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Abstract: Cities in many countries are witnessing an era of transformative innovations in vehicular technologies and mobility-on-demand
(MoD) services in the context of global initiatives of smart and connected cities. However, advances in the built environment where vehicles
operate have not maintained the same pace. The newMoD especially burdens curb environments in urban cores due to competition for spaces
for pick-ups and drop-offs (PUDO). These uncoordinated and diverse uses without data-driven management have led to increased safety and
sustainability issues. This research intends to address the increasing curbside uses of PUDO activities due to MoD services and proposes a
data-driven agent-based simulation approach to plan designated PUDO zones in limited public curbside spaces. A case study was conducted
for five street blocks in urban cores of the City of Gainesville, Florida, United States, based on longitudinal parking transaction and violation
records, place visitation data, and geospatial data of parking assets. The results show that temporary PUDO zones should be designated at all
investigated blocks during peak hours even when the MoD market penetration rate is low (i.e., 10%), which helps mitigate the occurrences of
competing use events, while permanent PUDO zones should be designated for the two busiest blocks when the MoD market penetration rates
increase to 30% or 50%. Sensitivity analyses suggest that the designated PUDO zones can mitigate curbside stresses more effectively when
regulating MoD users’ PUDO dwell time (e.g., within one minute). This research aims to contribute to data-driven public asset managerial
decision-making and strategies in smart cities and benefits more accessible and sustainable living environments in urban cores. DOI: 10.1061/
(ASCE)ME.1943-5479.0001021. © 2022 American Society of Civil Engineers.
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drop-offs (PUDO) zones; Smart cities.

Introduction

The global initiatives of building smart and connected communities
have yielded an array of Information and Communication Technol-
ogy (ICT) and Internet of Things (IoT) applications for more sus-
tainable, livable, and accessible built environments (Francisco et al.
2020). These technologies have revolutionized the way people live,
work, entertain, and socialize in cities. However, many outdated
urban built environments and infrastructure systems have not kept
pace with these rapid technological advancements, which may fail
to accommodate people’s new living and mobility behaviors. For
example, with the increasing popularity of varied mobility-on-
demand (MoD) services is the burden imposed on curbside spaces.
Conventionally, curbs are used to separate pedestrian activities
from vehicular traffic and serve as the frontage for people to switch
transportation tools or access roadside properties (Marsden et al.
2020; ITF 2018). The emergence of various MoD services causes

different user groups to compete for curbside space uses. Curbs are
now places for MoD platforms to place their facilities (e.g., shared
bikes, e-scooters, and vehicles), MoD clients to complete transac-
tions, deliverymen to wait and retrieve goods/food, and ride-hailing
drivers to load/unload passengers in addition to the conventional
functions. These more intense and diversified curbside activities
can lead to misuse and oversubscription of curb spaces that neg-
atively impact street traffic, curbside business, urban aesthetics, and
pedestrian safety and comfort (NACTO 2013).

Pressured curbside spaces can be further burdened by the in-
creasing MoD market penetration and the adoption of emerging
vehicular technologies, such as shared autonomous vehicles (SAVs)
(Mckinsey Center for Future Mobility n.d.; ITF 2018). MoD is
likely to lead to more curbside pick-up drop-off (PUDO) activities
that increase the short-term parking needs while the deployment of
SAVs encourages more shared mobility and coordinated mobility
services. These trends result in fewer needs for on- and off-street
parking, but demand more curbside spaces used for frequent PUDO
activities (USDOT 2018; Zhang et al. 2020). PUDO may compete
with other curb uses such as private vehicles for curbside parking
spaces, especially in urban cores where the most populous places
are located. In this regard, it is important to ensure that automated
vehicles and emerging mobility services can be safely and effec-
tively integrated into the management of existing curb environ-
ments, alongside conventional private vehicles, and other curb
space users (USDOT 2018).

Diverse and uncoordinated curb uses may lead to increased
congestion (Weinberger et al. 2020), safety issues (Dumbaugh and
Li 2010), and transportation-related greenhouse gas (GHG) emis-
sions (Zhang and Batterman 2013; Aftab et al. 2020), which demands
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up-to-date curb management strategies to relieve these issues (IPMI
2018). City agencies should actively seek curbside management
strategies to ameliorate the increasing curbside burdens and coor-
dinate the parking needs of different curbside user groups (APA
2019). However, the prevailing management practices for curbside
spaces are not prepared to address the increasing conflicts arising
from new mobility options. A few cities have launched pilot pro-
grams to test new curbside management strategies, such as priori-
tized curbside usages and temporary PUDO zones (Roe and
Toocheck 2017; SFMTA 2020), but these programs are mostly
ad hoc without systematic planning approaches developed based
on empirical data. Few have acknowledged the increasingly inten-
sive and diverse curbside uses (Butrina et al. 2020). The lack of
understanding of current curbside uses across users, space, and
time (e.g., transportation modes, parking time, and duration), as
well as the uncertainty of future demands for different uses, make
it challenging for city managers to prepare curbside management to
accommodate new mobility behaviors.

Therefore, this study focuses on the increasingly intensive
PUDO activities and competition for curb space uses due to the
growing MoD market penetration rate. We propose a data-driven,
agent-based simulation framework to help urban planners and in-
frastructure managers to decide the allocation of designated PUDO
zones in curbside environments in response to the burgeoning MoD
and conduct an in-depth case study of selected neighborhood blocks
in the City of Gainesville, Florida, US. Specifically, we used longi-
tudinal parking data transaction and violation data to understand
existing curbside use patterns and conflicts. We leveraged POI
visitation frequency data as the basis to simulate future scenarios
of PUDO needs assuming that these visitations will be increasingly
made through MoDs in the future. This data-driven, agent-based
simulation helps to identify the needs of PUDO-designated zones
(time and space) for each investigated street block across various
scenarios. This work contributes to the preparation of smart and
adaptive urban environments and infrastructure for emerging
vehicular technologies and innovative mobility services and building
cities for a shared, efficient, and low-carbon future.

Literature Review

Researchers and municipal agencies have recognized the ubiqui-
tous challenges brought by new mobility technologies and services
on curb space management. However, there is not much research
examining the effectiveness of proposed strategies addressing new
curb use challenges. This section reviews literature relevant to
existing and emerging curb uses and management strategies.

Existing Curbside Uses and Management Strategies
for Curbside Parking

Curb spaces are jointly used by various stakeholders including
travelers, transportation service providers, nearby land uses, and
municipal departments. Curb management that accommodates dif-
ferent user groups varies across surrounding land use contexts

(e.g., residential or commercial), designated functions (e.g., park-
ing, bus lanes, bike lanes, green infrastructure), type of adjacent
street (minor or major arterial), and so forth. We categorized curb-
side uses based on the objective user groups and the occupied tem-
poral intervals and spaces in Table 1.

Specifically, in the US, a country with more than 90% car
ownership, curb management strategies have been historically do-
minated by self-parking management and determined by land use
types, for example, the metered parking spaces in front of shops,
unmetered parking in residential areas, and loading zones near super-
markets. These practices assumed that automobiles were the primary
transportation mode on the street. Curbside parking was designed
to meet the restrictive uses by different travelers (e.g., cyclists, mo-
torists, drivers) and the demanded capacities to avoid spillover
parking (Inan et al. 2019). However, this situation has gradually
changed with high-density urban developments where the dense
populations in metropolitan areas impose severe mismatches be-
tween the supply and demand of parking spaces. On the other hand,
the advance of e-commerce and online platforms have promoted a
variety of MoD services including app-based ridesharing/hailing
(e.g., Uber and Lyft), door-to-door food/goods deliveries, private
shuttles, shared mobility, and more. These services require drivers
to approach curbs to pick-up/drop-off goods and passengers, which
further result in increased demand for curb access (Marsden et al.
2020). Intensified curb activities are likely to arise conflicts that can
spill over to streets and interfere with major road traffic. As a con-
sequence, some cities have gradually shifted from parking-oriented
to transit-oriented curb designs that prioritize transit reliability and
efficiency (Roe and Toocheck 2017). Transit-oriented designs can
transport more people and goods and thus increase street-side
businesses. Exemplary strategies for transit-oriented curb manage-
ment that have been experimented across US cities include more
demand-responsive curb uses and designated PUDO zones.

Prioritizing Curb Usage Based on Demand

To prepare for the trending intensified and diversified curb uses,
some municipal agencies have prioritized different curb usage
needs under distinct conditions. For example, the City of Seattle
defines curb spaces as “flex zone” and implemented a city-wide
prioritization framework that assigns ranked curb use priorities ac-
cording to streets surrounding land use. For example, curb uses that
enhance access to people (e.g., bike parking, passenger loading
zones, short-term parking) are prioritized in residential areas com-
pared to access for commerce (e.g., freight and truck loading),
while the inverse is true in commercial or mixed-use areas
(Seattle.gov n.d.; Roe and Toocheck 2017). Similarly, in San Fran-
cisco, the local transit authority’s curb management strategy in-
cludes a framework to prioritize different needs in different land
use contexts for people in residential, commercial, downtown, and
major attractor land use areas except for industrial land use which
prioritizes access for goods (SFMTA 2020). Both frameworks dis-
courage the use of curb spaces for vehicle storage, especially in
high-density commercial areas and urban cores.

Table 1. Simplistic categorization of curb uses based on time and space

Occupied
space Short-term Long-term

Small space Dockless bike and e-scooters Bicycle infrastructure: bike share station, lanes, cycle tracks, multimodal paths, bike racks
Regular space Pick-up/drop-off (MoD) Regular parking (metered or not) electric vehicles (parking for charging) handicapped parking space
Large space Public transport/bus stop

emergency vehicle access
Freight drop-off (e.g. food truck; USPS/FedEx) commercial vehicle loading space/zone (truck)
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In addition to the allocation of curb spaces for diverse uses,
some cities allow change of curbside space uses and pricing with
dynamic parking demands (Rosenblum et al. 2020). For example,
using a curbside space as a loading zone during nighttime, as a bus
stop and HOV lane during commuting time, and as a public space
for parking in the evening. San Francisco implemented a demand-
responsive parking meter pricing pilot from 2011 to 2013, which
harnessed sensors and interconnected meters to monitor parking
demands continuously and adjusted prices to achieve an average
occupancy rate of 60%–80% for each block (Pierce and Shoup
2013).

Pick-Up and Drop-Off (PUDO) Zones

Due to the increasing uses of MoD services, a few cities have des-
ignated passenger PUDO spaces and maximized the curbside pro-
ductivity (people served) by allowing multiple uses to share the
same space (e.g., PUDOwith commercial loading) or by having des-
ignations change throughout the day (e.g., by using the space for
PUDO when the demand for that use is the highest) (Schaller
2019). A recent study evaluated two curbside management strategies
in Seattle, WA regarding their mitigation effects on PUDO-caused
slow traffic related to increasing ride-sourcing trips (Ranjbari
et al. 2020). The first strategy is a change of curb allocation from
paid parking to an expanded passenger load zone (PLZ). The added
PLZs were open to any passenger vehicle during weekdays from
7:00–10:00 a.m. to 2:00–7:00 p.m. The second strategy further
implemented the extended PLZs with a geofencing approach by
Transportation Network Companies (TNCs, e.g., Uber and Lyft)
which directs drivers to designated PUDO locations. Both strategies
have reduced the number of PUDOs that happened in travel lanes
and increased curb use compliance as well as passenger satisfaction.
A recent survey on ten US metropolitan cities found that some cities
have launched pilot programs for installing PUDO zones in enter-
tainment and nightlife areas for TNC drivers to load and unload
passengers, and these areas are associated with reduced collision
frequencies and travel delays, and increased perceived safety by pe-
destrians and cyclists (Butrina et al. 2020).

Emerging Curb Uses Demands Caused by
Increasing MoD

Ride-hailing and on-demand micro-transit only represent a minor-
ity share of overall trips that occur in cities nowadays but have
already placed considerable pressure on existing curbside space
management. The rapid rise of MoD services and future trans-
formative mobility technologies are likely to challenge future curb-
side space management continuously in the following ways.

First, competitive curb space uses are likely to be fueled by the
rise of shared mobility including shared bikes, e-scooters, and
cars. These services have placed facilities (e.g., bikes, cars,
and charging stations) at curb spaces, and people need to access
curbs to use the shared vehicles. Shared mobility support transit-
oriented transportation systems by offering first- and last-mile so-
lutions (Zuo et al. 2020). The shared mobility market has ex-
ceeded $60 billion across its three largest markets including
China, Europe, and the US It is predicted that shared mobility will
be more commonly accompanied by self-driving taxis and shut-
tles with an expected annual growth rate in market value over 20%
through 2030 (Mckinsey Center for Future Mobility n.d.). Sec-
ond, the trend of increased MoD services and PUDO activities
will be reinforced by the emerging concept of SAVs, which
can reduce citizens’ reliance on private vehicles and free up abun-
dant parking spaces in urban areas (Davidson et al. 2016). Several

ride service companies have expressed their intentions to offer
MoD services with AVs when the technologies are ready (ITF
2018). Aworking group of international non-governmental organ-
izations (NGOs) even contended that AVs in dense urban areas
should only be operated in shared fleets to provide affordable
and equitable access to all citizens (Chase 2017). Some recent
studies that investigate SAV operations in simulated scenarios
suggested that parking SAVs at locations where they finished be-
fore trips (i.e., curbside spaces) can reduce energy consumption
and shorten passengers’ waiting time compared to storing them in
garages (Kondor et al. 2020; Winter et al. 2020). Additionally,
considering that these transformational technologies and associ-
ated infrastructures have emerged over the last decade, municipal
agencies should plan for more diverse and heterogeneous travel-
ing modes and curb usage brought by future innovations.

The projected rapid MoD increments in the near future also at-
tract researchers to investigate its various associated impacts. For
example, studies have used agent-based modeling (ABM) to sim-
ulate future parking demands and showed that the adoption of
SAV and MoD can remove more than 80% of the parking spaces
in urban areas (Zhang and Wang 2020; Kondor et al. 2018; Zhang
et al. 2015), but the associated MoD network rebalancing and AV
relocation may generate significant empty vehicle miles traveled
(VMT) and cause traffic congestion (Kondor et al. 2018; Oh
et al. 2020). Other simulation-based studies determined the benefi-
cial impacts of the increased adoption of MoD and SAVon the envi-
ronment, energy use, safety, and transportation efficiency (Wadud
et al. 2016; Fagnant and Kockelman 2014; Greenblatt and Shaheen
2015). However, very few have studied the management of the built
environment to accommodate emerging transportation technologies
despite a limited number of studies intended to predict the needs of
charging infrastructure for electric AVs based on real-world traffic
data, energy modeling, and vehicle battery life using ABM-based
models (Bauer et al. 2018; Zhao et al. 2020). Other researchers
used microscopic simulations and simulated traffic to examine the
design of curbside parking bays and curbside lane allocations
(Wang et al. 2018; Ye et al. 2020). These studies did not investigate
detailed curbside management strategies such as designating the
number of PUDO zones for specific urban neighborhoods.

Cities need to provide adequate curb spaces and efficiently man-
age the growing competition between different curb usages. Failure
to do so may exacerbate conflicts among different curb users, neg-
atively impact curbside businesses, and jeopardize roadway safety.
This literature review has shown that some cities have started to
address the challenges brought by emerging mobility services and
launched pilot programs to test new curbside management strate-
gies, but these efforts were evaluated as “generally ad hoc and
based on professional judgment” and “more of an art than a sci-
ence” (Butrina et al. 2020, pp. 5). Additionally, existing transpor-
tation modeling literature focused on curb management practices
and policies are dominated by parking concerns without consider-
ing the conflicts that arise from increased PUDO activities. Thus,
we propose a data-driven, agent-based simulation framework to
help urban planners and infrastructure managers decide the alloca-
tion of designated PUDO zones in curbside environments in re-
sponse to the burgeoning MoD in the near future.

Case and Data Description

Case Description

The City of Gainesville, where the University of Florida (UF) s
located, is developing rapidly from a college town to a polycentric
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metropolitan area with nearly 130,000 residents. The community
has large fractions of pedestrian traffic with increasing micro-
mobility (Bosa 2019; University of Florida 2018; City of Gainesville
n.d.). Moreover, the line between pedestrians’ wheeled mobility and
powered mobility is becoming blurred. The city has set strategic
goals of improving equitable and convenient access, supporting elec-
tric vehicles (EVs) and renewable energy, and developing effective
on-demand services for all citizens (City of Gainesville 2020), which
has been challenged by the (1) escalating local ownership of plug-in
EVs with limited public charging stations for residential blocks in the
urban core; and (2) the booming PUDOs encouraged by e-commerce
and MoDs. According to the latest UF transportation survey, traffic
congestion and poor last-mile connections across campus are mainly
attributed to limited curb parking spaces, unprogressive curb man-
agement strategies for coordinating emerging micro-mobility, and
PUDOs with restrictive parking spaces (University of Florida 2018).

We collected spatial data of all curbside parking spaces from the
City of Gainesville-Transportation office and POI data from the
SafeGraph platform. The curbside parking spaces were mostly
located to the north and east of the campus and the downtown, which
is surrounded by shops, restaurants, hotels, governmental build-
ings, and single/multiple residences (Fig. 1). Most curbside parking
spaces have specified restrictions on vehicle types (e.g., scooter,
motorcycle, freights, and vehicles), parking duration (e.g., 30 min
or 2 h), and regulations (e.g., meter, decal, reservation, and time
limit), with very few denoted as free usage. According to the park-
ing transaction and citation data obtained from the city, the eastern
Innovative Zone and northern campus are notably characterized by
traffic congestion, parking space shortage, and violated road and
curb usages due to the high and varied traffic flow associated with
students and commercial activities.

Parking Data Description

We used one-year parking-relevant datasets from March 2019 to
February 2020 (before the COVID-19 pandemic) provided by
the City of Gainesville to investigate the urban core’s curbside
parking occupancy and conflict patterns. The datasets include
(1) curbside parking transaction records (collected from meters
and pay-by-app records); and (2) on-street parking violation cita-
tions. The full-year data enables the examination of spatial and tem-
poral changes of curb space demands and conflicts.

Parking Transaction Records
During the study period, there were 95,607 parking transaction
records for 42 curbside parking spaces in the urban core of Gaines-
ville. For each street, we referred to Google Street Views to deter-
mine the parking capacity of distinct curb spaces. We defined
curbside parking capacity as the maximum number of parked ve-
hicles permitted in that curbside parking space, and the parking
occupancy rate was calculated as the ratio of the number of actual
parked vehicles and the parking capacity. We computed the occu-
pancy rate for each operating hour for the 42 streets and divided
the streets into three groups based on their locations, i.e., Down-
town, Campus North, and Innovative Zone. Fig. 2 shows the aver-
age parking occupancy over a week for streets in the three
different zones. The figure shows great variances of the occu-
pancy rates of curbside parking spaces in different zones, where
streets to the north of the campus can reach around 60% occu-
pancy rate during peak hours (10:00 a.m. to 4:00 p.m.) on average
while the curbside parking spaces on downtown streets are rela-
tively under-used. Paid parking is mostly available from 7:00 a.m.
to 6:00 p.m. over weekdays with a few meters charging fees till
7:00 p.m. To demonstrate the general parking availability across

Fig. 1. Map of the studied area. [Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong
Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User Community.]
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curbside spaces over the year, we also calculated the percentage of
hours that the curbside parking spaces are fully occupied (i.e., with
an occupancy ratio of 100%) in different months based on the total
metered hours [Fig. 2(b)]. It shows that the parking needs from
May to August and December are lower than other months be-
cause students have left campus for holiday breaks.

Parking Violation Tickets/Citation Data
There were 2,699 parking violation citations over the data collection
period of 27 types, including parking in wrong places (e.g., parked
on sidewalk/bike lane), overtime parking (e.g., expired meter), sign
violation, and parking in an improper manner (e.g., blocking/
interfering traffic). We have also divided these violation citations

into three types suggesting conflicting space uses (e.g., blocking/
interfering with traffic), conflicting parking time (e.g., overtime/
feeding meter), and improper parking manner (e.g., double parking).
Most (64%) of these parking citations reflect the conflicts within and
among different road users such as pedestrians, cyclists, and drivers
[Fig. 3(c)]. These citations were mainly issued between 8:00–
10:00 a.m. and 2:00–4:00 p.m. [Fig. 3(b)], and all three citation cat-
egories peaked at 9:00 a.m. A few citations denoted as space conflict
(e.g., Parked on sidewalk/bike lane) were also found in the early
morning hours. The number of issued citations also fluctuates with
months as fewer citations were discovered in the summer months
from May to August [Fig. 3(a)]. Parking citations that denote con-
flicting curbside uses include parked on sidewalk/bike lane, parked

Fig. 2. Temporal patterns of parking occupancy for urban core streets: (a) hourly average parking occupancy; and (b) monthly percentages of fully
occupied.

Fig. 3. Number and percentage of different categories of parking citations.
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w/in 1.5 m (5 ft) of drive, and blocking/interfere w/traffic, among
others.

Point of Interest (POI) and Visitation Frequency
The POI data collected from the SafeGraph platform include POI
location and categories. In addition to this location information,
SafeGraph also collects traffic patterns that tell people’s visiting
frequencies, durations, and origins (deducted in census blocks)
of each POI. There are a total of 706 POIs in the study region, many
of which are located along University Avenue and in downtown
Gainesville (Fig. 4).

Street Blocks Selection

We mapped the average curbside parking occupancy and POI den-
sities in Fig. 1 using a bivariate map. Based on the mapped block
level parking demand, we selected five blocks to focus on PUDO
zone allocations, including Block #3021, #3023, #3024, #3031,
and #3032. Inside the five blocks, there are 50 POIs of 17 types
(Fig. 5). Curbside parking spaces are allocated around these street
blocks. We show the average hourly visitation frequencies in the
five selected blocks in Fig. 6. It can be found that most people vis-
ited these blocks for restaurants, amusement, and traveler accom-
modations. Blocks #3023, #3024, and #3032 were mostly visited
during the daytime and evening while Blocks #3021 and #3031
were visited more frequently after 7:00 p.m.

Methodology

The objective of this research is to propose an agent-based simulation
(ABS) framework to decide the allocation of designated PUDO
zones in curbside parking spaces at a street block level. ABS is used
in this research considering its advantages in modeling collective un-
predefined behaviors that emerge from individual agents hetero-
geneously (Du and El-Gafy 2015). Each agent represents a person
who drives or uses a vehicle to visit a POI inside a street block and
also uses the curbside for (1) self-parking (private vehicles), (2) drop-
off (MoD), or (3) pick-up (MoD). The agents’ curbside usage behav-
ior, characterized by their destination (i.e., a POI within a specific
street block), arrival time, and stay time, are simulated based on
the distributions generated from real-world longitudinal data.

We constructed three distinct simulation scenarios with critical
thresholds of MoD market penetration at 10%, 30%, and 50%.
Note that we did not emphasize the specific years by when the
MoD market penetration may achieve the certain percentage
thresholds as none of the existing studies and reports have pro-
vided detailed estimations of MoD market penetration for specific
cities. We mainly used the listed percentages to provide thresholds
for simulating curb use demand by PUDO activities in the near
future. Based on the self-parking behavior patterns and the esti-
mated MoD curb usage patterns derived from real-world big data,
we ran agent-based simulations across the three scenarios to ex-
amine the curb use demand incurred by PUDO. Specifically,

Fig. 4. Spatial distribution of POIs in the urban core of the City of Gainesville, FL. [Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P,
NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User
Community.]
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based on the availability of real-world datasets and our empirical
investigations of existing curb space usage patterns in the urban
core of Gainesville in the section “Case and Data Description,” we
defined our study time of a day from 8:00 a.m. to 6:00 p.m. in-
cluding ten consecutive daytime hours. To achieve a fine temporal
scale of designating PUDO zones, weekdays from Monday to
Friday are differentiated when we generated distributions based
on current data, and weekends data was excluded due to much
lower curb use demands in the studied city.

Major Assumptions and Algorithm for the
Data-Driven ABM

To simulate future curb uses by self-parking and PUDO based on
distributions and patterns retrieved from existing datasets, we make
the following assumptions:

Assumption #1: An MoD vehicle has priority to use an empty
curbside spot around a street block for PU and DO activities; if the
curbside space around a street block is fully occupied when the
vehicle arrives, the vehicle will compete with the curbside usage
with the parked vehicles and cause a competing use event, such as
parking on travel lanes or double parking.

Assumption #2: Distributions of curbside self-parking ve-
hicles’ number over distinct time units retrieved from the eight-
month dataset can represent self-parking patterns in simulated

future scenarios. This assumption is based on the anticipation that
people who own vehicles will be the last to use MoD, so at the early
stages of AV deployment, they will still use their private vehicles
for self-parking instead of using MoD.

Assumption #3: Each curbside’s parking time limits for self-
parking remain the same as their current regulations across the three
simulation scenarios. Under this assumption, based on the arrival time,
we use the corresponding distributions of stay time retrieved from the
parking occupancy data to represent the stay time of all visitors re-
gardless of using MoD or private vehicles across future scenarios.

Assumption #4: Pricing is standard hourly prices and is the
same across curbside parking spaces in the studied area. In this
way, self-parking patterns retrieved from the existing dataset can
still be useful for simulating future self-parking patterns even if
the standard hourly price for all curbside space slightly changes.
As long as the price is still the same across the studied curb spaces,
people will not change their preferred parking location due to the
differing costs of self-parking.

Assumption #5: There are no changes in land use of the studied
urban core areas located near the POIs/blocks. Based on the City-
University’s strategic plan, the land use of the studied area will not
change over the next few decades; the specific POIs (e.g., restau-
rants) may change but will generally fall into the existing categories
due to the stable needs from people who work and study in the
nearby university campus.

Fig. 5. POIs and curbside parking spaces within and around the five selected street blocks. [Sources: Esri, HERE, Garmin, USGS, Intermap,
INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors,
and the GIS User Community.]
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Assumption #6: No ridesharing (one vehicle for one passenger)
when visiting the POIs in urban cores due to the diversity of origin/
destination locations. Thus, visitation frequency retrieved from the
existing dataset for collective individuals can serve as a basis to
simulate future visitation patterns.

Assumption #7: Passengers who use MoD to visit the block
(drop-offs, DO) also use MoD to leave (pick-ups, PU), so an agent
who uses DO to arrive (curb use) at a street block is expected to use
PU to leave (curb use) after a stay time.

The basic idea is that, over a distinct time unit (i.e., an hour), if
the overall uses for self-parking, drop-offs, and pick-ups exceed the
curb space capacity, there are competing curb use events (i.e., com-
peting events) and the exceeded number of uses is regarded as the
number of events of the competing curb space uses. The more com-
peting use events that occur over a certain time window on a week-
day for a block, the higher need for designated PUDO(s) for the
block (Assumption #1). The algorithm for simulating curbside
PUDO activities and competing events is shown in Fig. 7. The out-
comes intend to inform curb management decision-making regard-
ing: (1) at what MoD market penetration rate a street block may need
designated PUDO zones? (2) which days during the week and time
during the day should curbside parking zones be designated as
PUDO zones? and how many? Detailed methods at the fine spatial
and temporal scale are demonstrated in the following subsections.

Main Elements of Agent-Based Simulation

Retrieving Curbside Self-Parking Occupancy Patterns
For our selected five street blocks, all curbside parking spaces are
public and have meters, so the parking occupancy data retrieved
from the meter (i.e., transaction data) can represent the overall
usage of curbside spaces at the street blocks. We used the parking
transaction data over eight months to retrieve the self-parking pat-
terns, which will be used to simulate future self-parking uses of
curbside spaces (Assumptions #2, #3, #4). Data from June, July,
August, and December are excluded as most students left the
college city during the summer and winter holidays [Fig. 2(b)].
Specifically, for each hour between 8:00 a.m. and 5:00 p.m. on a
weekday, the historical parking occupancy records from the same
time unit at the concerned block were used to retrieve the pattern.

We fitted the data using the Matlab function “fitmethis” (de
Castro 2021), which tested the data across five discrete distribu-
tions including Binomial, Negative Binomial, Discrete Uniform,
Geometric, and Poisson distribution, and used log-likelihood and
Akaike Information Criterion (AIC) as evaluation metrics to find
the best fit. When the five distributions failed to approximate the
actual parking behaviors, a Normal distribution was used as a
backup fitting option. During certain time units, some curbs were
not used, which incurred ‘0’ occupancies in the records; and when

Fig. 6. Hourly POI visitation frequencies over an average day across the five selected blocks.
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Fig. 7. Algorithm for the data-driven agent-based simulation.

Fig. 8. Histograms of raw parking occupancy data and the corresponding fitted distributions for the three studied blocks in specific time units.

Fig. 9. Histograms of raw visitation frequency data and the corresponding fitted distributions for the three studied blocks in specific time units.
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fitting the Negative binomial distribution to the data, there was a
large probability of invalid parameters. Therefore, without loss of
distribution information, we added ‘1’ to each parking record to
avoid invalidity, then subtracted ‘1’ from the randomly generated
numbers of self-parking in the simulation. Finally, we plotted the
frequency distributions for curbside occupancies during a specific
time unit over a distinct day and obtained 50 distinct distributions
to characterize the occupancy patterns. All plots are included in the
Supplemental Materials. Fig. 8 demonstrates three examples of
curbside occupancy patterns by self-parking for specific blocks
during different time units of the studied daytime.

Predicting PUDO Uses Based on POI Visitation Frequency
and Stay Time Patterns
Predicting Drop-Off activities’ demand per block in distinct time
units. We refer to drop-off activities with the obtained POI visitations
as they capture the fine-grained spatio-temporal dynamics regarding
residents’ activities and the demands for curbside access. Though
residents may approach the curbsides with different transportation
tools, it is predicted that these transportation tools will be gradually
overtaken by MoD services with SAVs to pick-up and drop-off pas-
sengers at curbsides in the future.

Because many POIs inside our studied street blocks in the urban
core areas have private parking spaces and some people may use
the private parking spaces inside the block, we cannot use the ag-
gregated visitation frequency to all POIs in each block to infer the
curbside parking demands in the public space. However, we assume
that the self-parking use pattern (i.e., distributions of visiting fre-
quency) of curbside space is maintained the same over time when
MoD market penetration rate increases to 50% considering MoD
services are mainly used by passengers of non-private vehicles at
the beginning stages (ITF 2018), and the collected POI visitation
data mainly reflect travel and access modalities including parking
in private parking space, walking, using micro-mobility vehicles
(e-scooter and bicycles) or taking buses. We justify this assumption
based on how the POI visitation data were retrieved by SafeGraph
from the raw mobile device GPS data. Based on SafeGraph’s tech-
nical guide for detecting a visit to a POI, the algorithm “finds the
closest POI centroid and calls it a visit to that POI if the distance
is below some threshold: any GIS Ping inside a building polygon
is a visit” (SafeGraph 2020). Considering the order of magnitude
difference between POI visitation data and parking meter records,
the impact of including certain noise from curbside parking can be
omitted.

We examined and approximated the distribution of visitation
frequency for each block by aggregating the visit numbers to POIs
in each block per time unit over the eight months. Similar to the
process of fitting self-parking patterns in the section “Main Ele-
ments of Agent-Based Simulation,” we obtained 50 distributions

of block visits for all time units and each studied block. All plots
are included in the Supplemental Materials. Fig. 9 demonstrates
three examples of street block visitation frequency data for specific
blocks during different time units of the studied daytime.

Retrieving Stay Time Patterns from Parking Occupancy Data.
For simulating the stay time of arrived visitors who are dropped off
during each time unit, we adopted the fitted distribution of block
visitors’ stay time based on the current parking occupancy data.
The distribution of stay time is also approximated with discrete dis-
tribution fitting. It is worth noting that the stay time records exist
only when there are corresponding parking events, so there is no ‘0’
minute stay time. The discrete distribution based on the original
time unit (i.e., minutes) can satisfy the simulation requirements
for hour-based distribution approximation, and in the simulation,
randomly generated stay time data are rounded into hourly units
to fit the model. As we assume that passengers who use MoD to
visit the block (drop-offs, DO) also use MoD to leave (pick-ups,
PU), the curb uses of pick-up activities (PU) over a time unit are
determined by previous DO activities and stay time (Assumption
#7). Fig. 10 demonstrates three examples of histograms of raw stay
time data and the corresponding fitted distribution for arrival in dis-
tinct time units for a specific block.

Agent-Based Simulation Results

For each block, the simulations were run in Matlab 10,000 times for
each time unit across three scenarios where MoD market penetra-
tion rates are different. We show the 10,000 times simulation out-
comes over five weekdays for the three experimental scenarios in
Figs. 11 and S2. The values on the heatmaps are the average num-
ber of competing use events that occurs at curbs outside the inves-
tigated blocks (Fig. 11), and the probabilities of competing use
event occurrence (Fig. S2) in each hourly interval when there
was no designated PUDO zone. Both figures demonstrate temporal
patterns of the competing uses of curbside spaces between self-
parking and PUDOs. We found that more competing use events
would happen between 9:00 a.m. and 3:00 p.m. (in the middle of
the day) compared to the early morning (8:00 a.m. to 9:00 a.m.) and
late afternoon (3:00 p.m. to 5:00 p.m.). Blocks #3023 and #3024
show significantly higher demands for designated PUDO zones
given the high number of competing use events and probabilities
of the occurrence of competing use events over the five weekdays,
followed by Block #3032. Both Block #3023 and #3024 face the
major road, i.e., the University Avenue, which has 6 and 10 POIs
for eating services and amusements and attracts many daytime vis-
its from students and faculty (Fig. 6).

When comparing different simulated MoD market penetration
ratios, results show that though under a low market penetration ratio

Fig. 10. Histograms of raw stay time data and the corresponding fitted distributions for arrivals in distinct time units for three specific blocks.
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of 10%, there is still a 5%–15% likelihood of competing use event
occurrence for the three least congested blocks (i.e., #3021, #3031,
and #3032) and 35%–50% for the two most popular blocks (Block
#3023 and #3024) during the peak hour (Fig. S2), which suggests the
potential demands of time limit designated PUDO spaces for these
blocks during peak hours. The curbside parking spaces become even
more stressful when the market penetration ofMoD increases to 30%
and 50%. Alongside the significant increments observed in the
number of competing use events, the probabilities of event occur-
rence also increase to 70%–95% during peak hours for the two
congested blocks (i.e., #3023 and #3024) (Fig. S2), which

suggests frequent competitive curbside uses between PUDO driv-
ers and self-parking drivers if the city continues with its existing
curbside parking space design. Non-peak hours are also associ-
ated with high probabilities of competing use events over the five
weekdays. The most severe competing use scenario, i.e., Block
#3024 with a 50% MoD on average, has 6 to 14 competing
use events happening during each hour over weekdays. In this
case, the city may consider allocating designated PUDO spaces
at curbs near Blocks #3023 and #3024 on weekdays.

We then examined the effectiveness of designating PUDO zones
for different blocks. Fig. 12 shows the simulation results that

Fig. 11. Average number of curbside competing use events with no PUDO parking space.
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assume each block has one designated PUDO zone transformed
from a conventional parking space. We set the dwell time for ve-
hicles’ PUDO operations to be three minutes based on the existing
empirical findings (Goodchild et al. 2019), which shows three-
minute dwell time can satisfy 85% of TNC passenger PUDO op-
erations occurring curbside (Goodchild et al. 2019). Other studies
also suggested 20 seconds (Zhang et al. 2020) and 2.5 min (Young
and Henao 2020) for PUDO dwell time. ABS simulation results
show that a single designated PUDO zone can largely reduce
the average number and occurrence probabilities of the competing
use events. A temporal PUDO zone designated during peak hours
(i.e., 9:00 a.m. to 3:00 p.m.) is sufficient for Block #3021 across the
three scenarios with different PUDO market penetration rates, as
the low average competing use event numbers of 0.1 and 0.2 sug-
gested in Fig. 12. The inclusion of a single PUDO parking space

also satisfies the other four blocks’ uses under a low market pen-
etration ratio of 10% (Fig. 12).

We further conducted sensitivity analyses to show how the effec-
tiveness of PUDO designation can be influenced by the number of
transformed PUDO zones and the length of PUDO operation dwell
time. We tested different numbers (i.e., 0, 1, and 2) and dwell time
(i.e., 1, 2, and 5 min). These results are presented in Figs. S1–S10.
Specifically, for the most challenging scenario (i.e., Block #3024
with a 50%MoD), the transformation of one PUDO zone can reduce
the average competing use event number by 5–6 (or 40%–50%) dur-
ing peak hours (Fig. 12), while the two PUDO zones can reduce the
number by 8–10 (or 70%–80%) (Fig. S7). In a scenario when the
MoD platforms and clients are well-coordinated and the average
dwell time is limited within one minute, a single designated PUDO
zone can relieve the curbside stress for Blocks #3021, #3031, and

Fig. 12. Average number of curbside competing use events with one designated PUDO zone and 3-min dwell time.
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#3032 well under all hypothesized market penetration rates (Fig. S9).
Compared to two PUDO parking spaces with an average dwell time
of three minutes (Figs. S7 and S8), the designation of one PUDO
parking space can achieve equal or even better performance regard-
ing mitigating competing curbside uses when the average dwell time
is within one minute (Figs. S9 and S10). This finding suggests that
city managers and MoD service providers may encourage technical
or planning strategies, such as geofencing and repurposing curbside
spaces, to reduce the PUDO dwell time for more effective curbside
management.

Discussion

The digital records from parking meters and smart mobile phone
devices enable longitudinal research on generalizable patterns of
human-environment interactions. We constructed a digital twin
of curbside space uses based on the collected parking meter trans-
action data and visitation frequencies from parking meters and indi-
viduals’ mobile devices. Derived from fine-grained datasets, we
propose a data-driven agent-based modeling approach for city man-
agers and infrastructure planners to prepare their curbside manage-
ment strategies in response to the increasing market penetration of
MoD. The study contributes to the knowledge body of infrastruc-
ture and asset management by providing a data-driven management
framework to relieve the increased competing uses on limited curb
spaces. The proposed curb management framework intends to ad-
dress the increasing short-term parking needs of PUDO, simulates
future curb uses by self-parking vehicles and PUDO activities
across scenarios, thus suggesting detailed management strategies
for designated PUDO zones (time and size) in public curbside park-
ing spaces at street block levels. We conducted a detailed case study
on five selected street blocks in the urban cores of the City of
Gainesville, FL using longitudinal parking transaction and viola-
tion data, place visitation data, and geospatial parking assets data.
Simulation results show that even under a low PUDO market pen-
etration rate of 10%, the designation of temporal time limit curbside
PUDO zones in peak hours should be considered for all five studied
blocks to mitigate the occurrence of competing usages. With a
higher penetration rate of 30% or 50%, the City should consider
permanent PUDO zones for the two most visited blocks (i.e., Block
#3023 and #3024) while other blocks also need expanded service
time of temporal PUDO zones. The results also illustrate the effec-
tiveness of PUDO designation on mitigating competitive curbside
conflicts. The curbside competing use events can be reduced by
40%–50% for the most challenging curbside use scenario with
one designated PUDO zone, which increases to 70%–80% with
two PUDO zones. The sensitivity analyses suggest that the curbside
regulations should be implemented for both the spaces (e.g., the
number and location of designated PUDO zones) and the uses
(e.g., PUDO dwell time) to achieve a more effective curbside
management.

Although this study only investigates five neighborhood blocks in
the City of Gainesville, the presented method is applicable for other
urban centers when more digitalized curb environment and uses data
become available. While emerging vehicular technologies and inno-
vative mobility services (e.g., MoD) are expected to offer safer,
greener, and more efficient travel services, it is of equal importance
to ensure that the curb environment can accommodate the conse-
quential changes in residents’ traveling behaviors resulting from
the technological and service innovations. Failure to do so may hin-
der the adoption and promotion of these technologies in the early
stage and impede efforts towards their social, environmental, and
transportation benefits (e.g., reduced traffic congestions and

pollution). Our proposed methodology encoded in the case study
should prepare city managers with proactive and evidence-based
management tools for these transformative technologies.

Second, this research also contributes to novel practical frame-
works of managing urban facilities and assets in the context of
Smart City-Digital Twin as emerging digital footprints are pro-
duced by physical sensors (i.e., parking meters) and human sensors
(i.e., mobile phone GPS devices) (e.g., Wang et al. 2019, 2020).

Third, we focus on the public space uses at curbs without using a
microscopic traffic model for assessing curbside usage as we do not
intend to address the traffic aspects of the problem. Also, existing
Traffic Analysis Zone-level models fail to support policymaking at
refined spatial scales to address emerging transportation problems
(e.g., chaotic curb uses) introduced by disruptive transportation
models (ride-hailing services and AVs) (Swarup 2021). Our re-
search addresses this research gap by providing block level alloca-
tion strategies and supporting refined decision-making, which
advances strategies at coarse spatial scales.

The research is not without limitations. Some assumptions for
the agent-based simulation are case-specific and must be updated
when applied in different environmental and policy contexts. Spe-
cifically, we assumed no ridesharing when visiting the POIs due
to the diversity of origin/destination locations for visitors to these
urban cores. This may not be true if we investigate other locations
e.g., city business centers where co-workers share rides. We em-
ployed this assumption to use the aggregated visitation frequencies
of POIs (by individual persons) in the studied blocks to approxi-
mate the overall interests (measured by the number of vehicles) of
the blocks. We focused on the dominant MoD service, e.g., PUDO,
in the simulation, while the projected MoD in different areas may
consist of heterogeneous MoD services that are characterized by
different needs for curb spaces and dwell time such as shared
e-scooters and shared bike system. Future research may consider
heterogeneous MoD services in localized curb environment man-
agement. Our developed data-driven ABM can also be tuned for
simulations in curb planning for other MoD scenarios. Second,
some assumptions can also be updated to include long-term urban
land use and transportation changes or different facility allocations
in the future. However, urban land use usually changes very slowly
and is associated with different new planning policies. As we only
anticipate situations in the near future, we only conduct ABS based
on the most recent and best-available information. Third, we devel-
oped the data-driven ABS framework for city managers’ conven-
ience and assumed the pricing is standard hourly prices across
curbside parking spaces in urban cores and the parking time limit
for a street remains the same for future decades. Differences in
parking prices across distinct curbside areas or based on demands
will provide different curb uses patterns. Since we studied the local-
ized curb uses at the street block level, we did not consider potential
impacts of parking prices and time limits, which require spatial
analyses at a larger scale (e.g., people may park at Block #1 instead
of Block #2 even if their destination is in Block #2 just because the
parking price is lower). Competition mechanisms in curb use can
also be introduced (Wu et al. 2020). Fourth, similar to the limita-
tions in the most “predict-and-plan” research, currently, we are not
able to compare the outcomes of the developed ABS with future
ground truth. However, this case study has offered the best “guess”
of curb use situations in the studied urban cores with simulations
conducted across scenarios (i.e., different market penetration rate of
MoD) and sensitivity analyses whose parameters are derived from
the best-available real-world longitudinal visitation and parking
datasets as well as local built environment datasets and policies.
All behavior patterns were retrieved from existing data over a year,
including the self-parking distribution, stay time, and visitation
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frequency. The spatio-temporal units are small enough to shed
practical outcomes for curbside management under different sce-
narios. With more available datasets about MoD and future market
penetration and the probability to visit distinct POI, more accurate
research outcomes can be derived when updating the parameters of
our developed AMS model.

Conclusion

The proposed research and data-driven simulation solutions can
benefit the local urban built environments in preparation for bur-
geoning technologies and mobility innovations. Well-coordinated
curb uses have the potential to reduce on-road traffic congestion
and GHG emissions, achieve safety objectives (e.g., Vision Zero),
improve accessibility and well-being, and further benefit the living
environment and commercial development in urban centers. In the
future, data-driven curbside asset management research can consider
the space uses of commercial vehicles, the parking and charging
needs of electric vehicles, and the emerging types of micro-
mobility (transit, bicycles, and e-scooters), which require updating
and finer-scale management strategies to coordinate space uses and
regulations within a city. Future smart curb management should
also consider the special needs of the disabled population, elderly
persons, and pregnant women to provide more equitable access to
well-being places. This management can also leverage a cyber-
physical system that integrates cyberinfrastructure (in the form
of sensors, networking, data center, and mobile app) and the physi-
cal infrastructure (consisting of all available charging stations) to
coordinate different curb uses requests (e.g., PUDOs or EV charg-
ing) with the aim of minimizing traveling and waiting time, alle-
viating congestion, reducing the environmental impact and further
maximizing curb productivity and accessibility to all users. The
development of real-time computing can support operations for
both localized and community-wide dynamic curbside manage-
ment to achieve smart, safe, and sustainable cities.
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