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NON-HOMOGENEOUS EXTENSIONS OF CANTOR MINIMAL
SYSTEMS

ROBIN J. DEELEY, IAN F. PUTNAM, AND KAREN R. STRUNG

ABSTRACT. Floyd gave an example of a minimal dynamical system which was
an extension of an odometer and the fibres of the associated factor map were
either singletons or intervals. Gjerde and Johansen showed that the odometer
could be replaced by any Cantor minimal system. Here, we show further
that the intervals can be generalized to cubes of arbitrary dimension and to
attractors of certain iterated function systems. We discuss applications.

1. INTRODUCTION AND STATEMENT OF RESULTS

We consider dynamical systems consisting of a compact space, X, together with
a homeomorphism, ¢ : X — X. We say that such a system is minimal if the only
closed sets Y C X such that o(Y) =Y are Y = X and Y = (. Equivalently, for
every z in X, its orbit, {¢™(z) | n € Z}, is dense in X.

There are a number of examples of such systems: rotation of the circle through an
angle which is an irrational multiple of 27, odometers and certain diffeomorphisms
of spheres of odd dimension d > 3 constructed by Fathi and Herman [5].

All of these examples share one common feature: the spaces involved are homo-
geneous. There are several ways to make this more precise, but one simple way
would be to observe that the group of homeomorphisms acts transitively on the
points.

In [6], Floyd gave the first example of a minimal system where the space is
not homogeneous in this (or an even stronger) sense. Floyd began with the 3°°-
odometer, (X, ), which is a minimal system with X compact, metrizable, totally
disconnected and without isolated points. Any two such spaces are homeomorphic
and we refer to such a space as a Cantor set. Floyd then constructed another
minimal system, (X, ¢), together with a continuous surjection 7 : X — X satisfying
mo@ = pom. In general, we refer to such a map as a factor map, we say that (X, ¢)
is a factor of (X, ) and that (X, @) is an extension of (X, ). In Floyd’s example,
some points x in X have 7—1{x} homeomorphic to the unit interval, [0, 1], while
for others, it is a single point. It is then quite easy to see, using the fact that X is
totally disconnected, that the space X has some connected components which are
single points and some homeomorphic to the interval.
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This example has been generalized in several ways (for example [1, 2, 7, 8]). In
Floyd’s example, the points x with 7={x} infinite all lie in a single orbit. Haddad
and Johnson in [8] showed that the set of such  could be much larger and even have
positive measure under the unique invariant measure for (X, ). More importantly
for our purposes, Gjerde and Johansen [7] showed that the 3°°-odometer could be
replaced with any minimal system, (X, ), with X a Cantor set. Their principal
tool was the Bratteli-Vershik model for such systems [12, Chapters 4 and 5]. We
will describe this in more detail in Section 2.

Our aim here is to show that the interval, [0,1], appearing as 7~ '{z}, can be
replaced by more complicated spaces. We are particularly interested in the case of
the n-dimensional cube (that is, [0, 1]™), for any positive integer n.

Although it is natural to generalize to more complicated spaces, let us explain
briefly why we want such a result in the specific case of [0, 1]”. The Elliott program
aims to show that a broad class of C*-algebras may be classified up to isomorphism
by their K-theory [4]. Onme very useful way of constructing C*-algebras is via
groupoids [13] and it becomes a natural question: which C*-algebras in the Elliott
scheme can be realized via a groupoid construction? In view of the classification
results themselves, this amounts to constructing groupoids whose associated C*-
algebras are classifiable and have some prescribed K-theory. If one begins with a
minimal action of the integers on a Cantor set, it is known that the Ky-group is
a simple acyclic dimension group and K is the integers [9]. Moreover, any such
K-theory can be realized from such a system [9].

In another direction, if one takes a minimal action, ¢, of the integers on some
space X and considers a closed, non-empty subset ¥ C X such that Y meets each
orbit at most once, one can construct the associated “orbit-breaking groupoid”:
the equivalence relation where the classes are either the original orbits of ¢ which
do not meet Y or the half-orbits, split at Y. The change in K-theory passing from
the crossed product C*-algebra to the orbit-breaking subalgebra can be computed,
essentially in terms of the K-theory of the space Y (see [11] for details).

Marrying these two ideas would seem to generate many interesting groupoids,
except that the choices for K*(Y'), where Y is a closed subset of the Cantor set,
are very limited. Here, we would like to replace the dynamics (X, ¢) with (X, @),
without changing the associated K-theory, but allowing us to find more interesting
spaces Y inside of [0,1]" = 7=1{x}. These C*-algebraic applications can be found
in [3].

Our construction and proof follow those of Gjerde and Johansen in [7] quite
closely and, in turn, their proof is quite similar to Floyd’s original one [6]. One
added feature here is that we use the framework of iterated function systems, as
this allows us to replace the interval, [0, 1], with the more complicated spaces.

Following usual conventions (see for example [10]) an iterated function system
consists of a metric space, (C,d¢), and F, a finite collection of maps f : C — C
with the property that there is a constant 0 < A < 1 such that do(f(z), f(y)) <
Ado(z,y), for all z,y in C and f in F. In particular, each map is continuous. We
will require a few extra properties.

Definition 1.1. Let (C, d¢, F) be an iterated function system. We say it is compact
if the metric space (C, d¢) is compact. We also say it is invertible if

(1) each f in F is injective, and
(2) Urerf(C) =C.
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The term “invertible” is meant to indicate that each map f in F has an inverse,
f~t: f(C) — C. Tt is not ideal as it does not rule out the possibility that the
images of the various f’s overlap.

Of course, the restriction that each map is injective is quite important. On
the other hand, it is well-known that any compact iterated function system has a
fixed point set and the restriction of the maps to this set will satisfy the invariance
condition [10, Section 3].

We list several simple examples of relevant iterated function systems. The first is
the one originally used by Floyd [6] along with the subsequent examples [1, 2, 7, §].

Example 1.2. Let C = [0,1], fi(z) = 27}z +4) for  in [0,1] and i = 0,1, and
F = {anfl}'

The next example is a fairly simple generalization of the last, but it is important
as this is the example we need in our applications in [3].

Example 1.3. Let n be any positive integer, C = [0,1]"?, fs(x) = 27 (z + ), for
each z in [0,1]",6 € {0,1}" and F = {fs | § € {0,1}"}.

Example 1.4. A minor variation on the last example would be to use instead
fs(x) = 371 (z + 4), for each z in [0,1]",§ € {0,1,2}". On the other hand, if we
instead let F = {fs |0 € {0,2}} when n=1,0r F = {f5 | § € {0,1,2}%,§ # (1,1)}
for n = 2, this now fails the invariance condition of our definition. As mentioned
above, standard results on iterated function systems show that C' contains a unique
closed set and restricting our maps to that set then satisfies all the desired condi-
tions. Notice that when n = 1, the set in question is the Cantor ternary set, while
for n = 2, it is the Sierpinski carpet [14].

Our main result is the following.

Theorem 1.5. Let (C,dc, F) be a compact, invertible iterated function system and
let (X, ) be a minimal homeomorphism of the Cantor set. There exists a minimal
extension, (X,9) of (X, @) with factor map = : (X,@) — (X, ) such that, for
each x in X, m={x} is a single point or is homeomorphic to C. Moreover, both
possibilities occur.

Theorem 1.6. Let (C,dc,F) be a compact, invertible iterated function system
and let (X, @) be a minimal homeomorphism of the Cantor set. If C is contractible,

then the minimal extension (X, ) and the factor map 7 : (X,¢) = (X, ) may be
chosen so that

™ K*(X) = K*(X)
is an isomorphism and so that w induces a bijection between the respective sets of
moariant measures.

2. THE CONSTRUCTION AND PROOFS

Just as for Gjerde and Johansen [7], we make critical use of the Bratteli-Vershik
model for minimal systems on the Cantor set [12]. Briefly, the Bratteli-Vershik
model takes some simple combinatorial data (an ordered Bratteli diagram) and
produces a minimal homeomorphism of the Cantor set. In fact, every minimal
homeomorphism of the Cantor set is produced in this way. A standard reference
for Cantor minimal system is [12], in particular see Chapters 4 and 5 for more on
the Bratteli-Vershik model.
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We begin with a Bratteli diagram, (V, E'), consisting of a vertex set V written as
a disjoint union of finite, non-empty sets V,,,n > 0, with Vo = {vp}, and an edge set
written as a disjoint union of finite, non-empty sets E,,,n > 1. Each edge e in E,
has a source, s(e), in V,,_1 and range, r(e), in V,,. We may assume (see [12]) that
our diagram has full edge connections, that is, every pair of vertices from adjacent
levels is connected by at least one edge. We define the space Xg to consist of all
infinite paths in the diagram, beginning at vy. That is, a point z = (z1, o, ...),
Xy € En,r(xy) = $(xny1). This space is endowed with the metric

de(x,y) =inf{27" |n>0,2, = y;,1 <i<n}.

In addition, we may assume that the edge set E is endowed with an order such
that two edges e, f are comparable if and only if r(e) = r(f). The set of maximal
edges and the set of minimal edges each form a tree and we assume that our diagram
is properly ordered, meaning that each contains exactly one infinite path. Two finite
paths from vy to V,, can be compared if they have the same range vertex by using
a right-to-left lexicographic order. Infinite paths may be compared in a similar
way: two paths are cofinal if they differ in only finitely many entries and can be
compared using a right-to-left lexicographic order. The Bratteli-Vershik map, ¢g,
takes an infinite path to its successor, and the unique infinite path with all edges
maximal to the unique infinite path with all edges minimal. The system (Xg, ¢E)
is a minimal Cantor system (provided X is infinite). Moreover, every minimal
Cantor system is topologically conjugate to a Bratteli-Vershik system. In view of
this, we may assume that (X, ) = (Xg, ¢g), for some properly ordered Bratteli
diagram, (V, E).

We note that there is an (essentially) unique ordered Bratteli diagram with
#V, =1 and #FE, = 3, for all n > 1, and the associated Bratteli-Vershik map is
the 3°°-odometer considered by Floyd. More generally, an odometer is any system
with #V,, = 1, for all n > 1 (see for example [12, Chapter 11 Section 8]).

Recall that, in addition to the Cantor minimal system, we also have (C,d¢, F),
which is a compact, invertible iterated function system. Owur final ingredient in-
volves this system. To each edge e in E, we assign a function, denoted fe, in
F U {id¢}, where idc is the identity function on C. We assume that this assign-
ment satisfies the following three conditions:

(1) if e is either maximal or minimal, then f. # idc,
(2) for every v in V, we have Uy(e)—y, £, 2ide fe(C) = C,
(3) the set {e € E| fo =id¢} contains an infinite path.

Let us first mention that the following weaker third condition will suffice: there
exists an infinite path (e, es,...) such that f., = id¢, for infinitely many n. Sec-
ondly, the fact that we can find a properly ordered Bratteli diagram satisfying these
can be seen as follows. First, take any minimal Bratteli-Vershik (Xg, og) with Xg
infinite. It can be telescoped until every pair of vertices at adjacent levels have
at least #F + 1 edges (see [7, page 94] or [12, page 22-23]). Select some infinite
path, (e, e2,...), which avoids all maximal and minimal edges and set f,, = id¢
for all n > 1. Then f may be chosen so that it maps the set s~'{v} — {e,ea,...}
surjectively to F, for every v in V.

In the construction of Gjerde and Johansen [7], the edges e with f. = id¢ form
a single infinite path. On the other hand, allowing more general subdiagrams, we
capture examples such as those given in [§].
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We now construct the system (X, ). We endow X x C with the metric
d((x¢), (y,d)) = max{dp(z,y),dc(c,d)},
for z,y in Xg and ¢,d in C. For each n > 1, define
X, ={(z,¢) e Xp xC|c€ fo, 00 fu (O}

It is immediate that each Xn is closed and non-empty and that Xn D) Xn+1- We
let X = Nyp>1X,, which is also closed and non-empty.
The quotient map 7 : X — Xg is defined by n(z,¢) = x.

Lemma 2.1. Suppose that x € Xg. Then exactly one of the following hold:

(1) Type 1: for infinitely many n > 1, f, #ide,

(2) Type 2: there exists n > 1 such that fy, = idc, for all i > n.
Moreover, in the Type 1 case, 7~ {z} consists of a single point, which we denote
by (x,cy). In the Type 2 case, we have

7} = {2} X far 00 f2, (C)

which is homeomorphic to C, since each f. is continuous and injective.

Proof. The set of n such that f,, = id¢ is either finite or infinite, hence the two
conditions are mutually exclusive and the only possibilities.
In the first case, we have

diam(fy, o+ o fz, (C)) < ANdiam(C),

where m is the number of 1 <[ <n with f;, # idc. The conclusion follows.
In the second case, it is clear that

({2} x O) N Xy = {x} X fa, 00 f5,(C),
for any ¢ > n and now, taking the intersection over all 7, we obtain the desired
conclusion. (]

We are now prepared to define our self-map of X and show it is a minimal
homeomorphism. Let (z,¢) be in X. We consider three cases separately. First, we
assume that x is Type 1 and that x # 2™**. Then x contains a non-maximal edge
and we let n be the first such edge. Thus, we have v () = (Y1,- -, Yn, Tnt1,-- ),
for some path y1, ..., y, with r(y,) = r(z,). The fact that x is Type 1 means that
x uniquely determines ¢ = ¢, and we define ¢(z,c) = (¢g(x), cph(z)). To see this
is well-defined, it suffices to note that, as z is Type 1 and pg(z) differs from 2« in
only finitely many entries, () is also Type 1 and ¢, () is well-defined.

Secondly, suppose that x = x™®*. It follows that, for all n, z, is maximal and
hence f,, # idc. So x™2* is also Type 1 and c is once again uniquely determined
as ¢ = c¢,. The same argument shows that 2™ is Type 1 as well. We define
G2 Cpmax ) = (2™ Cpmin ).

Finally, we consider the case that z is Type 2. In particular, this implies that x
is not equal to 2™2*. Let n be as in the definition of Type 2. (Notice that such an
n is not unique: we deal with this issue shortly.) As mentioned, z,, is not maximal.
Hence g (z) = (Y1, .-+ Yn, Tnt1,- - ), for some path yi,...,y, with r(y,) = r(z,).
(It is worth noting that it is possible that z;,, = y,.) Since c¢isin f;, oo fz (C)
we can define

o(x,¢) = (pp(x), fy 0 0 fy, 0 fa) 00 f1.(c)).
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As mentioned in the previous paragraph the choice of n is not unique and hence
we need to check that the above definition is independent of the choice of n. This
follows from the observation that if n’ is another such integer, we may assume that
n’ > n, and then all the maps f,,,,..., fz,, are all equal to idc.

The proof that ¢ is bijective is as follows: by simply reversing the order on the
edge set, the construction will yield another map which is easily seen to be the
inverse of Q.

We claim that ¢ is continuous. To show this, it will be convenient to define, for
any path p = (p1,...,p,) in (V, E) from vy to V,, the sets

Xn(p) ={zeXg|(x1,...,20) =p} X fp, 0---0 fp, (C).

It is an easy matter to check that X, (p) is a closed subset of X,,, that for p # ¢
of length n, X,,(p) and X,,(¢) are disjoint, and that the union of all such sets over
paths of length p is exactly X,,. From this, it follows that each such set is also an
open subset X,,. It also follows that X N X,,(p) is clopen in X.

Let p be any path in E from vg to V,, which is not maximal. Let ¢ be its successor

among such paths. Define a map v : X,,(p) — X,(¢) by
U)(Z,C) = (@E(z)qul ©--+0 an ° 1;11 0r++0 p:l(c))a

for (z,¢) in X, (p). Observe that this is clearly a homeomorphism.
We will show ¥[ 35 () = #lxnx, (p) From this and the fact that X N X, (p) is

clopen in X, it follows that ¢ is continuous on X N X, (p).

First, suppose that z is a Type 2 point in X N X, (p). Choose m such that
fz, = ide, for all © > m, Without loss of generality, we may assume that m > n.
We know that ¢g(2) = (q1,..-,Gn, Znt1,--.) and hence, for any ¢ in C,

¢(z,c) = (@1, qns2n1y-- ) fg 0 0 fg, 0 faniy 00 fa,
of o fal o fpl oo fyt(e)
(@15 s Zna1, ) o 0w 0 fg, 0 fp b o0 fr1(e))
= Y(z0).

Now, we consider a point z of Type 1 in X N X,,(p). The same argument as
above shows that, for any m > n, we have

w(f( ﬁf(n(p, Zngly ey Zm)) = ng(X ﬂf(n(p, Zndly ey Zm))-

The point t(z,c,) is the unique point which lies in the left-hand side for every
m > n, while ¢(z, ¢,) is the unique point that lies in the right-hand side, for every
m > n. Hence, we conclude they are equal.

We have now shown that ¢ is continuous on every set X, (p), where p is a
finite path which is not maximal. But such sets, allowing both n and p to vary,
contain every point of X, except (™3 cymax ). It follows from general topological
arguments using the facts that ¢ is a bijection and that X is compact, that ¢ is
continuous everywhere.

Finally, we need to show that (X, @) is minimal. Let (z,c¢) and (y,d) be in X
and let € > 0. It suffices for us to find a point (z,e) in the orbit of (z,¢) within
distance € of (y, d).

We first consider the case that y is of Type 1. We choose n sufficiently large
so that 2™ < € and so that, if we let m be the number of 1 < [ < n such that
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fy # ide, then A™diam(C) < e. Tt follows that X N X,,(y1, .- .,¥yn) is a clopen set
containing (y,d) of diameter less than e.

We define z in Xg as follows: z; = y; for all 1 < i < n, z,41 is any edge in
Ent1 with s(zp41) = 7(yn), and 7(zp41) = $(zn42) and z; = x;, for any i > n + 2.
It follows at once that z and x are cofinal. Hence, there is an integer k such that
ok (x) = 2. Tt is then clear that ¢*(x,c) is in X N X,,(y1,. . .,¥n) and hence within
e of (y,d).

Now we consider the case that y is of Type 2. First, choose m sufficiently
large so that 2™ < e and so that f,, = id¢c, for all n > m. Define z; = y;, for all
1 < i < m. Observe that d is in fy, 0---0 f, (C) and we let d,, = f, 'o---o f1(d).
Choose n > m such that \"~"diam(C) < e. For each m < I < n, we define z
and d; inductively, using our second hypothesis on the assignment e — f., so
that s(z;) = r(z1-1), f», # ide and f,,(d;) = d;—1. This obviously implies that
Jemir © 0 fo, (dn) = dp,. We define 2,11 to be any edge with s(zn11) = 7(2n)
and 7(zp4+1) = $(Tn42) and then z; = xy, for I > n+ 2. This means that z is a path
in Xp which is cofinal with z. Hence, there is an integer k such that ¢*(z) = 2.

We claim that ¢*(z,c), which we denote (z,e), is within € of (y,d). First, as
ok ()i = 2 = i, for all 1 < i < n, we have d(¢% (2),y) < 27" < 27™ < e. This
also means that e is in f,, o--- o f, (C). On the other hand, we know that

d = fy 00 fy.(dn)
= fao-of.,(dn)
fo0o0fe (dn)
€ fauo-of,(O)
We also know that, since f,, # id¢, for m <[ < n, we have
diam(f., 0+ 0 f2,(C) < diam(f,,, 0+ 0 f2(C))
A" diam(C')

€.

<
<

A

This completes the proof of Theorem 1.5.

We now turn to the proof of Theorem 1.6. Let 7, : Xn — Xg be the obvious
extension of m: simply projecting onto the first factor. For any path p, from wvg
to Vp: m, maps Xn(p) to X(p) ={z € Xg | z; = p;,1 <i < n}. As we assume
C is contractible, so is fp, ©---o fp (C) and this map induces an isomorphism on
K-theory. Taking the union over all paths p of length n, we see that 7, induces an

isomorphism from K*(X,) = @K (Xn(p)) to K*(Xg) = ®pK*(X(p)).

As X =N, X,, it is also the inverse limit of
Xl (—Xg(—Xg(—"'

where the maps are the inclusions. As K-theory is continuous, the conclusion
follows.

If we choose our assignment e — f. so that the edges which are assigned id¢
form a single infinite path, then 7 is a bijection, except on a single orbit of yg.
This orbit has measure zero under any invariant probability measure on X, so it
lifts to a unique @-invariant measure on X.
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