our final classifiers outperformed the existing classifier used

in similar tasks (e.g., Yao & Wang, 2020). With further development

of text mining techniques, researchers could use more advanced

machine learning techniques to classify tweets containing different

information categories and reveal the real‐world situation of in-

formation dissemination more accurately. Third, we classified tweets

containing misinformation or factual information mainly based on

whether the tweets containing falsehoods of the effectiveness of the

preventions measures and opposing/manipulating public health

agencies' guidance or endorsing/matching health agencies guidance

towards prevention measures (i.e., wearing masks and social distan-

cing), whose potential positive impacts on reducing the infection risk

of the COVID‐19 have been discussed in the up‐to‐date scientific

findings (Chu et al., 2020; Lewnard & Lo, 2020). Our definitions of

factual information and misinformation are based on both the latest

scientific facts and authorities' risk messages. Fourth, we regarded

English tweets containing “covid” or “coronavirus” as generated by

US Twitter users, while a small portion of tweets from users of other

English‐speaking countries may also be collected by the Twitter API;

however, such information cannot be verified if users choose not to

post their profile location or geotag/include location information in

contents. These tweets may affect the accuracy of the research

outcome in the spatial perspective. Future research can improve the

data collection process by restraining the location features of tweets.

Lastly, the research focuses on suppressing misinformation in a social

media platform (Twitter), but digital divides still exist. Not everyone

has equal access to online resources nor the same ability to respond

to misinformation during hazards; and Twitter users are younger,

more educated than the general public (Pew Research Center, 2019).

Future research can extend the work by investigating the effective-

ness of disseminating factual information in suppressing mis-

information across platforms and collaborating strategies (e.g., fact‐

checking and literacy education) to reduce and combat misinforma-

tion (Previti et al., 2020; Tully, Vraga, et al., 2020). It is also critical to

understand the different effects of misinformation on people with

distinct digital skills as they may perceive misinformation differently.

Digital divides at multiple levels should also be considered in studying

the overall strategies and impacts of misinformation suppression

across communities.
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