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Abstract
Convergence to equilibrium of underdamped Langevin dynamics is studied
under general assumptions on the potential U allowing for singularities. By
modifying the direct approach to convergence in L? pioneered by Hérau and
developed by Dolbeault ef al, we show that the dynamics converges expo-
nentially fast to equilibrium in the topologies Lz(du) and L*>(W* du), where
1 denotes the invariant probability measure and W* is a suitable Lyapunov
weight. In both norms, we make precise how the exponential convergence rate
depends on the friction parameter y in Langevin dynamics, by providing a lower
bound scaling as min(y, y~!). The results hold for usual polynomial-type poten-
tials as well as potentials with singularities such as those arising from pairwise
Lennard-Jones interactions between particles.

Keywords: Langevin dynamics, Fokker—Planck equation, Convergence to
equilibrium
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1. Introduction

Langevin dynamics, and related stochastic differential equations dictating the evolution of
physical systems at the atomistic scale, have long been a subject of interest in molecular dynam-
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ics simulation [8, 18, 31, 36, 50] and more recently in machine learning [11, 37, 48, 52]. In
these settings, estimates on the rate of convergence of the dynamics to equilibrium provide a
rough measure for how long to run the corresponding algorithm in order to take random sam-
ples from the target Boltzmann—Gibbs distribution—as quantified by bounds on the asymptotic
variance of averages over trajectories, dictated by a central limit theorem [6]. This has led to a
number of works analysing the precise nature of this convergence under various assumptions
on the potential U, both in the literature on statistical physics and in kinetic theory (where the
typical dynamics is similar to the Fokker—Planck equation ruling the evolution of the law of
the solutions of Langevin dynamics).

The first known result on the convergence of Langevin dynamics is due to Tropper [49], who
proved that the dynamics mixes when the Hessian of the potential is bounded. Later, the works
of Wu [53], Mattingly et al [40] and Talay [47] improved these results by proving convergence
to equilibrium at an exponential rate for ‘polynomial-like’ potentials, in total variation. Their
estimates relied on the existence of a Lyapunov function of the form H(q, p) + cq - pfor a small
constant ¢ > 0, where

_ In?
H(g.p) = -+ Ulg) (1)

denotes the Hamiltonian of the system. Additionally, in Talay’s work [47], exponential con-
vergence in Sobolev spaces H*(dy) for k > 1 as well as in weighted Sobolev spaces was
obtained.

These papers, as well as other seminal works such as [19, 26, 29, 42], later motivated the
development of hypocoercivity by Villani [51] where, in the case of Langevin dynamics, expo-
nential convergence to equilibrium was established in H'(dy) for C2(RY) potentials for which
L satisfies a Poincaré inequality, and such that the global bound

IV2U| < €1 + VU @

holds for some constant C > 0. There, ‘twisted gradients’ are used to obtain contractive prop-
erties in H'(du) which are ultimately transferred to L2(dy) by hypoelliptic regularisation [25,
28]. Using a heuristic overdamped scaling analysis, and extending the convergence result by
Hérau [27], Dolbeault et al [16, 17] established a convergence result similar to the one by Vil-
lani under the condition (2), but using a direct perturbative L?(ds) approach—that is, instead
of first obtaining a contraction in H'(dy) and then transferring it to L>(ds), one can directly
obtain the contraction in L2(dy) by adding an appropriate perturbation to the norm.

Although the growth condition (2) is general, it does not allow for potentials with singu-
larities. This is intuitively the case because the growth of the singular terms in U increases
after taking derivatives, so that (2) cannot be satisfied. In this direction, the papers of Con-
rad and Grothaus [12] and Grothaus and Stilgenbauer [21] established a polynomial rate of
convergence for time averages (along realisations of the stochastic dynamics) to ensemble aver-
ages (with respect to 1) for potentials that include Lennard-Jones interactions. Later, adopting
a Lyapunov approach and denoting by & the open domain on which the potential is finite,
exponential convergence to equilibrium was obtained in [13, 30] in a weighted total variation
distance for a class of potentials belonging to C*°(&0) satisfying the general condition: for all
e > 0, there exists C. > 0 such that

|V2U| < e|VUI + C., 3)

holds globally. In particular, it can be shown that this condition is satisfied by systems of
N particles with positions ¢, . . ., gy, interacting via pairwise singular potentials such as the
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Lennard-Jones’ potential
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U(C]) - ( Y - Y ) s
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1<i<j<N

or the Coulomb interaction in dimensiond > 3

OEEDY Py A,

9’
1<icgen 19i aj

see [4, appendix]. In particular, an explicit Lyapunov function of the form exp(0H + 1)) was
constructed in [13, 30], with § small and ¢ an appropriate lower-order perturbation. See also
[39] for an extension of this result to Coulomb potentials in spatial dimension d = 2. Never-
theless, explicit estimates on the convergence rate were not given, especially as they depend
on key parameters of the dynamics, e.g. the friction v > 0 or the dimension d. This motivated
the work [4] which aimed at getting an explicit dependence of the rate on the dimension d,
by making use of a certain weighted H' topology where the weight satisfies a Lyapunov-type
condition. See also [10] for a related work.

The interest of working with the weighted topology L2(W* d) is that functions in this space
have a faster decay at infinity than functions in Lz(du) (see remark 5 for a more precise dis-
cussion of this point). Exponential convergence in this topology then implies that the solution
¢ to the Poisson equation —L¢ = g € L*(W* dy) also belongs to L*(W* dy), and not just to
L*(dp). Since the solution ¢ decays faster than typical functions in L?(dp), it is expected that
spectral Galerkin discretizations such as the ones considered in [45] lead to smaller approx-
imation errors, which turns out to be useful when solutions to Poisson equations are used in
numerical methods, for instance to construct control variates [46].

In terms of the scalings in the prefactors in the convergence bounds, we obtain estimates
uniform with respect to the friction, except in the weighted setting when v > 1. This ‘break
down’ makes sense intuitively because, when  >> 1, the Lyapunov function we construct is
needed in a shrinking part of space as the noise dominates in a growing part of the domain.
Better estimates could maybe be obtained by recent approaches which share some similarities
with the direct L? approach we use here, but do not rely on changing the underlying scalar
product, either by using some space-time Poincaré inequality as in [1, 9], or by directly seek-
ing estimates on the resolvent of the generator of the dynamics instead of looking for decay
estimates of the evolution semigroup [8].

This paper is organised as follows. In section 2, we introduce the technical assumptions
made throughout the paper and state the main results. Sections 3 and 4 contain the proofs of the
main results assuming a key result, namely proposition 3. This proposition affords a number of
formal manipulations there and is later proved in section 5 along with some important auxiliary
estimates.

2. Mathematical setting and statement of the main result

2.1. Setting and basic assumptions

Throughout the paper, we study the Langevin stochastic differential equation

{ dql‘ =D dt7

4)
dp, = —VU(q,) dt — yp,dt + \/2ydB,.
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In the equation above, the unknowns are the vectors of positions ¢, € R? and momentum p, €
RY. The parameter vy > 0 is the friction constant while B, is a standard d-dimensional Brownian
motion defined on a probability space (2, %, P, E). The mapping U : RY — [0, +00] is the
potential energy function. Note that we allow U to take the value +oc in the case when U is
singular, as in the situation of a Lennard-Jones or Coulomb interaction force. Throughout, &
will denote the subset of R? of positions ¢ with finite potential energy:

ﬁ:{qeRd:U(q)<oo},
while 2 denotes the corresponding state space
X =0 xR

for the process x;, :=(g,, p,).- Depending on the context, we will use either x or (g, p) to denote
an element of 2.

In order guarantee the existence and uniqueness of pathwise solutions for all finite times
t > 0 and all initial conditions x € 2", we make the following assumption on the poten-
tial U. Once one makes this assumption, the existence and uniqueness of pathwise solutions
follows immediately by first applying the standard iteration procedure to get locally-defined
solutions in time; and then extending these local solutions to global ones by using the Hamil-
tonian H as a basic type of Lyapunov function (see [4, section 2.2] or [34, 44] for further
details).

Assumption 1. The potential U : R — [0, +00] satisfies the following properties:
(a) U € C*(0}]0,00)),
(b) The set & is connected. Moreover, for any k € N, the open set

Or={qeR":U(g) <k}

has a compact closure.

(¢) The integral [,e~ Y@ dg is finite.

(b) For any sequence {g} C € with U(g,) — oo as k — oo, it holds |VU(g,)| — oo as
k — oo.

Under assumption 1, the solution of (4) is a Markov process and we denote by {P,},>¢ the
associated Markov semigroup with transition kernel P,(x, dy). Letting I3 be the Borel o-field
of subsets of 2, the Markov semigroup acts on bounded, B-measurable functions ¢ : & — R
as

(Pid) () = Ex [6(x)] = /%qb(y)Pt(x, ),

where the expectation E, is with respect to all realisations of the Brownian motion in (4) with
initial condition xo = x. The Markov semigroup also acts on positive, finite 3-measures v as

VBeB, (wP)B)= / v(dy)P(y, B).
v

Throughout this work, the infinitesimal generator of {P,},>¢ is denoted by

L=p-V,=VU(@Q) -V, —=7vp -V, +7A,. (5)
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Recalling the Hamiltonian H(qg, p) of the system (1), the following B-measure is a proba-
bility measure:

1
uw(dgdp) = % e 1P dgdp, N = / e 1P dgdp < 400, (6)
x

the finiteness of 4" being guaranteed by assumption 1(c). Moreover, it can be shown that p
is the unique invariant probability measure under the dynamics (4); that is, x is the unique
probability measure satisfying 1P, = p. Indeed, a short calculation shows that

LM (e") =0,

where LT denotes the formal adjoint of L with respect to the L?(dx) inner product. Employing
assumption 1, one can then establish [30, proposition 2.5] by precisely the same argument
given there. This, in particular, gives the needed hypoelliptic and support properties to ensure
uniqueness of u; see, for example, [35, 44].

In addition to employing assumption 1, we will also make use of the following growth
assumption on the Hessian of U. This assumption together with assumption 1 allows for both
polynomial and singular potentials [4, 30] and, by the arguments in [51], implies that y satisfies
a Poincaré inequality, as discussed around proposition 2 below.

Assumption 2. For any ¢ > 0, there exists a constant C. € R such that
Vge O, VyeR’ |VU(gy| <e|VU@Ply| + Celyl- (7)

Remark 1. There is a subtle but important difference between the bound in assumption 2
and an often assumed growth condition found in the literature on Langevin dynamics (see, for
example, [9, 17, 51]). A typical replacement estimate for assumption 2 often reads: there exist
constants C,D € R such that

Vge O, |VPU(@|<CIVU@I+D. ®)

Such conditions are usually stated in order to control the growth of the potential at infinity,
having in mind that the increase in U should be polynomial in |g|. This is why there is a power
one for the gradient on the right-hand side of (8) while in assumption 2 this exponent becomes
two at the expense of a small constant <. This difference in the exponent precisely affords the
inclusion of potentials with singularities. As a simple illustrative example, consider

0 =(0,0) and U(g)=q '+ ¢*

Note that this potential combines a strong repulsion at ¢ = 0 with a quadratic confinement at
infinity. Now, for ¢ > 1, an estimate such as (8) holds since

Vg=1, |U"(g)|<3<3|U(g|+3.

However, near ¢ = 0, this estimate no longer holds. Nevertheless, forany € € (0, 1), there exists
C. € R, such that

1
Vge©1], |U"(g|=2 (1 + ¥) <el'(gl + C..

Since |U'(g)| — oo as U(g) — oo, we finally obtain (7) by distinguishing the cases g > 1 and
g< 1
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Remark 2. Assumption 2 is ‘almost minimal’ in the sense that, if € > 0 cannot be chosen
as small as wanted, there are smooth functions U on & satisfying the bound (7) but such that
the unnormalised measure / given by

—H(q.p)

idgdp) = e dgdp

is no longer finite, hence cannot be normalised into a probability measure. As a concrete
example, consider & = (0,00) and any C*°(&) function U such that U(g) = «log(g) for
q = 2, with a > 0. Then,

a 1
Vg=2, |U'g|=—=-|U@,

q
Note that /i is no longer finite for o < 1 since e Y@ = ¢~ for ¢ > 2.

2.2. Statement of the main results

In order to state the main results in this paper, we now introduce some further notation and
terminology used throughout this work.

Generators. We first introduce the L?(dp)-adjoint L* of L. More precisely, for the L*(dp)-
inner product given by

00) = [ svan
P
the action of the operator L* is defined as

Vi, € CH(X),  (L'¢.1p) = (o, La)),

where C°( %) is the set of real-valued, C*°(.Z") functions with compact support in 2. It will
sometimes be convenient to decompose L into its symmetric and anti-symmetric parts with
respect to the inner product on L>(d/) as

L = Ly + vLou, 9
where
Ly=p-V,—VU(Q)-V,, Loy =—p-V,+ A,

Observe that the Hamiltonian part Ly of L is anti-symmetric, while the Ornstein—Uhlenbeck
part Loy of L is symmetric, so that

L' = —LH —+ ’}/Lou.

In fact, introducing the momentum reversal operator R which is a unitary operator on L?(d)
acting as (Ro)(q, p) = ¢(q, —p), a simple computation shows that

L"=RLR. (10)
It is also useful to introduce the generator of the overdamped Langevin dynamics, namely

Lop = A, = VU(Q) -V, =~V - V.
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Note that this operator is the infinitesimal generator of the stochastic gradient system
dg, = —VU(q,) dt + V2 dW,, (1)

where W, is a standard d-dimensional Brownian motion.

Lyapunov functions. In this paper, we construct a distance which is contractive (at large
times) for the dynamics and equivalent to the norm on L2(W* dj) where W* > 1 is a conve-
niently chosen weight function. In fact, W* will be some Lyapunov function for L*, which is
why we write W* instead of W. We therefore introduce the following terminology.

Definition 1.

(a) We call a function V € C*(Z"; (0, 00)) strongly integrable if there exist constants C > 0
and 0 € (0, 1) such that the following estimate holds on 2"

VH|V,V| < Ce

(b) We call a strongly integrable function W € C?(.2’; (0, 00)) a weak Lyapunov function with
respect to L with constants o, 3 > 0 if

LW < —aW + 8.

(c) We call a strongly integrable function W* € C?(Z’; (0, 00)) a weak Lyapunov function
with respect to L* with constants o, 3 > 0 if

LW < —aW* + 3.

(d) We call a weak Lyapunov function V € C(Z;(0, 0)) with respect to M € {L,L*} a
strong Lyapunov function with respect to M if the sub-level sets {V < ¢} for ¢ € (0, +00)
are compact in 2.

Remark 3. Note that any positive constant function is a weak Lyapunov function with
respect to both L and L*. However, constant functions are not strong Lyapunov functions since
their sub-level sets are not compact. Following the construction in [30], we show in theorem 2
that, under assumptions 1 and 2, there exists a strong Lyapunov function for L. Hence, by the
structure of the generator L, there exists also a strong Lyapunov function for L*.

Throughout, for any operator M € {L, L*}, we use the notation #, 3(M) to denote the set
of weak Lyapunov functions with respect to M with constants «, 5 > 0, and
WMy = | W asM).
a,3>0
We similarly let ., s(M) denote the set of strong Lyapunov functions with respect to M with
constants «, 5 > 0 and
M) = | ) Las).
a,3>0

The equality (10) implies a clear relationship between #(L) and #/(L*), and hence between
(L) and #(L*), as summarised in the following proposition.

Proposition 1. The function W is a weak (resp. strong) Lyapunov function for L with con-
stants o, 5 > 0 if and only if W* defined by W*(q,p) = W(q, —p) is a weak (resp. strong)
Lyapunov function with respect to L* with constants «, 3 > 0.
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Remark 4. The existence of a Lyapunov function is often assumed in the literature to estab-
lish geometric ergodicity for SDEs in a (weighted) total variation distance; see, for example,
[24, 41, 44]. Using the one-to-one correspondence between #/(L) and #/(L*) in our context,
we will see here that contraction for the dynamics (4) in a weighted L(dy) sense also follows
from the existence of a weak Lyapunov function.

Remark 5. One can always take our weak Lyapunov function to be a positive constant.
However, for potentials satisfying assumptions 1 and 2 (see [4, 30, 39]), the set (L) is non-
empty, hence so is .%(L*) by this one-to-one correspondence. Consequently, the weight W* &
(L") in the weighted norm L*(W* dy) actually diverges at large values of the Hamiltonian H,
so the topology induced by L>(W* dy) is finer than the one induced by the usual (unweighted)
Lz(du) norm.

Poincaré inequalities. Because of the product structure of the invariant measure y, the g-
marginal yiop of 1 given by

1
pon(dg) = ——e "Pdg,  Nop = / e Y@ dg,

N oD Vi
satisfies a Poincaré inequality if and only if 1 does, in view of tensorization results for Poincaré
inequalities. We rely here on the fact that the other term in the product, the p-marginal of 1

denoted by 1y, is a Gaussian measure with identity covariance, so that, for any ¢ € H'(djqy)
with [pa ¢ dpioy = 0, it holds

‘|¢||i2(d#ou) < HVPQS”[Z}(duOU)' (12)

Thus, in order to analyse constants later, we express the Poincaré constant for y in terms of the
Poincaré inequality for pop. The following estimate is a consequence of the results stated in
[3] for instance.

Proposition 2. Suppose that U satisfies assumptions 1 and 2. Then there exists a constant
p > 0 such that the following bound holds for all ¢ € H'(djop) with fx ¢duop = 0:

P / & duop < / V6P duop.
17 17

When assumptions 1 and 2 hold, y therefore also satisfies a Poincaré inequality: for any
¢ € H'(dp) with [, dp =0,

min(l’ p)”@”iZ(dH) < ”vq@”iZ(dﬂ,) + ||v17(p‘|i2(d/,,)' (13)

Modified norms. For convenience in the arguments in later sections of the paper, we make
use of the following notation:

H¢||2r=/ (T)] $du, (14)
X

where T is a positive operator. When the argument 7 in the above is a nonnegative function,
one should understand this as being a multiplication operator. We can further define an inner
product (-, -)7 associated to (14) by polarisation. When no argument is indicated in the norm,
||#|| denotes the usual norm on L?(dyz).

Exponential convergence in L*(dy). Our first result establishes exponential convergence to
equilibrium in the unweighted setting of L?(dy) when the potential satisfies assumptions 1 and
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2. In particular, the result applies in the setting of a singular Lennard-Jones interaction as in
[30]. Note that the Lyapunov structure is not directly employed here.

Theorem 1. Suppose that the potential U satisfies assumptions 1 and 2. Then,
(a) For any v > 0, there exist an explicit constant \ > 0 such that, for any ¢ € L*(du) with
Jor &dp =0,
Viz0, [Pl <3exp(=An|g].

(b) There exists X such that the following lower bounds on the exponential decay rate holds:

Vv €(0,+00), A=\ min{y, 7’1}.

Exponential convergence in weighted L? spaces. Our next result shows that assumptions
1 and 2 imply explicit exponential convergence to equilibrium in a weighted topology con-
structed from the appropriate Lyapunov functional. The existence of a weak Lyapunov function
follows by remark 3, but, as remarked earlier, we also have the existence of an explicit strong
Lyapunov function W* under assumptions 1 and 2. In fact, we construct explicit Lyapunov
functions, which parametrically depend on the friction v > 0, in order to obtain the correct
scaling for the convergence rate.

Theorem 2. Suppose that the potential U satisfies assumptions 1 and 2.

(a) Consider W*e W . s(L*) for some constants o, B > 0. Let X > 0 be as in the conclusion
of theorem 1 and set m = 5n\/ 3 for some 1 € (0, 1). Then, for any ¢ € L*(W* du) with
[y odn=0

. «@
V20, [Pdllwt <3 exp (= min {A1 =), 5 o) [6llweir (15)
(b) Forany~y > 0andn € (0, 1), there exist a, f > 0 and W*e %, 3(L*) of the form

W = exp(n(H + 1)),

where v, = o(H) as H — oco. Moreover, there exist ¢ >0 and C,D € Ry (which all
depend on 1 but not on ) such that

Vy<l, az=ey, < Cy, (16)

B
Vy>1,  a>=ecy, BLCY M, M,= max W. (17)
IpI<D.|VUI<Dy
Note that the decay rate in (15) is slightly smaller than the one in (1). Somehow, the larger
the Lyapunov function is (i.e. the larger m is), the smaller the decay rate is. Note also that if
W* € W (L*)\ (L"), then theorem 2 does not provide additional information when compared
with theorem 1. Essentially, one can think of W* € #/(L*)\ (L") as being a positive constant,

in which case the norms || - ||,,w++1 and || - || are equivalent. However, if W* € #(L*), then
W* has compact sub-level sets { W* < ¢} for all ¢ > 0. This means that W* — oo as H — oo,
in which case the norm || - ||,,w++1 dominates the norm || - || (see also remark 5).

Before proceeding further, let us discuss more precisely the convergence result provided by
theorem 2 through some remarks.

Remark 6. TItem (b) of theorem 2 implies that the effective exponential decay rate min{ \(1 —
g),a/2} in (15) is still of order min{y,7 "'}, as in theorem 1. When ~ > 0 is small, we
also note that m is of order 1, so that the norm || - ||,,w++1 is genuinely stronger than the
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standard norm on Lz(du). On the other hand, when v > 0 is large, the factor m is small in ~, of
ordery 4.4 . ! To estimate .# ~, one needs more knowledge than assumptions 1 and 2 in order
to compare |[VU| and U. One should however typically think of .# ., as being exponentially
large in some power of v as v — oo. The poor scaling of this constant with respect to +y is not
surprising given that the construction of the Lyapunov function in the previous result is based on
the analysis of the dynamics at large energies, outside the region {|p| < D} N {|VU| < Dv}.
Note that this region grows as v — oo so that the analysis works in a shrinking part of
the phase space.

Remark 7. Following the calculations in [4], it is possible to use the methods of this paper
to marginally improve the dimensionality dependence in A of theorem 1. In particular, it is
possible to replace assumption 2 with the condition: there exists € > 0 small enough but inde-
pendent of the dimension such that condition (7) is satisfied. Indeed, note from the proof
of proposition 2.40 in the appendix of [4] that it is possible to choose € in assumption 2
independent of the dimension for Lennard-Jones-like potentials. This can be done by care-
fully choosing the dimension dependence of the constants Cy, C; in the latter work as func-
tions of d. However, the resulting constant C. in (2) will diverge as d“ (the exponent a
being determined by the choices of Cj, C»). It is possible to remedy to this issue by rescal-
ing variables as g — d~“/?q, so that [d*V>U(q)y| < |d*/*VU(g)|*|y| + C., which leads to
|V2U(q)y| < |VU(@)|ly| + d “C-. Hence, under this spatial rescaling, both £ and C. can be
chosen independently of the dimension.

Although the scaling of ¢ and C. in assumption 2 can be made precise and controlled, the
dependence of the Poincaré constant p with respect to the dimension is less clear. Dimension-
free Poincaré constants are obtained only in unrealistic situations, for instance particles not
interacting which each other (in which case the potentials is separable, namely U(q) =
Z?zl u(q;), and the Poincaré constant is simply the minimum of the Poincaré constants asso-
ciated with the potentials u;), or uniformly convex potentials and perturbations thereof. This
makes it difficult to determine the dimension dependence of the convergence rate \, which is
based on the constants in (32).

Remark 8. Note that o and \ have different scalings with respect to v > 0 in part (b) when
v > 0is large. In particular, o = O(v) while A = O(y~!) as v — oc. To see heuristically why
one should expect this discrepancy, note that in the region

{lpl = Dy U{|VU| = Dy}

for D > 0 large, but independent of v, the effects of the noise in the system (4) can heuristically
be considered to be negligible. Furthermore, suppose that at high energy levels the system
(4) moves approximately to leading order in time according to the deterministic Hamiltonian

dynamics

{Q =P,

. (18)
P=-VU(Q).

This is heuristically the case if, at higher and higher energy levels, the periods of the ‘orbits’
of (18) (should such orbits even exist) are short compared to . Introduce

2 1 T 2
(P, = 7 / P, ds,

hJo
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where T, denotes the time spent during one complete Hamiltonian orbit for the dynamics (18)
on {(Q, P): H(Q, P) = h}.If we believe for large / that

<P2>h ~ ch

for some ¢ > 0, then we obtain for H(q, p) = h large that

1
_E(’M’) [H(th > P1y, )]

1 v o
L, )———E,,{/‘ s d4~+ y
T 7,H@P = 7 Ean | | |s| v

Q

1 c Ty
—H(g,p) — —7/ H(gy, ps) ds + vd.
Th Th 0

Since intuitively the time T, is small for H = h large, we expect some Lyapunov-like condition
on H, which suggests that & = ~yc for some ¢ > 0 independent of v when v is large.

Remark 9. We motivate here the scaling min{ca, A} for the convergence rate in (15). Con-
sider n > 0 and suppose that W*€ . (14)q,8(L*) for some a, 8 > 0 with W* > 1. Then there
exists K* C 2 compact such that

V(g.p) € (K", (L'W*) (g.p) < —aW'(q. p).

In view of (10), the function W defined by W(q, p) :=(RW*)(q, p) = W*(gq, —p) satisfies an
analogous estimate for L on the set K = {(g, p) : (¢, —p) € K*}, namely

V(q,p) € K¢, (LW)(g,p) < —aW(q, p).

Let7 = inf{r > 0: (g,, p,) € K} be the first time the process (g, p,) solving (4) enters K. Since
W* > 1 and hence W > 1 as well, the following equality follows from It6’s formula applied
to Y(t, q,, p,) = e* W(q,, p,) started in K¢ and stopped at time 7:

V(q.p) € KS, Eq [explar)] < W(g. p) < co. (19)

One way to interpret the above exponential moment estimate on 7 is that the speed at which
the process (g,, p,) returns to K is governed by the parameter a. Outside of this compact set,
the dynamics returns to K exponentially fast on average as dictated by the value o > 0 for
which the Laplace transform of 7 in (19) is finite. Once the process enters K, mixing occurs
according to the local topology given by the norm || - ||. This suggests in particular the scaling
min{a, A} in the exponential convergence rate of theorem 2.

Remark 10. Some convergence results for Fokker—Planck operators associated with
Langevin dynamics can be extended to other types of generators, in particular generators
associated with piecewise deterministic Markov processes [2, 17, 38]. The generator of the
linear Boltzmann dynamics corresponds to replacing the differential operator Loy in (9) by
the integral operator IT — 1. An inspection of the proof of theorem 1 shows that this result
will still hold, at least formally. Some estimates are unchanged, such as most of the bounds
in sections 5.1 and 5.2, which involve either functions of the ¢ variable only or functions in
the image of the generator of the Hamiltonian part of the dynamics. Some work would how-
ever be required in the proof of proposition 3 in section 5.3 to make all estimates rigorous
since hypoellipticity is lost, and some manipulations based on truncations and carré-du-champ
formulas would have to be adapted. In contrast, it is not clear whether the results of theorem
2 hold. The issue there is to find a Lyapunov function. In the framework of section 4.2.1,
this is done in [7, lemma 3.2] for a Lyapunov function quadratic in p (although the scaling
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with respect to the equivalent of the parameter v would have to be made explicit). It is not
obvious how to extend the approach to Lyapunov functions such as (43) since our algebraic
manipulations in section 4.2.2 rely on the fact that we work with second order differential
operators.

3. Proof of the main general results

We prove in this section the main general results of this paper, namely theorem 1 part (a) and
theorem 2 part (a). These results are established by assuming some technical estimates, whose
proofs are postponed to section 5. The analysis of the claimed scalings with respect to the
friction parameter , as outlined in the statements of theorem 1 part (b) and theorem 2 part (b),
are studied in a second stage, in section 4.

We first motivate and discuss the main ideas behind the proofs in sections 3.1 and 3.2.
In these two motivating subsections, we make a number of formal manipulations in order
to simplify the presentation, without justification, using generic ‘nice’ functions ¢ € L*(dy)
with mean zero with respect to . The needed manipulations, as well as what is meant by
a ‘nice’ ¢ € L*(du) with mean zero, are made precise in the proofs of the main results in
section 3.3.

3.1. Idea of proof in the unweighted setting (theorem 1)

The first observation we make is that working in the topology L*(dy) is a good start in order
to see some elements of a contraction. Indeed, recalling that

20L¢ = L(¢*) — 27|V 0|, (20)

we have, by invariance of p, that

d
GIPeI” = 20LPi Pig) = (L(Pid)*, 1) = 29|V, Pidl” = =20V, Po|*. - 2D)

The Poincaré inequality (13) satisfied by the measure p cannot be used at this stage since
only p-derivatives appear in (21) through —2+||V,P,¢| above. We need to uncover the
‘missing’ g-derivatives, namely —||V,P,||*. This is done by adding a small perturbation to
the norm in L2(d) in order to couple the ¢ and p degrees of freedom, and spread the dissipation
from p to q.

This perturbation is encoded in practice by some operator A, following the approach of [17,
27]. We introduce

A= =1+ @ul) (LulD)  (LuTD)" = (1 = L) TiLy
= (1 — LopIl) 'Ly, (22)

where II is the projection operator on L(dyz) given by

1 b2
(I1g)(q) = @min /R d¢(q, pe 2 dp. (23)

1009



Nonlinearity 35 (2022) 998 E Camrud et al

Effectively, the perturbation A plays a role similar to the twisted gradient as in [42, 47, 51], but
it has been renormalised to be an operator on L*(dy) as opposed to H'(dy). Thus, when we
uncover the missing g-derivatives, they appear in renormalised form.

Remark 11. Strictly speaking, the operator A is defined on a dense domain in L?(dy). Once
we prove that it is bounded operator in L(dj) when restricted to this dense domain, we can
extend it to an operator on all of L?(du) with the same norm; see section 5, in particular
lemma 3.

Recalling the notation (14), we next consider the modified ‘norm’ || - ||; 454 with d > 0 a
parameter to be determined—chosen in particular so that || - ||;s4 is indeed a norm, equivalent
to the standard norm || - ||. Then, using (21),

d d d
3 IP@liiss = 3 IPSI* + 6 (AP, Pig)

= —2v||V,Pid|* 4 S(ALP:p, Pi¢p) + 5{AP,¢, LP;¢b)
= 29[|V, Pid|> + S(ALIIP, ¢, Pp) + 6 (ALu(1 — TD)P;¢b, Prgp)
+ 0v(ALouP:¢, Pi¢) + 0(L"AP19, Pi9)
=1 = 29|V, P|* + S [T1(Pi) + To(Pid) + T5(Piop) + Tu(Pid)] . (24)

We now highlight that the term 7', (P,¢) provides the missing dissipation in g, while we will
see later on, in section 3.3, that T;(P,¢) for i = 2, 3,4 are ‘lower-order’ order terms in a sense
to be made precise.

Note first that, for ¢ € L*(dp) with [,-¢dp = 0, 0onehas [, Pi¢pdpu = [, 1IP,¢ dpop = 0.
We can therefore use the Poincaré inequality for the overdamped measure 11, (see proposition
2) to obtain

Ti(Pi¢) = (ALyIIP,$, P,¢) = (1 — LopIl)™'LopIIP,¢, IIP,¢)
= —((1 4V} - V) 'V - V IIP;$, TIP,¢))

P 2
<~ IPoll. (25)
Thus, because the operator II is playing the role of a renormalised gradient in ¢, the term on
the last line above can be combined with —2v||V,P;¢||> < —2||(1 — II)P,¢||?, where the last
inequality follows from the Poincaré inequality (12) in the p-marginal pqy. This leads to the
sought after global dissipation and allows to apply a Gronwall lemma.

For the approach to be effective, we need to carefully choose § > 0 so that (a) || - ||11sa is
actually a norm, equivalent to the standard one on L?(dy), (b) the remainder terms T;(P;¢) for
i = 2,3,4 can be controlled, and (c) the decay rate has the correct scaling in «y as claimed in
theorem 1(b). The originality of our results compared to related results for Langevin dynamics
[15, 22, 33] is that we consider weaker conditions on U than in previous works, allowing in
particular the possibility of potentials with singularities.

3.2. Idea of the proof for a weighted norm (theorem 2)

Building off the heuristics in the previous section, we now outline some of the differences
from the above when we switch to the weighted topology L?*(W* dy) where W* € #, 5(L*)
for some «, 8 > 0. In fact, if one makes good choices in the construction of the norm and
uses the mathematical setup of section 2, then the result in the weighted setting, in particular
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theorem 2, readily follows from the previous analysis. Again, we proceed here formally using
‘nice’ functions with mean zero.
Recalling the notation (14), as well as (20), we obtain for W* € #, s(L*) that

d R Pa
&HP@H%V* = 2{LP:¢, Pid)w = ((Pid), L'W*) = 27|V ,Pio |-

Using the fact that L*W* < —aW* 4 3, we thus arrive at the inequality

d
g 1Pl < =291V, Pl — allPglliy- + BIP@II*, (26)

Somewhat similar to the unweighted setting, we are faced with the problem that, although we
have a globally dissipative factor, namely —a/|P,¢||3., we have introduced a growth factor,
namely 3| P,¢||>. Thus we need to somehow add a perturbation to the norm that compensates
for this term.

In what follows, we perturb the norm || - [+ by 1 + 0A; that is, we consider || - ||w+ 41464
where A is as in (22) and, provided it exists following the analysis in section 3.1, § > 0 satisfies
the following two properties:

(@) || - ||14+64 and || - || are equivalent norms;

(b) Thereexists A > 0 for which the following estimate holds for all ¢ in a ‘nice’ dense family
in L*(dp) with [, ¢dp = 0:

d
Vi =0, &Hpt¢”%+6A < =2M|P|I7 45a-

If such a § > 0 exists, we then find that

d d d
aHPtQSH%V*—l-l—MA = aHP@H%V* + a‘lpt¢||%+6A

< —allPdli + BIPGI? = 22X Pigll 50

In order to make sure that A > 0 is large enough to subsume the 3 term, we rescale the
weak Lyapunov function by a factor m > 0 to be determined, so that mW* € #, ,,5(L*). Then,
repeating the above produces

d
EHP@H%;W*HHA < —allPgllow- + mBIIPB|I* — 2N PidlIT 4 54-

Picking m > 0 small enough depending on A, § > 0 allows to conclude the argument.

3.3. Proof of parts (i) of theorems 1 and 2

In order to prove the main general results, we first make precise the class of sufficiently smooth
test functions ¢ : 2 — R we consider. This allows us to more easily manipulate expressions to
arrive at the desired inequalities, and then apply density arguments to see that the inequalities
are satisfied for a larger class of functions. More precisely, we define

C?,%(%)Z{¢€C°°(%)’¢:w—/wdu forsomez/;ecgo(,%)}.
P
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We note that a function in CZj(Z") does not have compact support in general, since it is gen-
erally constant and non-zero outside of a compact set. We observe that, by assumption 1 and
Hormander’s theorem [32], hypoellipticity implies that the function P;¢ belongs to Cpo(Z)
fort > 0 whenever ¢ € CJo(Z), where

bo( ) = {(25 € C(Z)

sup [¢(0)| < +oo0, | Gdu= o} .
xe& X

In order to conclude theorems 1(a) and 2(a), we assume that proposition 3 below holds
true. This result provides some integrated form of dissipation. The proof of this proposition is
postponed to section 5 since it relies on a number of technical estimates and commutations of
operators. The approach for obtaining it, however, is exactly the same as in [17], but there are
some key differences in our setting, especially in the proof of the ‘elliptic regularity estimate’,
which make the estimates slightly more involved as we are allowing a weaker growth condition
on U than in [17].

In order to state the proposition, observe that assumption 2 implies that there exist constants
c1 € (0, 1) and C, > 0 independent of v such that

AU(q) < a1|VU(@)|* + Ca. (27)
Consider € > 0 such that

1_ 2
0<5<%, (28)

and let C. be the corresponding constant as provided by assumption 2. Finally, define the
constant 7). > 0 as

iy
775:\/2<1—(1j661)2> max{l,i(Cg—F 125‘2661)}. (29)

Proposition 3. Suppose that U satisfies assumptions 1 and 2, and consider W* € W o, 5(L*)
for some o, B > 0. Then, the following properties hold.

(a) The operator A is bounded, and satisfies the estimate:
1
Vo Lidw, [Adll < 5 —TDg].
(b) Forany ¢ € Cop(Z) and 0 < s <t

_r

IR du

<API¢’Pt¢> - <APS¢’PS¢> +/

</ [(n:+ 2) 10 = PGl TP + (1 = TP di

where the constant 1. > 0 is defined in (29).
(¢) Forany ¢ € C3(Z) and 0 < 5 < t,

t
1Pl < 1Pso |5 — / [l Pull3 — BIPuolI* + 29IV p(Puch) |5+ ] dus.
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Note that, if W* = 1, it is possible to take & = (3 in the estimate of part (c), which then
corresponds to the integral version of the simple decay estimate (21).
With proposition 3 at hand, we can now complete the proofs of theorem 1(i) and 2(i).

Proof of theorem 1(i) Let ¢ € C3(Z") and § > 0. Applying propositions 3(b) and (c)
(with W* = 1 and a =  in part (c)), we have, for 0 < s < ¢,
' 2 dp 2
1Pl T < Pl 15a — 27\|Vp(Pu¢)H + mHHPuch du
w5 [ [(n+ ) I - mplmes] + o - R0 du
t
wmmM/mmmw[wmm
s 0

Next, observe that, for any ¢ € Cpio(Z), the Poincaré inequality (12) gives

op p
S1(d) = 24|V, 01> + ——||IIo|I> = 2~||(1 — ID)||> + ——||TLe]|>.
1(®) = 27[| V0| +p+1|| ol eIt )|l +p+1ll ol

Combining this estimate with the other term S»(¢) produces

S1(¢) — 682(¢) > X"BX, (30)
with
2y —§ 0 7
(1 =T i ‘50k+z)
Uome ) P e s p
2 (775 + 5) l+p
Therefore,

S1(¢) — S2(¢) = min{A4, A_}|¢|%,

where Ay, A_ are the eigenvalues of the symmetric matrix B. To analyse the eigenvalues, we
denote the trace and determinant of B by

5 5 52 2
T=TB) =2~ D= det(B):ﬁ(Zy—é)—Z(ng—t—%) EIY)

We can then express the eigenvalues of B as

2
T:I:\/TT—D:%, (32)
SFYE-D

provided the denominator in the last equality is non-zero. We wish to choose § > 0 such that
both eigenvalues are indeed positive. Since By, > 0, this is the case when D > 0, i.e.

2y
o< .
L+ +3)

(33)
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On the other hand, we need to make sure we are picking § > 0 so that || - || and || - ||144
are equivalent norms. Proposition 3(a) implies that, for 0 < ¢ < 2,

é )
(1-5) 16l < Iolssn < (143 ) bl a4

Therefore, for any

2
5<min{1, l+)7 > 2}, (35)
1+ 4/)/ (775—’_5)

it holds that [|¢||1454 < 3(/¢|| and
t
1P 51 < [PebIsn — SA / 1P| du

t
< 1P| 0 — 22 / 1PuI 51 dt, (36)

where

I . A
A= 5 min{A;,A_} = =

The inequality (36) implies by a Gronwall lemma that ||P,@||7, 54 < exp (=21 [|§]]T s4-
Hence, by the equivalence of norms (34) and the choice of §, we have

1P| < 9 exp(—2A0)|o||>. (37)

Since the above inequality is satisfied for any ¢ € C(2), it follows by density that it is also
satisfied for any ¢ € L*(dy) with S 4 ¢dp = 0, which allows to conclude the proof. (]

With the proof of theorem 1(i) at hand, we can next turn to the proof of theorem 2(i).

Proof of theorem 2(i). Suppose that W* € #/, s(L*) for some o, 5 > 0 and let § > 0 be as
in (35). We first observe that mW* € #,, ,,3(L*) for any m > 0. Applying proposition 3(c) and
(36), we have, for any ¢ € Co5(Z),

HPtQSHanW*JrIJrJA = HPtQSHanW* + ||Pt¢||%+5A

1
< 1Pl 41400 — / [allPudllrwe — mBIIP.BII* + X[ Pug]*] du,

(38)
where ) is as in (35). Observe that, by choosing
SnA
= — (39)
B

for some 1 € (0, 1), we find that
—a||Pudlpu +mBlPus|* = SA|Puo|* < —min{ev, 2X(1 = )} Pudbllpw 114545
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where we used the equivalence of norms (34) and the choice of § € [0, 1] as in (35). In par-
ticular, it follows from a Gronwall lemma, an approximation argument and the equivalence of
norms (34), that, for any ¢ € L*(W* dp) with [,-¢du =0,

V=0, [[Plliws <9 exp(—min{2X(1 — &), a}0)||p| 7y 1-

This gives the claimed result. U

4. Scalings and consequences of Lyapunov structure

In this section, we analyse the rate of convergence to equilibrium in both the unweighted and
weighted settings with respect to the friction parameter v > 0, ultimately proving theorems
1(b) and 2(b). In the unweighted setting (section 4.1), we study in particular the behaviour the
parameter A\ as v — 0 or v — oo. In the weighted setting (section 4.2), we need of course the
previous analysis of A\, but we also have to construct a Lyapunov function W* € ., 3(L*) for
some «, 3 > 0, with an explicit dependence of «, 5 ony > 0.

4.1. The unweighted setting and \

Here we recall that

1 1
A= 5 max{A;,A_} = gA_,

where AL are the eigenvalues introduced in (32). We also recall that § > 0 needs to be cho-

sen so that the restriction (35) is satisfied, and that 7)., p > 0 are constants which do not
depend on 7.

Proof of theorem 1(ii). We briefly recall the approach of [33, section 5.3] for instance. Con-
sider first the case when v > 1. We choose § = ¢y~! with ¢ > 0 small enough (independent
of 7) so that (35) is satisfied. Then, by simplifying the expression of A_, we find that T ~ 2~

2
andDN%r%—%aswﬁoo,sothat

c p c 1
A=—(—-—= o= ).
Y <p+1 32>+ (72>
The prefactor of the dominant term !
the correct scaling for A as v — oc.

We next consider the situation when v < 1, for which we choose § = ¢y with ¢ > 0
sufficiently small so that (35) holds. A simple computation shows that, as v — 0,

is positive for ¢ > 0 sufficiently small, hence giving

2 2
c c cp c )
A=~ 1l————4/[1- — 2— —n2| + O@).
Y 30+ ) \/( 2(1+p)> 1er( c)+4n5 + OO

The prefactor of the dominant term v, equal to cp/(1 + p) + O(c?), is positive for ¢ > 0 suffi-
ciently small, hence giving the correct scaling for A as v — 0. This concludes the proof of the
result. (]
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4.2. Explicit Lyapunov functions and convergence rates

Our goal in this section is to construct an explicit Lyapunov function W*e ., s(L*) and
analyse the value o > 0 we obtain from the construction. Since the convergence rate param-
eter in the weighted setting is min{«/2, \(1 — €)} where A > 0 is the parameter analysed in
section 4.1 and € € (0, 1), our ultimate goal here is to check whether the parameter o > 0 also
scales as min(vy,y ') as v — 0 or v — +oc.

As a simple first example, we consider in section 4.2.1 a commonly employed condition
on U in the literature (see [40, 47, 53]), relevant for potentials which have a polynomial-like
growth at infinity. In this setting, we follow various previous works [40, 47, 53] and construct
our Lyapunov function by adding a term p - g to the Hamiltonian. We make sure that the scaling
of a with respect to v is indeed min(, v~'). We then consider in section 4.2.2 the general situa-
tion of a potential satisfying assumptions 1 and 2, for which we construct a different Lyapunov
function allowing us to write the proof of theorem 2(ii).

4.2.1. Polynomial-like potentials. 'We suppose here that the potential U satisfies assumptions
1 and 2 and the following additional growth assumption.

Assumption 3. The potential U is such that U € C*°(R?) and there exist constants
c3, Cy4, c5 > 0 for which

VgeR?, VU -q=>c;U(q) —Cy, Ug) > cslg

Under these assumptions, we now build a Lyapunov function W € .%,, 3(L) in the same
spirit as in [40, 47, 53].

Lemma 1. Suppose that U satisfies assumptions 1-3, and introduce

W.(q,p) = H(g,p) + K q - p. (40)

Then there exist € > 0 such that

k¢
V’VE(O,I]a LWR’\’(q’p)é_737WE’\/+7d+C4E’y,
EC3 C4E
Vv €[l,00), LWE/ﬁ/(q,p)<_§Wg/,y+fyd+T.

Note that the scaling we obtain on the decay rate o for v > 1 is not of order +y as in theorem
2(b), but of order 1/+. This is not an issue since the associated exponential decay rate in (15)
will still scale as min(y, vy~ '). The difference with the scaling obtained in theorem 2(b) comes
from the fact that the Lyapunov function is not of exponential type here. The smaller value of
« is compensated by a much smaller and more explicit value of 5.

Proof. In order for W,, > 0 and W,, — oo as H — o0, it is sufficient by assumption 3 and a
Cauchy—Schwarz inequality that

K < y/2cs. 41
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In view of assumptions 1 and 3,

LW,(q.p) = —(y — K)|p|* = kVU(Q) - ¢ — kyp-q+~d
<—(v=R)Ip] — 3k UQ) — kyp-q+ vd + Cyk. (42)

When § < c3k, it holds

q B (c3k —0)es  K(y—0)/2 q
2 38— 0)Cs -
— K +c3kUW@Q)+kyp-qg—W.(q,p) > .
(v = R)pl"+c3r U@+ ryp-q (4.p) <p> (ff(v—é)/Z 7_,45_5/2> <p>
The aim is to prove that the matrix appearing on the right-hand side of the previous inequality
is nonnegative.

We first consider the case v < 1. Setting x = Ky and § = c3x/2, we obtain

eacs E<F%ﬂ

((C3/<;—5)C5 K(7—5)/2>_ 2 " 27 2
K(y—=90)/2 y—r—10/2 R 3R _ €3
ﬂ<1‘z) 1-r(1+9)

We finally choose & > O sufficiently small so that the latter matrix is positive for all v < 1
(which is possible since the determinant is of order c3cs%/2 + O(%?) uniformly in v < 1) and
(41) is satisfied for v = 1, which provides the claimed inequality for v < 1.

For v > 1, we still set § = c3x/2 but consider now k = %/~. Then,

c3csk R (1 B @)
((C3KZ—5)C5 /@(7—5)/2) _ 2y 2 2~2
K(y—=0)/2 v—r—46/2 3k I3 c3
)

When & > 0 is sufficiently small, the determinant of the matrix on the right-hand side is pos-
itive, of order c3cs%/2 4+ O(%?) uniformly in v > 1. Upon further reducing the value % found
for v < 1, we finally obtain the claimed inequalities. OJ

| 3|

4.2.2. The general case. If we remove assumption 3, then this limits the types of known
Lyapunov functions one can consider. In fact, the function in (40) will not satisfy (42) as a
Lyapunov function if we merely consider assumptions 1 and 2. In order to deal with these
issues, we will slightly modify the form of the function as in [4, 30]. Note that a similar form
was used in [14, 39].

Proof of theorem 2(ii). Our goal here is to construct a Lyapunov function for L of the form
W(g, p) = e, (43)

where

p-VU(q)

H(q,p) = H(q,p) + KW

=:H(q, p) + ky(q, p),

for some constants x,0 > 0 and n € (0, 1) to be determined later. The Lyapunov function for
L is then obtained by proposition 1.
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First observe that |1(¢, p)| < o~'/?|p|, so that, for any choice of x, o, 1 > 0, itholds W > 0
and W — 400 as H — +o0. Furthermore, for any 7 € (0, 1) and x, 0 > 0, it is easy to check
that W is strongly integrable (see definition 1). Next, to help compute LW, note that

i p-VU(q) VU@
LH(q,p) = LH + kL) = —~|p|* + vd — -
(. p) wlap ==l +0d =y gr e T R @R o
L VU@p peVUG@ VUG- VU@p
VU@ + o VU@ +o  [VU@P +o

Using assumption 2 on the two terms of the second line gives

= VU(Q)* + C-. YU(g)|?
LH(q,p) < vd + |- + H% (1 2@)} ‘p‘2

VU(@)|> + o VU@)|> + o
VU(g)|? p-VU(@q)
—K — RY .
VU@]> + o IVU@Q)]> + o

We choose o > C. /e, so that the coefficient of |p|> achieves a maximum as |[VU(g)| — +oc;
the corresponding value being smaller than —~ + 3ke. Therefore,

[VU(g)|? p-VU()

LH(q, p) < vd + (=7 + 3re) |p* — UL o N U@E Lo

Using this inequality along with the fact that for all V € C*(&) and n > 0,
L (") =n(LV+ny|V,V[*)e",

the function W = e in (43) satisfies

LW(q, p) ~ ~ 2

=% — LH(q, vV ,H(q,

W) (g, p) + m’ »H(g p)’

[VU(g)|? p-VU(q)

NU@PE+o "NU@P+o

p-VU@ o [VU@P )

VU(@@)|> + o (|VU(@)]> 4 0)?
|VU(g)|? K2y

VU@ +0o  [VU@QP +o

<vd+(—y+3ke) |pf — K

+ 17y <p2 + 2k

<yd — (1 —n)yy =3k |pf* — &

lp- VU(q)|

2= U G R+ o

where we used that ) € [0, 1] (so that |2 — 1| < 1 in particular). Using Young’s inequality
for the last term, hereby introducing a constant C,, > 0 which can be made as large as wanted
depending on the value of 1, we finally obtain

IVU(g)?
IVU@|? + o

G e B
* < i 1) NU@F 1o 9

LW(q, p) -

W S d—1[(1—-n Cn)’y 3kel |pl* — K
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We next choose the parameters for the function W in (43). These parameters are the same for
the two limiting regimes we consider, namely v < 1 and v >> 1, but the estimate for 8 changes
depending on which case is considered. Let us first fix some value 7 € (0, 1), independently
of ~. The regime where U is large but |p| is small forces us to choose x to be order ~. This is
because, in particular, when |p| is small and U(g) is sufficiently large, we need

VU(g)

d— kim——F—
T VU@ e
Specifically, we set k = 2vd and consider €, C;,, > 0 independent of  and such that

1—1
—1
6de +C,' < ——,

so that (1 —n — C;l)v —3ke = (1 —n)y/2.
With these choices, consider first the case v < 1. Then, on a region of the form

% ={lp| > D} U{|VU| > D},

where D > 0 is large but independent of -, we have that
LW < —cyW

where ¢ > 0 is independent of y. Now the complementary region
% =A{lpl <D} N{|VU| < D}

is compact. Moreover, W is in this case bounded on Z° independently of v < 1 since 0 < k <
2d. Since the right-hand side (44) is of order v on Z, this in turn implies the estimate

LW < —cyW + Cy

for some constant C > 0 independent of 7, which indeed gives (16). Note that this agrees with
the estimate in lemma 1 obtained when U satisfies assumption 3 in addition to assumption 2,
but the function W constructed here grows much faster for H large than the one in (40).

We next consider the case v > 1. Again, we maintain the same choices of «, €, C,, as before,
but this time we need to enlarge the region depending on the size of v in order to control the
remainder term (1 + C,,/4)x*v/([VU|* + o). More precisely, in the region

%, ={lp| > D} U{|VU| > Dv}
where D > 0 is large but independent of -, it holds

V(g.p)c %, UW)(q.p) < —cyW(q,p)

for some ¢ > 0 independent of . On the complementary region
%, = {lpl < D} N{|VU| < D7},

the function W is bounded by .7, := maxg: W. We therefore have the global estimate
LW < —e YW+ Cy ot

for some constant C > 0 independent of v, which is indeed (17). (|
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5. Auxiliary estimates and the proof of proposition 3

In this section, we make precise the definition of the operator A introduced in (22) and deduce
a number of estimates that will be crucial in the proof of proposition 3. At times, we will also
need to make use of a sequence of cutoff functions indexed by n € N,

Xn € C([0, 00); [0, 1]), (45)
satisfying
1 iftr<n,
Xn(1) = Xo <O, sup{[Ix;lleo + IX0llec} < 400, (46)
0 ifr>n+1, n>1

where ||¢|| = sup,c 4-|¢(x)| for ¢ bounded measurable. Depending on the context, we use
cutoff functions of the form x,(U(g)) or x,(H(q, p)).

In what follows, we will also utilise the gradient dynamics on & given by (11). Under
assumptions 1 and 2, it follows that the solution ¢, of (11) is non-explosive and has a unique
invariant probability measure given by the g-marginal of 1, namely iop. Indeed, invariance of
Lop follows by assumption 1(a) and a direct calculation showing that

LED (e_U) =0,

where LI)D denotes the formal L?(dg) adjoint of Lop. Furthermore, uniqueness of o, follows
by assumptions 1(a) and (b) since ¢, is a uniformly non-degenerate diffusion [35, 44].

5.1. Regularity estimates and moments of |VU|

In this section, we establish some basic facts about solutions v of the equation

(I = Lop)y = ¢, (47)

foragiven ¢ € Cp°(€). We also show that the gradient of | VU] has finite moments with respect
{0 fiop-

Proposition 4. Suppose that U satisfies assumptions 1 and 2, and let ¢ € C°(O). Then
there exists a unique classical solution 1 € C°(O) of the equation (47), which can moreover
be expressed by the Green’s formula

W) = E, [ /0 equ(qs)ds} : 48)

where q, satisfies (11).

Proof. We first prove the existence of solutions belonging to the class C;°(&). In fact, we
show that 1/ defined by the formula (48) belongs to this class of functions and satisfies the
desired equation.

Consider the bounded open domains defined in assumption 1(b) with boundaries 00, =
{g € O : U(q) =k}, as well as the sequence of boundary-value problems

(I —Lop)yx = ¢ on O,
Yr=0 on 00O.

(49)
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By assumption 1(d), there exists k. € N such that |VU| > 0 on the boundary 9 & forall k > k.
and recall that U € C*°(&). The boundary 0 0 is therefore C™ for k > k.. Since the operator
1 — Lop is uniformly elliptic and the domain & is bounded, there exists a unique solution
P € C(O) N Cy (O) to the boundary value problem (49) (see for instance [20, chapter 6]).
Using It6’s formula applied to e " 1/, (q,) and a nearly identical line of reasoning as in the proof
of [43, theorem 9.1.1], it follows that this unique solution 1), is given by the Feynman—Kac
formula

(@) = E, [ /0 = ¢<qs>ds] ,

where oy = inf{t > 0 : q;¢ Oy}.

We next claim that if ¢ is defined by the formula (48), then ¢, — 1 pointwise in & as
k — oco. Let ¢ € @ and consider k, € N such that g € O for all k > k. (such an integer k.,
exists by assumption 1). It then follows that, for all k > k.,

E, [ / exqﬁ(qs)ds]
ok

Since ¢, is a non-explosive process, o 1 00, P -almost surely as k — oo. Using the dominated
convergence theorem on the right-hand side of (50), it follows that ¢,(¢) — ¥(g) as k — oo,
thus establishing the claimed pointwise convergence.

The next step is to show that v solves (47) in the sense of distributions on &. To see this,
let k. € N be arbitrary and suppose that ¢ € C°(0,). Note that ¢, and ) are both globally
bounded by [|¢]|~. Letting (1 — Lop)! = 1 — A, — div, (VU-) denote the formal adjoint of
(1 — Lop) with respect to the Lebesgue measure on & and recalling that 1), — 1) pointwise on
O, we thus obtain by the dominated convergence theorem again:

lih(q) — i(q)| = <9l Eq (e77%) (50)

/ﬁ (1= Lop)'p = Jim [ 4u(1 = Lop)'y

1

—00 ﬁk*

= lim [(1 = Lop)Yrl @ = Pp-
k—00 ﬁk* ﬁk*

This shows indeed that 1) solves (47) in the sense of distributions. By results of elliptic
regularity, this functions also solves (47) in the classical sense on &.

Finally, to establish the uniqueness of solutions of (47) belonging to C;°(0), let 1,1, €
CX(0) satisty (47) and fix g € 0. Applying Itd’s formula to e *(¢),(q,) — 1,(q,)) and
evaluating this quantity at time 7 A oy, we find that, forall# > 0,k € N, andi = 1,2,

Ao
E, [efmgkﬂfi(%/\ak)] = i(q) + E, [/0 (Lop — Di(gs) ds]

Aok

= 1/%'(61) - Eq [ A ¢(‘Ix) ds:| .

Therefore,

Vi>0, YkeN, (g —va(q) = Eq [ (¥1(qine) — ¥2(gingy))] -

Hence, we can bound the difference above as

[91(9) = U@ < ([¥1]loe + [¥2]lc) Eq [ -
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Taking t — oo and then k — oo, and using the nonexplosivity of the dynamics, we find that
1¥1(q) = ,(q). Since ¢ € O was arbitrary, we conclude that 1), = v, on all of &. O

Remark 12. Note that the proof of the previous result gives a natural way to define the action
of the operator

A= (1— Lop) 'Ly (51)

on the core of functions ¢ € C*(%) such that IILy¢ € C;°(0), via the stochastic represen-
tation

(A9)(q) =E, { /0 e "(ILug)(gs)ds | , (52)

where ¢, satisfies (11). In particular, A¢p € C;°(0). Observe that the vector space of such func-
tions ¢ is dense in L?(dy) since it contains C°(.Z") as well as the constant functions, hence
also CJ(Z). The operator A above can then be extended to an operator on L?(dy) once we
show it is bounded on its dense domain; see lemma 3 below for the latter result.

We next establish some moments estimates for |V U| with respect to the measure ziop, Which
will prove crucial to control derivatives of x,. Such estimates also allow us to obtain some
control on the derivatives of the solution ¢ € C;°(0) to (47). Part (b) of the lemma below is
used crucially in the final line of the proof of proposition 5.

Lemma 2. Suppose that U satisfies assumptions 1 and 2. Then,

(@) |VU| € L'(dugp) forany r > 1;

(b) For any ¢ € C;°(O) and r > 1, the unique solution ¢ € C;*(O) to (47) belongs to
H'(dpop) NH' (VU dpop).

(¢) Foranyé >0, e e Ll(dq).

Proof. To prove (a), fix r > 3 and consider the sequence of functions
en(q. p) = p- VUIVU|x,(U),

where Y, is defined in (45). A simple computation shows that

d
Lon(q,p) = Y, pipi0;0g, UV U™ *xu(U) = [VU|" X (U) = v0(q, ).

ij=1

Note that the function Ly, belongs to L'(11) since x,,(U) has compact support. Now, since the
integral of p;p; against pqp is 0;; because pp is a standard centered Gaussian, while ¢, has
average 0 with respect to p,

d
0= / Lo, dp = / >0y, [0,UIV U xu(U)] = VU xa(U)dpiop.
X o“
Jj=1
Since X/, < 0 and in view of assumption 2, there exists C > 0 such that

d
. 1 .
>0, (0,010 )] < (517U + VU ) )

=1
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Combining the previous two estimates we find that

1
Va1, - / VU xolU) dpiop < C / VU™ ,(U) dpion.
2/)e o

In view of the following lower bound, obtained by a Holder inequality,

—2/(r=2)

r/(r—2)
/IVUI’Xn(U)duon > (/ IVUI’an(U)du0D> (/ xn(U)duop> )
17 17 17

we find that

2/(r—2) 2/(1‘—2)
(/ IVUI"_zxn(U)du0D> < 2C</ Xn(U)d,uOD> < 2C,
17 (2

from which the result (a) follows.

For part (b), let us fix ¢ € C;°(0) and consider the unique solution ¢ € C°(0) to (47).
In the remainder of this proof, because all functions are functions of ¢ only, we use || - || to
denote the canonical norm on L2(d ). We first show that ) € H'(djiop). A Cauchy—Schwarz
inequality and integration by parts lead to

1ol 1l = /ﬁ Sxan(U)dion — /ﬁ (1 — Lop)t - ¥xu(U)dtion
- /ﬁ P UDdjion + /ﬁ V- Vo xa(U)) dbion

1
= / U xu(U)dpop + / IV 0> Xa(U)dpop — 5 / V2 Lop (xa(U)) dptop.
2 17 17

The last integral on the right-hand side converges to 0 as n — +oo by a dominated convergence
argument, since 1) is bounded, while Lop(x,(U)) = X (U)|VU|* + X,(U)(AU — |VU|?) con-
verges pointwise to 0 and |[VU|?, AU € L'(duqp) by assumption 2 and part (a). We therefore
obtain the bound ||||> + ||V, 0> < ||¥]|]|¢]| as n — +oc, which proves that ¢ € H' (djp).

To see that 1» € H'(|VU|" dugp) for any r > 1, we may assume without loss of generality
that » > 3. By manipulations similar to the ones used to prove the H' (11op) bound, we obtain

v Ul 6] = /ﬁ (1 — Lop)th - | VU] xa(U)dpion
- /ﬁ P VU dpon + /ﬁ IV, 6P IV U X U)dpon

+ /ﬁquw -V [[VU["xa(U))] dptop-
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The last integral can be bounded as

’/ﬁqud’ -V UVU‘an(U)] dpop

< ‘ /ﬁ BV -V [IVUI] xaU)dpion

+ \ [ 6V VUIVUI o
17

<1Vl ([[V [IVUIT ]| + 19V UIVU)) -

By part (a) and assumption 2, the last term in the above inequality converges to 0 as n — +o0,
while the other term is bounded. We therefore obtain, in the limit n — +o0,

11z2v0r auom + 1Va 2200 auon)
< [IVULIel + IVl [V (IVUD) |
< el (VUL + IV [V (IVUI)]) < +oo,

which concludes the proof of part (b).

In order to deduce part (c) of the result, it is enough to show that "V € L!(djuqp) for any
n € (0, 1). We do this by applying [23, proposition 5.1] and showing that, for any € (0, 1), it
holds Lop(e"V) — —oc as U — oo. Fixing 1 € (0, 1), a direct calculation shows that

LOD (CTIU)

D =~ - wIVUP + AU

the function on the right-hand side going to —oo as U(g) — +oo by assumptions 1(d)
and 2. (]

5.2. L2-bounds and the elliptic regularity estimate

We deduce here various L? estimates involving the operator A, as well as an elliptic regularity
estimate similar to the one in [17], from the estimates proved in section 5.1.

Lemma 3. Suppose that U satisfies assumptions 1 and 2. Then, for any ¢ € C(Z),

1
lag]l < 51 =], (53)
(L*Ap, ¢)| < ||(1 — D%, (54)
1
|(ALou o, ¢)| < EH(I —IDa|||[1L]. (55)

The extension of the same inequalities to functions in Ccofo(% ) (corollary 1 below) is
immediate since functions in this space are a constant shift of functions in C°(Z), and
Ac = Loyc = Lc = 0 for any constant function c.

Corollary 1. Suppose that U satisfies assumptions 1 and 2. Then for any ¢ € CSo(Z) the
estimates (53)—(55) are also satisfied.

Remark 13. Note that, by the definition of A given in remark 12, part (a) of proposition 3
readily follows from the above result by extending A to be a bounded operator on L*(dy).
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Proof of lemma 3. From an algebraic viewpoint, the proof follows the proof of [17,
lemma 1]. Let ¢ € CX(Z). We start by proving (53). By proposition 4, we know that
Y = A¢ € C°(0). For simplicity of notation in the arguments that follow, we introduce
<f’ g>n = <f’ an(H)> and ||fH% = <f’ f>n NOtiIlg thatw + (LHH)*(LHH)w = _(LHH)*¢’ we
obtain

115 + (Ll Lull, )y = —(LulD)" 6, ). (56)
First observe that (using that v is a function of g only, so that II(¢)x,(H)) = 1Ly, (H))
((LyID)*Lyllyp, ), = ||LHH¢||i2(HXn(H)dm + (Lyllp, Y Lyllx,(H)) =:T(n) + Tx(n).
Recalling IIt) = v, and using 2¢)Lyt) = Lu(1)%) as well as an integration by parts, we obtain
2T5(n) = — (%, LylIxu(H)) -
Now,
LiTIxa(H) = Ly (p'11 [x,(H)VU])
= —|VUIL [x,(H)] + p" (I [x\, ()] V*U + 11 [X)(H)] VU ® VU) p.

Applying lemma 2 and recalling that ¢ € C;°(0), we see that T(n) — 0 as n — co. On the
other hand,

—((LulD)¢, )y = —((1 = I, (LuII)IIxW(H)) — (¢, YLulIxu(H)) =: — T3(n) — T4(n),

where we used that [TLzII = 0 in the first equality. By the same reasoning used above to show
that T»(n) — 0 as n — oo via lemma 2, it also holds that T4(n) — 0 as n — oo. Putting these
estimates together and using Young’s inequality for products, we find that

2 2
W)”n = _||LHH7/’||L2(Hxn(H)du)
— (1 = I, (LulTy)x, (H)) — Ta(n) — Ty(n)
1
2 2

S M 2y, + 71— D21y,
+ ||LHH¢||i2(HXn(H)d/1) - Tz(n) - T4(l’l)
1

< 10 =MeIP + [Tat)]| + |Ta)],

where on the last line we used the fact that x,(H) € [0, 1]. The claimed estimate (53) follows
by taking the limit n — oo.
We next claim that

Vo e CHZ),  |ILallAg|| = [|ILuAg]| < [|(1 —IDg. (57

To prove this inequality, we use Young’s inequality to estimate 73 as
1
2 2
IT3m] < I =DM 201, nam + 5 1LV L2y,

<

N = N =

1
2 2
H(l - H)¢” + §||LHH¢||L2(1‘[XK(H)(1#)’
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where on the last line we used the fact that x,(H) € [0, 1]. Then,
ILaTT | Py g T 1017 = =T2(n) = T3(n) — Ta(n)
1 2 1 2
< 5”(1 —1Do[" + §‘|LHH¢HL2(HX,,(H)¢1#)
+ |Ta(m)| + |Ta(n)|.
The bound (57) follows after taking n — oo. Since IIA = A, this finally gives

Vo e CH(X),  [(LuAd, ¢)| = [(LuAd, (1 — ID¢)| = [(L'A¢, (1 — IDg)|

5 (58)
< || = IDgl”.
Finally, a short calculation shows that ALoy = —A, so that, for any ¢ € C°(Z),
1
[{ALoud, ¢)| = [(ALou¢, Llg)| = [(A¢,11¢)| < |1 — 1D [[LL]|.
This concludes the proof of the lemma. (]

We next turn to the elliptic regularity estimate. Note that the proof follows arguments similar
to those in [9], but with a slightly different application of the more general bound in assumption
2. We also refer the reader to [5, lemma 4] for a related result.

Proposition 5. Suppose that the potential U satisfies assumptions 1 and 2. Let ¢, € (0, 1),
Cy > 0 be such that the bound in (27) is satisfied and let € > 0 satisfy (28). Let C. be the
corresponding constant for this choice of ¢ in assumption 2, and set &. = 0 /2 with 1) defined
in (29). Then, for any ¢ € C;°(0),

2
ijl/}HLz(d/IOD) < 65H¢||[242(d#0D)’

where 1 € C.°(0O) is the unique classical bounded solution of (1 — Lop)y = ¢ as given by
proposition 4.

Proof of proposition 5. Since all the functions which appear in this proof are functions of

g only, and since the norm || - || coincides with the norm || - ||;24,,,) in this case, we use in this
proof the notation || - || for || - [[;2(4,0p)- We first prove that
‘ 2
Vo e CRO), ||[Vie|l” <&ld—Lop)gl (59)

We then conclude the desired estimate using a density argument afforded by lemma 2.
Fix ¢ € C°(0). Bochner’s formula gives

d 2
9360 = 32 el = 19 Vasl - (T VU@V
=
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Using assumption 2 with the choice of €, C. as in the statement of the result leads to
2 *
IVaell” <1V Vool + el VU@ Vel I? + C:[[ Vol . (60)

To control |||VU(g)|| V4!, we use the structure of the Gibbs measure y to write, for any
[ e o),

VU@ = (Vo(fH), VU@) + (f>, AU(@)) = 2(V,f, fVU(@) + (f*, AU(q)) .

With the previous inequality, the estimate (27) and Young’s inequality, we obtain, for any
ne€©,1—cy),

IFVYU@IP < (1 + DS YU@IP + 0~ IV f I + Callf 1%,
so that, by rearranging the previous expression,

—1 C
I YV@I* < = IV + =2 I (61)

The above estimate can be extended by density to any f € H'(iop). Now, if ¢ € C°(0), then
forall ¢ > 0 we define g¢ := /|V,¢[? + ¢ € H'(1op). Therefore, by applying (61) to g,

~1
2 n 2 C,
VU119l < IIVU@lecl” < T=o— V3ol + T el

Taking ¢ — 0, we arrive at the following inequality

G

——— ||V
e

-1
VUVl < 7= IViel +

Combining this estimate with (60) gives

2

C -1
IVl < 19 Vel + €+ =Y Wl 4 Vi

and, after rearranging the various terms and provided n(1 — ¢; — n) > ¢,

-1 -1
G
ViolP < (1- 1 VeVl (C+ — 2 ) Ivael?]
I3l < (1= =2 ) 195 Tl + (€ = ) 19l

Choosing 7 = (1 — ¢1)/2, and noting that

11+ V- Vel* = el + 21 Veell* + ||V - Voo
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the inequality reduces to

1 2C 4 -
936l < max {15 (et 22N} (1= o) o+ 93 Vel

=&

1+ ;- V| (62)

Since —Lop = Vf] - V4, this indeed provides the claimed bound (59).
Now consider ¢ € C;°(0) and ¢ € C;°(0) the unique classical bounded solution of (1 —
Lop)y = ¢. Plugging ¢ = ¢ x,(U) € CX(0) into (62) gives

Vnz1, || V2xa )| <&l = Lop)@xaU))|

In view of lemma 2(b) and assumption 2, we therefore obtain, by dominated convergence,

Tim | V2@ )| = [[V2u| < &l¢f?
= & lim [[(1 = Lop)@xa(U)|,

which concludes the proof. U

With the previous estimate at hand, we conclude this subsection with one final estimate.
This is the final ingredient needed in the proof of proposition 3 parts (b) and (c).

Lemma 4. Let U satisfy assumptions 1 and 2, and let 1), be as in (29). Then,

Vo e Coo(Z),  [{ALu(1 — D¢, ¢)| < e |(1 — ID|[[[ L] (63)

Proof. Let ¢ € CJ(Z). Recall that Lop = =V, - V4. A direct calculation yields

(AL~ DI = ((p- V2 = A) (14 V: - v,) 'L

Hence

|(ALu(1 — IDg, ¢)| = (1 — ID¢, [ALu(1 — ID]"¢)|
= (0= (V2 - 2,) (14 ;- v) )

<l =0 [[ (- V2 = A) (1475 9,) 'TH|.
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Since ¢ = (14 V- V,,)‘1H¢ € Ci°(0) is a function of the variable ¢ only, we have, from
the structure of y,

2

||((P vq)2 ’l/)H ZP:PJ qlq,,l/} Ay

lj_

NS /plp,pkp[ (22,,8) (2, )

i,jkl=1

d

-2y <pip] o Aqw>

ij=1

=laplP+ D+ 3+ > -2 Y]

i=jk=0  i=kj=( i=l,j=k i=j=k=(

d
x /%Pipjpkm( 02,00) (8240 dpt = 237 (P02, A1)
i=1

=—\|Aqwu2+2 / PP [ W)z

i,j=1

@) () | w23 [ A
—ZZ o2, + Z (0. 30) — AP

= 2||V2y || < 2¢.|1g)%,

where the last inequality follows by proposition 5. Also, in the above, we can calculate the
terms involving products of the p;’s since ¢ is a function of g only, and p is a product mea-
sure with a standard Gaussian in p as its p-marginal. In particular, along the i = j terms of
the final summation we recover the fourth-moment of the Gaussian measure in p (i.e. a coef-
ficient of 3), while for the i # j terms of the final sum we recover the variance, which is 1.
It thus now follows |(ALy(1 — ID)¢, ¢)| < ¢|||| || = n. ¢ || ||, as
claimed. ([

5.3. Proof of proposition 3
We conclude this section by giving a proof of proposition 3. This is the last theoretical step in
the proof of our main general results, namely theorem 1 part (a) and theorem 2 part (a).

Proof of proposition 3. Part (a) of the result is a direct consequence of lemma 3 and a
density argument. Let us next turn to part (b) of the result. For any ¢ € C;°(Z") and n € N,
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we define (recalling the definition (45) for x,(H))
PO = xtiPo. 2o~ [ sap Po=o- 20 (64)

Consider now ¢ € CZy(Z). Since AP p = Ap for any p € C(Z), and recalling that
4Pi¢ = LP,¢ = P.Lp € C([0,+00) x X)) by hypoellipticity [32],
% <A32LP7¢’ f@lp?@ =T1+T1T,+Ts,
with
T = (AILPO)Xa(H)]. PP 9),
T, = (AP P}¢. (LP9)xa(H)) .
Ty = — 2 [AP]¢] P [(LP.@)xa(H)] .
Using the identity L(fg) = fLg + gLf + 27V, f - Vg, we can write
Ty = (ALZ"Pi§, P P¢) — (AIPOLxu(H)), PP} )
— 2y (AIV,(Pi9) - Vpxu(H)], PP )
=T} + Ri(n) + Ry(n).
In order to help estimate R,(n), note that, for f € C*(%Z) and g € C°(X),
d
A(Vpf - Vpg) = => (1= Lop) ' 01110, (V,f - Vg)1.
i=1

Next, using nearly identical arguments to those in lemma 3, observe that the operators 7; =
(11— LOD)”B;‘I_ are bounded on Lz(duOD) with norms smaller than 1 since

d d

ST =3 (- Lop) "9, [(1 — Lop) '3}’

i=1 i=1

d
= —Lop)™" (Z a;,.aq,) (1 —Lop)™
i=1

= —Lop(1 —Lop) > < 1.
On the other hand, integrating by parts in the p variable produces
[0y (Vof - Vpg)] =[SV (V)] =L [f(pip- Vg = piddpg = Op0)] -

Putting these estimates together with lemma 3 and ||P;¢||~ < ||¢||~, We can estimate R;(n)
and R,(n) as

Ri(m)| + [Ra)| < e,llgll | 2 Pio || < cull 0%
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where we used the fact that y,, € [0, 1] and introduced
d
1 1 2 ’ 2. N
&y = S I + 29D ||pi (P* = d = 1) xo(H) + pip* ;D)
i=1

By construction of x,(H) and the moment estimates of lemma 2, a simple argument based on
dominated convergence shows that ¢! — 0 as n — co.
Turning to the term 75, a similar argument yields

Ty = (L'AP P!, PHPlo) — (AP P, PioLx.(H))
— 27 (AP P,V (Pid) - V pxa(H))
= (L'AP* P!, PPIo) — (AP P, P oLy, (H))
— 27 (AP P!, (Pid)(p- V), — Ap)xu(H))
—: T} + Ry(n) + Ra(n),
with |R3(n)| + |R4(n)| < c2||6]|%, where ¢2 — 0 as n — oo. Finally, since & [(LP,¢)x,(H)] =
P[P,pL* x,(H)], the term T3 can be estimated as

1 1 * n
T3] < S 1PLlll| @l IL X (DI < Allel

with ¢§ — 0 as n — +o0 in view of lemmas 2 and 3.
It remains at this stage to treat the terms 7 and 75. Using lemmas 3 and 4 and the coercivity
of ALyII (granted by (25) and extended to functions in Lz(du) by a limiting argument),

T} + T = (ALyILZP P}, P P¢) + (ALy(1 — I PP}, PPl ¢)
+ v (ALoy PP} ¢, P P¢) + (L'AP P}, PP )
P L pn 4|12 v - 1 pn 1 pn
< = TP PO + (e 3 ) 10 = 2 Pl L P

+]|d = I 2Pg|.

Combining these estimates, integrating from s to ¢, and then taking n — co produces the
following estimate

' P 2 gl
AP6.Po) < (AP6.P0) + | [—Hlmpm + (n+ ) 10 = PG| TP | du
+ / It = IDP,|1* dur,

where we used that P"¢ converges to P,¢ in L*(dp) by the dominated convergence theorem
since P ¢ converges to P,¢ pointwise and both quantities are bounded by ||¢||~. This concludes
the proof of part (b).
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For part (c), we introduce ¢ = P;¢ € Cgi,(Z). Forany n € N,
d *
aHPtQSHiZ(W*Xn(H)d#) = 2/%1/)(L7/})W Xn(H)d,u

=2y [ [VuPwoan+ [ L) W
X X

(65)

The second integral on the right-hand side of the above equality can be estimated as follows
since W* € W, 5(L"):
/ L (%) W xu(H)dp = / AL W xa(H)] du
X X

= /X YL W)X (H)dp + /X VW (L xa(HD)] dp + 2 /X YV,W -V, Ixa(H)] dp

< /X Y (—aW* + B)xa(H)du + /X VW [L*X(HD)] dp + 2 /X YV,W -V, [xa(H)] dpa

Since W* is strongly integrable, lemma 2 implies that the last two integrals on the last line
above converge to 0 as n — oo. To see why, let us for instance show how to establish this fact
for the second integral on the right-hand side of the last inequality. Using Lj;x,(H) = 0,

L xu(H) = v [(—|p|* + d)x,(H) + |p|*X)|(H)] -

Since W* is strongly integrable, there exist C € Ry and 6 € (0, 1) such that
’ /%WW* (L xa(HD)] du’ < Cllvl% /x (@D + X ED]) (1 + [p)e™" dg dp.

Given the specific form of the Hamiltonian H, there exists Ce R4 such that
‘ /%«/FW* (LX) du‘ < Clvl /Z (D] + X D]) e/ dg dp.

Now, lemma 2(c) ensures that e °" € L!(dgdp), so that the right-hand side of the above
inequality converges to 0 as n — oo by the dominated convergence theorem. The other term is
dealt with in a similar fashion.

The claimed result in (c) then follows by integrating (65) in time, and passing to the limit
n — +o00 (using the monotone and dominated convergence theorems). ]
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