2019-XX-XXXX

Implementation Methodologies for Simulation as a Service (SaaS) to develop ADAS

Applications

Author, co-author (Do NOT enter this information. It will be pulled from participant tab in MyTechZone)
Do NOT enter this information. It will be pulled from participant tab in MyTechZone

Copyright (© 2019 SAE International

Abstract

Over the years, the complexity of autonomous vehicle development
(and concomitantly the verification and validation) has grown tremen-
dously in terms of component-, subsystem- and system-level interac-
tions between autonomy and the human users. Simulation-based test-
ing holds significant promise in helping to identify both problematic in-
teractions between component-, subsystem-, and system-levels as well
as overcoming delays typically introduced by the default full-scale on-
road testing. Software in Loop (SiL) simulation is utilized as an in-
termediate step towards software deployment for autonomous vehicles
(AV) to make them reliable. SiL efforts can help reduce the resources
required for successful deployment by helping to validate the software
for millions of road miles. A key enabler for accelerating SiLL pro-
cesses is the ability to use Simulation as a Service (SaaS) rather than
just isolated instances of software. The primary benefits ensue from the
in-parallel processing of multiple scenarios or tests using cloud or mul-
tiple cores especially to more systematically create “what-if analyses”
thereby reducing both development time and cost. Here, we present
the workflow of our utilization of SaaS methods (provisioned by Meta-
moto) and our explorations in this domain using exemplar ADAS sce-
narios. Additionally, we highlight our ability to perform parametric
sweeps over variables such as environmental conditions, actors in the
scene, etc. hence performing tests over a variety of scenarios includ-
ing edge cases. The goal of our efforts is to examine viability and
ease-of-use of SaaS (Metamoto in a co-simulation mode) to support
Software-in-the-Loop co-development and functional reliability within
MATLAB, ROS and Python frameworks.

Introduction

Interest in autonomous vehicles has grown steadily in the mobility
industry owing both to its potential to mitigate the on-road fatalities
and injuries as well as to maximize return of investment on the mobil-
ity infrastructure [1]. However, a stark contrast between autonomous
vehicles relative to preliminary versions of vehicle automation or au-
tomation in fields such as robotics or aerospace, is the safety and relia-
bility imperative. There are various functionalities such as perception,
localization, planning and control (often provided by multiple ven-
dors) that come together in an autonomous vehicle at the component-,
subsystem- and system-level to permit it to drive without human inter-
vention partially or fully (SAE L4-L5 operations).

Hence rigorous verification and validation is required to ensure cov-
erage of various scenarios that excite and exercise the numerous in-
teractions that support autonomous operations between these multiple
functionalities occurring at the component-, subsystem- and system-
levels. Quixotically, rigorous and vigorous pre-deployment testing

poses a quandary because developers rely on the results from test-
driving autonomous vehicles extensively in real traffic and analyze
their performance so that the systems can be evaluated and improved
[2]. Obviously, the notion that a vehicle needs to be tested for its self-
driving for all possible scenarios before deployment is unreasonable
given their great complexity and the diversity and unpredictability of
conditions in which they need to operate.

In contrast, studies show that people’s acceptance of autonomous ve-
hicles will lower significantly if early deployment is achieved because
people’s trust will go down even when in total, the number of accidents
reduce because humans tend to hold higher standards for automation
than for themselves [3]. This leads to further skepticism with this ap-
proach since problems such as inclement weather and edge case sce-
narios pose challenges for autonomous vehicles (as well as for human
drivers), and autonomous vehicles might perform worse than human
drivers in some cases, particularly at initial stages in the scenario of an
early roll out [4]. Companies such as Tesla [5] try to combat this issue
through the use of shadow mode simulation which is the process in
which the vehicle’s computer continues to make mock decisions (that
are not applied to vehicle operation) whilst on-road which is then com-
pared by developers with the actual decision made by the driver for
analysis and improvement [6]. This indeed serves as an effective alter-
native except for the fact that it is only advantageous and affordable to
large automotive companies with a fleet of vehicles already operating
on road which forces many organizations to seek out other forms of
verification and validation.

There are various software development cycles each organization
follows but most of them are derived from the V Model [7], which over
the years has been modified to suit their own requirements and goals.
The basic structure involves identification of overall functional require-
ments of the product that are then separated at a subsystem level into
meaningful clusters of operation whose requirements are subsequently
derived. Exemplar cases of these so called subsystems could be per-
ception, localization etc. and the components/requirements would be
the sensors and the processing algorithms that help extract informa-
tion and provide context for actions from the incoming data. Once the
necessary functionalities on a unit level are developed and tested for
each individual subsystem (or sub-subsystem), the integration of those
subsystems into one product is commenced post which validation is
conducted at a product level. The time frame during this development-
validation cycle is a crucial time to deliver a reliable product and there
are various methods which are utilized to validate and accelerate this
process. Autonomous vehicles, as stressed upon above, need to be
tested extensively for their reliability in a more stringent way than con-
ventional automobiles, considering the quantum of electronics, com-
puting and software that goes on to it. This would be an extension
of the validation process that is already being carried out on vehicles

considering the driver to be in the loop. Although existing verification
methods for partial automation/ADAS might look tantalizingly close
to what it would take to achieve complete autonomy, it is not the case
since there is no fallback (driver) in case of failure [8]. According to
several studies, in order to validate the catastrophic failure rate of a
vehicle fleet one must conduct at least a billion hours of testing and
possibly even test for repeatability of the vehicle’s decisions multi-
ple times to achieve statistical significance [9]. This further assumes
that the testing environment is highly representative of real-world de-
ployment, and that circumstances causing mishaps arrive in a random
non-deterministic/natural manner. Building a fleet of physical vehicles
big enough to run billions of hours in representative test environments
without endangering the public is impractical. This is exactly a place
where extensive simulation can help the project timeline and develop-
ment cycle by providing the acceleration in the development process
[10].

Simulation cuts the development time and cost of autonomous ve-
hicles and allows for checking the behavior of autonomous vehicles
in a huge number of scenarios varied by environments, system con-
figurations and driver characteristics. It does not make proving ground
tests obsolete, but it can help minimizing the amount of proving ground
tests and limit it to only verify the simulation results and for certifica-
tion measurements. Field tests will contribute with further validation
insights, which derive from unexpected driving situations and retroac-
tive effects under real driving conditions. Simulation plays an essential
role in the development and testing of autonomous driving software
without which the huge number of tests and verification procedures
can not be managed. Because simulation is conducted in a virtual en-
vironment, it continues to be faster, less expensive and provides more
insights into the underlying physics than physical prototyping. It is a
practical way to analyze autonomous vehicles’ performance over the
billions of miles of test driving that is required as discussed above. As
aresult, vehicle developers can: a) accelerate time to market, b) reduce
costs and ¢) improve product quality [11].

This virtual testing methodology is done by using simulated sen-
sors, a vehicle dynamics model and simulated scenarios. The function
modules are tested by Software in Loop (SiL), Hardware in the loop
(HiL) or Vehicle in the Loop (VeHiL) methodologies. The accuracy
of the results generated from these testing methodologies depend upon
the accuracy of the sensor data being generated and the fidelity of the
vehicle model etc.[12]. Over the years the software tools that have
been developed have gotten more and more closer to an accurate rep-
resentation of reality, for example certain software have good vehicle
dynamic models, certain software are good at generating perception
data for ground truth analysis of the perception systems etc.

There are two vital steps as part of the validation cycle, namely Soft-
ware in the Loop (SiL) and Hardware in the Loop (HiL). In SiL, the
software is tested against an analytical model that represents the system
and the subsequent data required such as sensor feed and environment
is attained from a co-simulated environment in a synchronous manner.
This way we can validate the functioning of our algorithm using the
synthetic data generated and how our controller performs in a holistic
manner. In HiL. we have the analytical/mathematical model that repre-
sents the system (typically high fidelity) and the controller running on
real time systems connected via appropriate interfaces which is then
used to prove the merit of the software through it’s real-time reliability
and performance metrics. Here the data in terms of sensors and envi-
ronment is often either obtained using a highly realistic environment
simulator running in a soft-real time mode in conjecture with the vehi-
cle model running real time or real world data that has been collected
during test drives which are then recreated for virtual testing.

Software development for autonomous vehicles is a multi-step pro-
cess and it is difficult to test each iteration physically on hardware.
Software in Loop (SiL) simulation is utilized to accelerate the software
development deployment and in the process making the software reli-
able. SiL efforts can reduce the development hours, time and money
but at the same time validate the software for millions of road miles

in multiple scenarios thereby providing the much-needed confidence
to deploy it on an actual vehicle. To perform SiL testing, organiza-
tions use software simulators to train and test the autonomous vehicles.
Simulators serves as a digital twin to emulate real-world scenarios and
components that are equipped on the vehicles such as drive-by-wire
systems and sensors. In any simulation-based verification and vali-
dation framework, the performance (fidelity, accuracy, reliability and
robustness) of two classes of entities are critical for success:

e Environment — The dynamic environment within which the ego
vehicle operates, containing physical entities (pedestrians, roads,
buildings, traffic elements etc.) together with representative
physical behaviors to create an adequate similitude of reality

e Ego Vehicle — The digital twin of the relevant vehicle under
study/system-under-test whose physical behaviors under the in-
fluence of the sensor-based functional interaction-response algo-
rithms are being simulated and evaluated.

As discussed earlier, simulation provides us with the ability to test
across a plethora of variability (simulation parameters) amongst the
two relevant factors mentioned above. However, testing scenarios a
single instance at a time varied by the simulation parameters in each
instance, is still an incredibly inefficient way to test autonomous ve-
hicle software and modern technologies such as cloud computing and
parallel processing solve this problem for us with relative ease [13].
This gives rise to the concept of utilizing Simulation as a Service
(SaaS) which accelerates the software development process exponen-
tially. This is a method to architect simulation resources in the cloud,
so that a plurality of users can access them as and when required [14].
The resources are managed in the cloud by a service provider who
oversees the automatic, elastic (ad-hoc), and reliable provisioning of
the computing resources demanded by the user(s). These characteris-
tics of SaaS enables efficient management and utilization of resources,
hence, achieving cost reduction [15]. The purpose of this study is to
introduce the reader to the relevance of SaaS in an autonomous vehi-
cle software development process and drive the point further using an
exemplar implementation of the same.

Here on out, the study is divided into the following sections: Section
3: Simulation frameworks for autonomous vehicles, provides a com-
prehensive view on the requirements of a simulator and also serves as
a literature review for the current state of the art in simulation soft-
ware. It further goes on to elaborate on the importance of SaaS and
its applications. Section 4: Motivation, is to educate the reader on
the intent behind the study which is presented. A little information
about the state of the art research instrument at our disposal is also pre-
sented. Section 5: Tools of Study, provides a review of the tools uti-
lized, such as Metamoto, Docker, Robot Operating System (ROS) and
MATLAB/Simulink. This information is meant to provide context to
the reader regarding the advantages each tool presents and the reason-
ing behind their utilization. Section 6: Application Programming In-
terfaces, is presented to provide understanding regarding the workings
of the connectivity bridges between the tools utilized and their under-
lying operational complexity. Section 7: Methodology/Deployment, is
the heart of the study, where the working of the SaaS workflow adopted
has been presented. The scenarios used to deploy the an ADAS appli-
cation example using the chosen workflow have also been explained.
The results of the simulation and the power of using SaaS have been
quantified in Section 8: Results. Section 9: Summary, succinctly para-
phrases the study into one section and in the final section, Section 10:
Future Work, the possible directions to take this work further have been
summarised.

| Users

b ’ A Y

l Simulation as a Service |

1 4

MSaaS ‘ Model as a Service ‘
r'y H

| Modelling as a Service |
A r

| Softwarcas u‘Servic‘e sus) |
hd !
| Plntﬁc:nn as a Service (PaaS) |
r'y
| Infrastructure as a Service (laaS) |
A

Conventional
Cloud
Services

R ——

R

Physical Infrastructure

Figure 1: Developed Workflow [14]

Simulation Frameworks for Autonomous Vehicles

In the previous sections we discussed the merit of simulation and
its role in the development of autonomous vehicles. The discussion in
this section centers around the ideal qualities of a simulation frame-
work/simulator that is desirable to serve appropriately to best bring out
the qualities enlisted in the previous sections. This section is also in-
tended to serve as a brief review of the state of the art in terms of the
widely used and appreciated simulators in this field. In any simulator,
there are certain features that play a very important role in its function-
ality and versatility:

1. Time — Time stands as an essential independent variable while
describing the dynamical systems in any simulator. The time in
a simulator can either be defined as a continuous model or a dis-
crete model [16]. Generally, the real-world scenarios are defined
as a discrete model where the states change at points in time,
rather than a continuous model.

2. Level of detail — Depending upon the computation ability of a
simulator, the level of detail can be categorized as macroscopic,
mesoscopic or microscopic. A macroscopic model describes ob-
jects and their activities and interactions at a low level of detail.
A mesoscopic model generally represents most objects at a high
level of detail but describes their activities and interactions at a
lower level. Whereas a microscopic model describes most objects
and their interactions at a high level of detail. [16]

3. Probabilistic model — Probabilistic model plays a major role
while reproducing specific conditions or events. The probabilis-
tic model can further break into deterministic model or stochastic
model [16]. Simulators’ ability to reproduce both these models
with ease determine their flexibility to reproduce various complex
events.

4. Design methodology — The simulators ability is also checked
by the ease of designing scenarios. Macroscopic simulators
implement models that can be programmed in a progressive
way, while microscopic simulators can be designed according to
object-oriented standards [16]. In some simulators agent-oriented
method of designing can also be applied [17].

Simulator State of the Art

The following literature review talks about some state of the art au-
tonomous vehicle simulation platforms available currently (commer-
cially or open-source) and is used by corporations and institutes around
the world for software validation.

Simulation was previously used in the automotive industry, specif-
ically for vehicle dynamics. Some famous examples are: CarMaker

[18], CarSim [19], and ADAMS [20]. Autonomous driving requires
more than just vehicle dynamics, and factors such as complex envi-
ronment settings, sensor configurations, and mixed-traffic simulation,
must also be considered. The following list is intended to be a compi-
lation of the most prominent simulators currently:

1. CARCRAFT - Developed by Waymo [21] for their in house
simulation purposes, it was initially used to develop scenarios
replicating situations where the driver had to take actions whilst
on road testing and to analyze and rectify the software. This pro-
cess however became multifaceted and grew into developing vir-
tual models of various cities. The strengths are that it a) has a
detailed map of the world, along with a physics model of dif-
ferent objects including tires and road and b) gives an option to
provide a sensible range of values for the behavior of the other
agents on scene using which the software creates a permutation
& combination of them, thereby creating different scenarios that
replicate difficult situations that tests the car. Its drawbacks lies
in the fact that its simulation environment does not cover the per-
ception problem (i.e. it does not use realistic graphics) [22].

2. CARLA - CARLA (Car Learning to Act) is an open source sim-
ulator for self-driving cars developed in partnership between Intel
Labs[23], Toyota Research Institute [24] and the Computer Vi-
sion Center, Barcelona [25]. CARLA is a service oriented, high
fidelity, realistic graphics environment built on top of Unreal En-
gine. The simulation environment allows testing from perception
to vehicle control. The high points of CARLA are that it has a) a
classic integrated pipeline that comprises a vision-based percep-
tion module, a rule-based planner, and a maneuver controller b)
a deep neural network that maps sensor inputs to driving com-
mands, trained end-to-end via imitation learning and c) provides
photo realistic rendering with the help of game engines such as
Unity [26] and Unreal Engine [27]. The drawback of this sim-
ulator is that it does not utilize HD Maps as a foundation for
simulated arenas [28].

3. Autonovi-Sim by UNC Gamma — A novel high-fidelity simula-
tion platform for automated driving data generation and driving
strategy testing. Its strengths are that it a) enables creation of dy-
namic traffic scenario, numerous vehicles with unique dynamics
b) allows for alteration of environmental conditions, other actor’s
behaviors (such as cyclists), etc. Its weakness are that it lacks
calibration information to duplicate specific sensors and sensor
configurations and its present driver models are limited to hierar-
chical, rule-based driving approaches [29].

4. Apollo - It is a software platform to develop automated driving
software that includes a simulation framework. Strengths include
a) having an HD map & localization (based on GPS, IMU, maps),
b) accurate perception sensor data of the surrounding based on
Baidu’s [30] big data and large data base of real world labeled
driving data, c) a planning system containing prediction, behav-
ior, motion logic and d) an open data platform consisting of driv-
ing source codes. Despite its exhaustive capabilities, it’s weak-
ness lies in the fact that it relies completely on real world data
and the simulation aspect is more of a visualizer [31].

5. TASS-PreScan - A platform consisting of a GUI-based pre-
processor to define scenarios and a run-time environment to exe-
cute them. Strengths such as a) interface to link with MATLAB
and Simulink to evaluate the developed algorithms, b) flexible
interface to other vehicle dynamic model software (e.g. Car-
sim) and HIL simulators and hardware providers (e.g. dSPACE)
whereas weaknesses such as a low computational performance
even at low update frequencies[32].

6. Metamoto - Metamoto is a simulation software which can be
used to generate synthetic data for training purposes as well as to
integrate our sensor and control models with pre-existing models
in the software. It has several strengths such as a) wide variety
of commercially available car models, b) configurable sensor pa-
rameters for camera, RADAR, LiDAR with a provision to add

noises and distortion to the signal, c) easy to use GUI and well
structure workflow, d) ability to interface with external codes via
Docker containers, thereby it can be interfaced with ROS, Python
codes, etc. and e) cloud based simulation platform. Its short-
comings lie in the fact that it has a low fidelity vehicle dynamics
model [33].

7. COGNATA - Cognata simulator specializes in testing and eval-
uation of self-driving cars through high fidelity, realistic graph-
ics simulation. Their platform uses artificial intelligence, deep
learning, and computer vision to provide the only solution capa-
ble of validating automated vehicles with unlimited scalability.
The strengths of this simulator are a) connectivity with MAT-
LAB/Simulink and ROS for algorithm development, test, and
analysis, b) use patented computer vision and deep learning al-
gorithms to create an entire city-simulator including buildings,
roads, lane marks, traffic signs, etc., and c) its real-time SDK
enables simple integration between the simulator and customers’
AV software stacks. However, over reliance on artificial intelli-
gence for new sensor and map creation can lead to unforeseeable
errors that might arise due obscurity of the machine learning al-
gorithms[34].

Importance & Uses of SaaS

Automotive simulation is a highly data intensive enterprise. There
are a multitude of sensors such as ultrasonic, GPS, IMU, RADAR,
cameras and LiDAR, which need to be simulated. The environment
in which the ego vehicle is placed in also has many variable param-
eters including but not limited to traffic and pedestrian flows, traffic
lights, road conditions, weather conditions, etc. Creating a test matrix
according to our application and then deploying those tests sequen-
tially can take days to complete [35]. SaaS provides the avenue of
parallelization and automatic scheduling of the test runs by allotting
compute resources on the go (elastic allocation), thereby saving pre-
cious development time. It can become an indispensable tool in any
domain which is data intensive like crowd simulations, mining robots,
warehousing robots, autonomous farming and naturally the automotive
industry.

Particularly, for the target application of autonomous vehicles, SaaS
brings the following features as an arsenal which helps reduce the time
between development and deployment dramatically:

1. Scalability: The ability to run millions of tests in a single cycle,
ultimately driving billions of virtual test miles, to identify iso-
lated outcomes, performance boundaries and system tolerances.

2. Parameterization: The ability to execute simulations across
a spectrum of environmental (weather, traffic, road conditions,
pedestrians, etc.) and hardware (vehicle properties, sensor place-
ment, latency, sensor settings, etc.) parameters also called a pa-
rameter sweep.

3. Continuous test and integration: The ability to allow for seam-
less regression testing, agile workflows, version control, data-
tagging and more, every time there is a change in vehicle soft-
ware, sensors and/or infrastructure.

Motivation

The Open Connected-Automated Vehicle (OpenCAV) [36] project at
Clemson University International Center for Automotive Research [37]
is developing a novel modular, open-architecture, open-interface, and
open-source-software based research instrument comprised of: a) aug-
mented reality (AR) based simulation to facilitate Simulation- based-
Design (SBD) of hardware (e.g. sensor-suites) and software (e.g. algo-
rithms) for a range of Connected and Automated Vehicle (CAV) appli-
cations; and b) physical real-time hardware-in-the-loop validation on

a full-scale vehicle retrofitted with advanced sensing, drive-by-wire,
perception, connectivity, computation, and control modules. We have
an autonomous driving capable Chrysler Pacifica car equipped with an
array of sensors including cameras, RADAR, LiDAR, high accuracy
GNSS system with RTK correction , a complete drive by wire package
and a high capacity computing platform that makes it an ideal platform
to develop and validate algorithms for autonomous driving.

The motivation for this study stems from our own efforts to reduce
the development time and risk for the successful implementation of
the software to be deployed on to the OpenCAV. This validation of
our algorithm is set to be in a virtual environment where we have a
digital twin of the car and scenario of our test circuit in Metamoto
for our virtual validation process [38]. The intent was to utilize the
Saa$S capabilities of Metamoto in order to conduct mass simulation in
a parallel mode on cloud. The study evolved to be a summary of our
findings and intends to motivate researchers and professionals in this
field towards using SaaS and serve as a starting point for the reader to
pursue the same.

DIGITAL TWIN / SIMULATED WORLD REAL WORLD
Simulated World/Real Vehicle Dynamics 0On Road Driving
Yeddoze HIL Vehicle Simulator Real Vehicle

Real world testing,

Environment model Ly ' ot igelity Vehicle Model OpenCAVvehicle ~ [—p| Validation and data
and sensor model, low collection

fidelity vehicle model (Chrysler Pacifica upfit by

(dSPACE SCALEXI0) et (Testing grounds,

| | sanctioned roads, etc)
Actuation Control

HIL Controller Real Controller

HIL Setup / yping Electronic Control Unit of
Hardware Vehicle
(dSPACE MicroAutobox) (New Eagle By-Wire Kit)
r'y 'y
1

Autonomy

Embedded Compute Platform

) d ff Spectra ECU

Software: Autoware.Al
Middleware: ROS/Python/C++

Data Collection and Processing

High Performance Compute On Board Data Storage

Cluster, Parallel processing, High performance in-vehicle
GPU accelerated simulation data storage for offline
processing and analysis

T

Figure 2: The overall software development pipeline of the OpenCAV project

| 'K

Figure 3: The OpenCAV vehicle in comparison to its digital twin

Tools of Study

In this section, background is provided regarding the tools used for
this study. Although we use particular tools and methodologies for our
study, the motivation however is intended for it to serve as an intro-
duction to the importance of simulation and particularly SaaS and its
strengths in the autonomous vehicle software cycle. The details of the
tools provided here only serve as examples that helps us to shape the
direction of this study in a meaningful form.

Metamoto

Metamoto, out of the box comes with an inbuilt way-point controller
and obstacle detection avoidance package. Different controllers and
custom sensor models can be integrated with the simulation engine via
the System Under Test (SUT) methodology.

SUT is an isolated environment that runs independently to inter-
face with the simulation engine having its own operating system and
packages that are essential for this purpose and is implemented using
Docker images. This SUT establishes the interface between the simula-
tion engine and our code via gRPC (Google Remote Procedural Call).
This interface is responsible for subscribing to sensor data of the sim-
ulation and publishing the control commands back to the engine.The
SUT runs our code synchronously with the simulation engine using
the generated APL. It is a server-client based setup where the SUT acts
as server for control related activities and Simulator acts as server for
data, map and reports.

Metamoto provides three different version of SUTs for running con-
trollers:

e Native API through which we can develop controllers in Python
and C++.

e ROS based SUT which interfaces with the ROS master, convert-
ing data in gRPC format to ROS topics and vice versa.

e Autoware based SUT which is an extension of ROS based SUT
where the in built algorithms of Autoware.Al are used to perform
various autonomous operations.

Deploying SaaS through Metamoto

To deploy the simulation workflow through the SaaS paradigm,
Metamoto was used. It is based on a public cloud architecture, which
means that services are provided to the end user over the internet. The
front-end of the cloud is a browser-based interface, where one can cre-
ate the test matrix for a given scenario and deploy the simulation(s). It
also consists of Designer and Analyzer applications, which are used to
create the actual simulation environment and to analyze and debug the
end results, respectively. The back-end components (the actual cloud
computing infrastructure and the software which provides the service
with elasticity and reliability) is maintained and updated by Metamoto
and is a black box to the customer. In these broad measures, it can
be said that Metamoto achieves the three defining hall-marks of Saa$S,
which have been defined in section 3.2: Importance & Uses of SaaS.

The controller code, which is called a ”System Under Test” is de-
ployed to the simulation via Linux containers (Docker). These control
algorithms can be scripted in languages like Python/C++. Furthermore,
Metamoto provides functionalities to use ROS as a middleware, which
again opens up a world of possibilities that can enable rapid & robust
development of software, which proves ideal for a research setting like
ours.

Google Remote Procedural Calls

Metamoto utilizes gRPC [39] — Remote Procedural Call developed
by Google using their Google Protobuf architecture. Google-Protobuf
[40] — a way to serialize data structures, which is language agnostic that
can be used to communicate between different programming languages
at the same time. gRPC acts as the link between the simulation engine
and the user developed codes in Metamoto.

Docker

Docker [41] is an open platform for developing, shipping, and run-
ning applications. It provides the ability to package and run an appli-
cation in a loosely isolated environment called a container. Containers
run directly on the machine kernel and don’t require any hypervisor
which makes them lightweight. One can run many containers at once
on their machine and have near native performance of the host ma-
chine [42]. These functionalities of Docker have made it very popular
amongst developers as it aids in Continuous Integration and Continu-
ous Development (CI/CD) cycles immensely. In the presented method-
ology, the SUT is developed and deployed as a container which is then
pushed to the Metamoto registry to be used as a controller or sensor by
the simulation engine.

Robot Operating System

Robot Operating System (ROS) [43] provides a flexible framework
with numerous tools, libraries and conventions that aim to simplify the
task of creating complex and robust robotics software. It acts as a mid-
dleware to communicate between different sub-systems of the robots
to understand and solve the given tasks. At the lowest level, ROS of-
fers a message passing interface that provides inter-process communi-
cation. ROS is an industry standard tool, with most commercial sen-
sors already having ROS drivers. This gives an advantage of using the
messages encapsulated for these commercial sensors and write con-
trol algorithms for deployment. ROS/ROS?2 is a vital component of
the robotics/AV industry. Tools such as Autoware.Al [44] and Auto-
ware.Auto [45], which are integral in driving autonomy forward are
based on ROS. Developing code to run on ROS, enables one to deploy
the packages faster and eases the transition of software from simulation
to reality.

MATLAB/Simulink

The ease in use of MATLAB/Simulink [46] and its plethora of tool-
boxes provided across multiple domains has made it a popular tool in
engineering (especially research) applications. Recently, MathWorks
developed a ROS Toolbox [47] which provides an easy and convenient
GUI based approach to create ROS nodes. Their custom message type
generation tool has been utilized to access certain data generated by the
Metamoto engine, since Metamoto uses custom message types for few
topics which are not part of the standard library of message types that
come along with ROS. The control algorithm created as a Simulink
model can act as a node connected to the ROS Master and publishes
the vehicle control commands to it. This data is then utilized by the
Simulation engine to propagate the simulation.

Application Programming Interface(API) / Mid-
dleware

For quick debugging, Metamoto has provided a utility called System
Under Test Connector (SUT Connector) which enables the code to be
run on a local system while connected to the simulation engine. Thus,
a simulation instance happens between the local host and the engine
running on the cloud. This facilitates quick development/validation of
algorithms and once the debugging has been completed, this container
is pushed to the cloud for running simulations under various scenarios.

Following subsections briefly explain about the functioning of these
three bridges and the efforts required from the developer to use them
for code deployment:

Native API

A base Docker image is made available to all users of Metamoto,
which needs to be pulled from their registry and built. Building this
installs all the utilities required to run simulations and also installs the
SUT Connector utility. The requisite commands to launch said utility
are provided by Metamoto. This establishes the connection between
the local host and the cloud. This bridge supports the development
of perception & control algorithms on C++ and Python using gRPC.
Metamoto provides the code wrapper that let’s the data in the gRPC
format to be read in Python or C++ using the respective .proto files.
This API also contains the code to initialize server on our controller
side to pass the vehicle commands and data bus to receive data like
sensor data, vehicle state & ground truth information that are being
generated by the engine. This data exchange between the controller
and engine takes place every simulation time step.

This bridge therefore let’s users to create their functions in a high
level programming language like Python or C++ and utilize the multi-
tude of libraries and functions that have been developed in these lan-
guages. Developers need only to understand the code wrapper to start
development of their algorithms.

Metamoto
Simulation Engine

Map Server H Data Bus Server | | Controller Client

Reporting Server

SUT Connector

/" Ubuntu

- ~
i Docker (Python ’ i !
i

Data Bus Client

Figure 4: Native API Workflow

ROS API

Following the recent trend in development of software for au-
tonomous systems in ROS, Metamoto has provided a way to interface
ROS with the simulation engine. This bridge works in a similar way
to the previously mentioned bridge. The API provided by Metamoto
is in modular form developed as C++ utilities, each having separate
functions such as creating the RPC connection between the code and
the engine, initiating a ROS node, converting the data from gRPC to
ROS topic format as well as vice versa. The SUT connector needs to be
established in the same way as above. Once the connection is set, the
executable for ROS API is launched. The simulation data is available
in the form of ROS topics and users develop their nodes in the ROS
ecosystem.

Metamoto
/| Simulation Engine F\

| Map Server |——-I Data Bus Server | | Controller Client

7 \
a

Reporting Server

SUT Connector

/" Ubuntu
i

{ Docker 265 Melodic

Figure 5: ROS SUT Workflow

Autoware API

This bridge is built upon the ROS API mentioned in section 6.2:
ROS API, Metamoto provides the user with launch files that utilizes the
packages present in Autoware.Al. The PCD (point cloud data) map of
the environment needs to be provided by the user beforehand since the
navigation packages in Autoware require them and Metamoto has cre-
ated the PCD files for many of their simulation environments , which
can be used straightway.

Methodology/Deployment

Metamoto requires the controller to be developed in Python or C++,
either independently or as a ROS node. Therefore we can’t interface
MATLAB with Metamoto currently to utilize the capabilities of MAT-
LAB to the fullest. On the other hand both Metamoto and MATLAB
have an interface with ROS enivronments. Hence, ROS has been used
as a middleware to combine Metamoto and MATLAB to create a seam-
less data and control flow. In this architecture, Metamoto takes care of
the simulation; ROS acts as the bridge between Metamoto and MAT-
LAB, converting data across two different formats and MATLAB exe-
cutes the controller. This way one can even use the embedded converter
of MATLAB such as MATLAB coder [48] to convert the model into a
ROS executable C++ code.

The ROS-SUT provided by Metamoto, was used as the base upon
which we built our workflow to integrate and utilize the features of
MATLAB. The ROS SUT provided the means to convert the sensor
data in the form of gRPC to ROS topics which made the simulation
data accessible in that forms. Although the data is available in the form
of ROS topics, it was present inside the Docker container, whereas
MATLAB runs outside the container. Installing MATLAB inside the
docker increases the image size and also requires extra steps to enable
GUI based interface. In order to overcome these two constraints it was
decided to run MATLAB on the local machine itself. The ROS master
needs to have the same URI as the local machine so that MATLAB
can connect to it. For this purpose the container was initiated with the
host’s network attributes. Thereby a bridge was established between
Metamoto and MATLAB via ROS, bringing together the best of both
worlds.

A large chunk of the data being transmitted from the simulation en-
gine can be mapped directly to a ROS message type contained in the
standard library but not all of it. The challenge was in converting the
¢RPC data which did not fit into any existing standard ROS message
type into a valid ROS message. Therefore, few custom message types
were created based on the need as shown in Table 1.

Metamoto

/| Simulation Engine F\

Map Server I——-I Data Bus Server | | Controller Client

/ \

SUT Connector

Reporting Server

,* Ubuntu
;

{ Docker o5 Melodic

Sensor data Vehicle controller Sensor data
subscriber model ublisher

Figure 6: MATLAB-ROS SUT Workflow

In MATLAB the ROS node is initialized subscribing to the data in
the main ROS master running in the Docker container. This helps in
subscribing sensor data from Metamoto engine via ROS. The custom
messages generated for this application were made accessible to MAT-
LAB, using a utility of the ROS Toolbox, so that MATLAB could un-
derstand the data in those messages and parse them for further process-

ing.

Information | Direction of ROS Topic ROS Metamoto
Flow Name Message Message
Type Type
Radar Metamoto to | /radar_proce ROS custom | radar.proto,
MATLAB ssed_array, message radar_object.
/radar_proce proto,
ssed enumera-
tion.proto
Acceleration | MATLAB to | ros_sut/Con ROS custom vehicle_con
Throttle Metamoto trolComman message trols.proto,
Steering d vehi-
Brake cles.proto

Table 1: ROS Metamoto Messages

Once the custom messages are ported, the sensor data was subscribed
from the ROS master and used to write the MATLAB control com-
mand. The control commands that are published back to the ROS mas-
ter are then sent to the Metamoto engine for the vehicle to perform the
desired maneuvers. The structure of the MATLAB-ROS bridge (which
was developed using the ROS Toolbox) that is used in this paper is as
follows:

The following Simulink blocks were used to subscribe to the sensor
data:

e Subscribe Block: The subscriber block is used to access the rel-
evant data coming from the simulator via ROS.

e Bus Selector Block: Once the topic is accessed in the Simulink
environment, it’s contents are parsed using the bus selector block.

The blocks outlined below were used to publish ROS topics:

e Bus Assignment Block: Since the message type consists of mul-
tiple fields, the bus assignment block lets MATLAB select the
commands that needs to be sent back to ROS master.

e Blank Message Block: The commands generated from the bus
assignment block, are needed to be assigned to the correct mes-
sage type to populate it correctly to the ROS environment.

e Publisher Block: The messages populated from the previous
blocks are communicated to the ROS network via the publisher
block as ROS topics. The ROS topics can either be custom gen-
erated or standard topics.

The trigger for publishing the control command is received along
with the sensor data from the subscriber block, ensuring the syn-
chronicity of communication similar to the case of a soft-real time ap-
plication.

/ MATLAB - SIMULINK \

Sensor &
Vehicle state
subscriber

Range

S|
g

age Parser

Tracks & Range

ROS Master Trigger Controller
v

Vehicle Control

&

Command Bus Assignment
- €
Publisher Vehicle o
Control Throttle,
Command Brake,

\ Steering /

Figure 7: Schematic of the model

Test Scenarios

To test the algorithm, two scenarios were created. In the first
scenario, collision avoidance with a stationary vehicle is performed.
Whereas, in the second one, the vehicle is swapped out for a pedestrian
walking towards the vehicle. The simulation environment in Metamoto
is a complete replica of the neighborhood around the ICAR campus,
which provides the unique advantage that the control algorithm devel-
oped is much more tailored and relevant to the actual testing performed
in the real world.

Collision Avoidance with a stationary vehicle

In this scenario, the ego vehicle, which is the Chrysler Pacifica starts
moving in a straight line, with a constant velocity. The labeled ground
truth data that each sensor generates (RADAR sensor in this case) is
relied upon, to detect the type of the obstacle and the distance to it.
As soon as the sensor detects a vehicle and the distance between the
Chrysler Pacifica and the actor vehicle falls below a certain threshold,
a command is sent to the vehicle to execute a panic braking maneuver.
Additionally, to preserve passenger comfort along with safety, the dan-
ger threshold was expanded and divided into two zones, wherein, in
the first zone, gradual brakes are applied and when the vehicle enters
the critical zone, hard brakes are applied. In this manner, the vehicle is
bought to an early stop and maintain passenger comfort is maintained.

Figure 8: Simulation scenario with actor vehicle

Collision Avoidance with a pedestrian

In this case, the actor vehicle is removed and replaced with a pedes-
trian in the path of the Chrysler Pacifica vehicle. As mentioned in
section 7.1.1: Collision Avoidance with a stationary vehicle, the object
type and distance of the detected object is available to the user. There-
fore, the condition was modified to look for a pedestrian instead of a
vehicle and the behavior of the ego vehicle was left unchanged.

Figure 9: Simulation scenario with pedestrian

Results

As stated earlier in the abstract, the aim of this paper was to explore
the domain of SaaS using Metamoto’s workflow and also utilize in-
dustry standard tools such as ROS and MATLAB/Simulink to observe
their effects in aiding the software development process. A rudimen-
tary example of Emergency Collision Avoidance has been utilized to
establish and demonstrate the workflow. It needs to be noted that one
can deploy many control strategies using the different sensors at hand,
to control the ego vehicle which need not be as simplistic as emergency
braking or collision avoidance; using the presented workflow. Such
controllers are not in the scope of this study and hence, are not dis-
cussed. A computationally complex algorithm on the MATLAB side
hasn’t been implemented since the aim of this study is to showcase the
working of the novel workflow that has been devised.

To evaluate the workflow, the following metrics were considered:

e Ease of programming: This metric evaluates the ease of the de-
velopment to deployment cycle of any control algorithm from
scratch on to the simulation software.

e Return on investment: This indicates the ease of programming
gained after learning how to deploy the workflow. This metric is
about how much a user should learn from scratch to use the soft-
ware and the bridge to develop their code. This includes things
like Docker, gRPC etc. which are usually outside the scope for
control algorithm developers/engineers. Thus, the term of “in-
vestment” for this metric relates to the investment of time from
the developer,

e Simulation Synchronicity: Whenever, we add more and more
modalities between the simulation engine and the code, there are
chances of the simulation time steps going out of sync between
the different layers of the simulation. This indicates whether the
it is possible to execute a “blocking”, synchronous simulation.

o Effect on simulation run-time: This metric assesses whether
the addition of a different simulation modality affects the time it
takes to perform one simulation run. In other words, the evalua-
tion of latency whilst adding more layers to the workflow.

e Ease of deployment: This metric assesses the ease of deploy-
ment of the validated code on real-time systems, developed with
a particular workflow.

To quantify these attributes, a scoring system was devised, wherein
each workflow was given a score from 1 to 3. The higher the score, the
better that particular workflow is in the corresponding attribute.

The scoring given to each of these attributes is given in the following
table:

Ease of Return Simula- Effecton | Ease of
Pro- on in- tion run-time deploy-
gram- vestment syn- ment
ming chronic-
ity
ROS + 3 3 3 3 3
MAT-
LAB
ROS 1 1 3 3 2
Native 2 2 3 3 1
API

Table 2: Some interesting results from our research.

e ROS + MATLAB sm===ROS Native API

Ease of programming

Ease of deployment Return on investment

Simulation

Effect on runtime L
synchronicity

Figure 10: Comparison chart

Figure 10 is a visual representation of the scoring assigned to the
performance metrics described.

As can be seen from figure 10, the ROS+MATLAB workflow is the
best and has scored full points across the spectrum. The GUI based
programming in Simulink, makes it very easy to develop code in MAT-
LAB. The declarative nature of C++ (the language chosen to program
in ROS), is an inefficient process in early stages of software prototyp-
ing and development and additionally introduces complexities that are
only of concern post prototyping. Hence, it gets the least score in this
regard. Similarly, the learning curve of MATLAB/Simulink is very
shallow and the returns we get in speed of code development is many-
fold when compared to the other two. All the given workflows do not
impact the synchronicity of the simulation, nor do they impact the run-
time of the simulation. Therefore, a score of 3 has been given to all the
three in these two attributes. Irrespective of the SiL. methodology used,
it also has to be readily deployable on to HiLL mode, otherwise, valuable
time is lost in the overall development cycle. Using the Simulink Real-
time (RT) code generator toolchain, one can wrap the control model in
Simulink into a C++ code at the click of a button, which is then ready to
be deployed to real-time systems for HiLL simulation. Such functional-
ity is not present in the other methods, especially using the Native API,
which allows to develop a controller and validate it in software only,
and thus, it has been scored as such.

Figure 11 shows the RQT Graph of the ROS + MATLAB methodol-
ogy defined in section 7: Methodology/Deployment. This figure con-
firms the schematic shown in Figure 6.

Once, the workflow is established and understood, one can proceed
to unlock the true power of SaaS, which is to deploy simulations at
scale. A parameter sweep of the environment variables of the scenario
shown in section 7.1: Test Scenarios.

Jmatiab_global_node_86043

Jmetamoto_controller ‘ Jradar.s subscription_9755

=
T

Iradar, stack

Figure 11: ROS RQT Graph

Strategy Number of Cases 243

EY
7z
(]

[B E]

<}

Figure 12: Simulation Test Matrix generation

Figure 12, shows that a parameter sweep to change the intensity of
the weather such as fog, rain and clouds was included in the test ma-
trix. Furthermore, road conditions like puddles and patches were also
swept through. After creating this test matrix, a total of 243 unique
cases were generated. The subsequent figure shows multiple simula-
tions running at the same time.

|| Practice_icar - Oct 28,2020 7:24:39 PM Stop fun

Run details 243 cases across 1 vector
Started by Huzefa Kagalwala
Diskusage 6MB

94 Running cases ~
Vector Practice_Joar

Test Case 96: Rain: 0, Clouds: 0, Fog: 0 Stop Job

Test Case 97: Rain: 0, Clouds: , Fog: 0.5 Stop Job

Test Case 08: Rain: 0, Clouds: 0, Fog: 1 Stop Job

Te:

Rain: 05, Clouds: 0, Fog: 0 Stop Job

Test Case 262 Rain: 0.5, Clouds: 0, Fog:0.5 Stop Job

Figure 13: Multiple running simulation

In accordance to the space constraints we have refrained from show-
ing the individual results of the 243 simulations and instead have in-
cluded the final summary of the simulations has been given below.

Total cases Passed cases Failed cases
243 223 20

Table 3: Results of the parallel simulation run.

The total run time in executing these 243 simulations was only 3
hours.

Table 3 shows that 20 times out of 243 the vehicle failed to stop in
time and incurred a collision with an actor agent. It was observed that
these failures occur in heavy rain and fog scenarios or where the road
is very wet. Since, the only sensing modality used in this scenario is
RADAR, if at all the sensor is not placed in environments conducive
to its reliable operation, the ADAS functionality is likely to fail. And
that is what happened here. The RADAR sensor measurements got
affected by the noise generated due to rain and fog and hence, reliable
range information wasn’t relayed to the algorithm issuing the control
commands. The wet road conditions also made the braking difficult,
which resulted in the crash. It is with such diverse simulations only,

that the insights to improve upon the sensor suite and the control logic
are afforded to the developer and SaaS in turn helps to deploy these
massive tests quickly, efficiently and reliably.

Summary

In this paper, we presented SaaS as a viable solution, based on its
ability to provide simulation capabilities at scale and also to acceler-
ate the simulation workflow. We utilized Metatmoto to explore the
domain of SaaS due to the rich feature set bought by the software.
A basic emergency braking algorithm was developed and a scenario
was created wherein obstacles such as a stationary vehicle and pedes-
trians were used as the triggers to deploy the emergency braking ma-
neuver. The parameters described in section 8: Results were observed
and scored and we found that employing MATLAB along with ROS
gave us the best value in the development cycle. A batch simulation
run was also deployed to show how efficiently and reliably we can de-
ploy a large number of simulations, to get actionable insights on the
performance of the algorithm and also on the autonomous architecture
itself.

Future Work

In our efforts for further exploration of SaaS, we identified another
important aspect of autonomous vehicle technology requiring the re-
sources of SaaS for testing. This modality is the V2X communication
aspect of AVs which usually require a large crowd simulation involv-
ing several cars. Naturally, this also means the amount of data being
exchanged in each network of vehicles is incredibly large and is not
suitable for any isolated instances of software requiring cloud based
simulation. As soon as we introduce information exchange between
vehicles it is also important to research cybersecurity since a vehicle
open to the exchange of information is also a hotbed for hacking and
cyberattacks. Therefore, in our future work, we will further expand
on the other aspects of autonomy simulation such as injecting cyber-
attacks into the simulation to confuse the controller such as denial of
service attacks, man in the middle attacks, etc. This direction is an
important aspect that needs to be tested for intensively due to the fact
that connected autonomous vehicles are vulnerable to such attacks and
they could potentially cause catastrophes. We will also further explore
HiL aspects which have been discussed in a shallow form in this study,
but will be taking a deeper dive into in the future. Experimental se-
tups such as connecting a steering wheel to the HiL setup in order to
test steer-by-wire algorithms are in our purview and we believe the
implementation details of the same would be of great value to the com-
munity.

References

[1] Department of Transportation, Office of Operations, D. (2007, Jan-
uary). Systems Engineering for Intelligent Transportation Systems.
https://ops.thwa.dot.gov/publications/seitsguide/

[2] Kaleto, H. A., Winkelbauer, D., Havens, C. J. & Smith, M. (2001).
Advancements in Testing Methodologies in Response to the FMVSS
201U Requirements for Curtain-Type Side Airbags. SAE Technical
Paper Series. doi:10.4271/2001-01-0470

[3] Kalra, N. (2017, May 18). How to Realize Autonomous Vehicle
Safety and Mobility Benefits. https://www.rand.org/pubs/testimonies/
CT475.html

[4] Gomes, L. (2020, April 02). Hidden Obstacles for Google’s Self-
Driving Cars.https://www.technologyreview.com/2014/08/28/171520
/hidden-obstacles-for-googles-self-driving-cars/

[5] Tesla, Electric Cars, Solar; Clean Energy. https://www.tesla.com/

[6] Templeton, B. (2019, April 30). Tesla’s ”Shadow” Testing Offers
A Useful Advantage On The Biggest Problem In Robocars. https:
/Iwww.forbes.com/sites/bradtempleton/2019/04/29/teslas-shadow-test
ing-offers-a-useful-advantage- on-the-biggest-problem-in-robocars/

[7] Department of Transportation, Office of Operations, D. (2007, Jan-
vary). Systems Engineering for Intelligent Transportation Systems.
https://ops.fhwa.dot.gov/publications/seitsguide/

[8] Koopman, P. & Wagner, M. (2016). Challenges in Autonomous
Vehicle Testing and Validation. SAE International Journal of Trans-
portation Safety, 4(1), 15-24. doi:10.4271/2016-01-0128.

[9] Butler, R. & Finelli, G. (1993). The infeasibility of quantifying
the reliability of life-critical real-time software. IEEE Transactions on
Software Engineering, 19(1), 3-12. doi:10.1109/32.210303

[10] Huang, W., Wang, K., Lv, Y. & Zhu, F (2016). Au-
tonomous vehicles testing methods review. 2016 IEEE 19th Inter-
national Conference on Intelligent Transportation Systems (ITSC).
doi:10.1109/itsc.2016.7795548.

[11] Schoner, H. (2018). Simulation in development and testing of au-
tonomous vehicles. Proceedings 18. Internationales Stuttgarter Sym-
posium, 1083-1095. doi:10.1007/978-3-658-21194-3-82.

[12] Wang, F., Wang, X., Li, L., Mirchandani & Wang, Z. Digital
and construction of a digital vehicle proving ground. IEEE 1V2003
Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683).
doi:10.1109/ivs.2003.1212968.

[13] Prochazka, D. & Hodicky, J. (2017). Modelling and simu-
lation as a service and concept development and experimentation.
2017 International Conference on Military Technologies (ICMT).
doi:10.1109/miltechs.2017.7988851.

[14] Sixuan Wang, G. (1970, January 01). A simulation as a service
methodology with application for crowd modeling, simulation and vi-
sualization - Sixuan Wang, Gabriel Wainer, 2015. Retrieved October
29, 2020, from https://journals.sagepub.com/doi/10.1177/003754971
4562994

[15] Cayirci, E. (2013). Modeling and simulation as a cloud ser-
vice: A survey. 2013 Winter Simulations Conference (WSC).
doi:10.1109/wsc.2013.6721436

[16] Nair, V. G. A Study of driving simulation platforms for automated
vehicles.

[17] Fadaie, J. G. The State of Modeling, Simulation, and Data Utiliza-
tion within Industry - An Autonomous Vehicles Perspective.

[18] GmbH, I. (2020, August 25). CarMaker. https://ipg-automotive.c
om/products-services/simulation-software/carmaker/

[19] Mechanical Simulation. https://www.carsim.com/

[20] MSC Software Corporation. https://www.mscsoftware.com/prod
uct/adams-car

[21] Waymo. https://waymo.com/
[22] Story by Alexis C. Madrigal. (2018, December 03). Waymo Built
a Secret World for Self-Driving Cars. https://www.theatlantic.com/te

chnology/archive/2017/08/inside- waymos- secret-testing-and-simulati
on-facilities/537648/

[23] Intel Labs - Computer Science Research and Collaboration. https:

10

/lwww.intel.com/content/www/us/en/research/overview.html
[24] TRI Innovating the Future of Mobility. https://www.tri.global/
[25] Barcelona Computer Vision Center.http://www.cvc.uab.es/
[26] Unity. https://unity.com/

[27] Unreal Engine https://www.unrealengine.com/en-US/

[28] CARLA. https://carla.org/

[29] AutoNavi. https://www.autonavi.com/

[30] Baidu ,https://www.baidu.com/

[31] Apollo, https://apollo.auto/

[32] PreScan. https://tass.plm.automation.siemens.com/prescan
[33] Metamoto. https://www.metamoto.com/

[34] Cognata: Autonomous and ADAS Vehicles Simulation Software.
https://www.cognata.com/

[35] Metamoto - How Legacy Automotive Simulation Tools Differ
From Metamoto’s Scalable Cloud-Based Simulation. https://medium
.com/@metamoto/how-legacy-automotive-simulation-tools-differ-fr
om-metamotos-scalable-cloud-based-simulation-c9ale07b9c2c

[36] OpenCAV.- Automation Robotics & Manufacturing Lab, Clemson
University International Center for Automotive Research https://sites.
google.com/view/opencav/

[37] Clemson University International Center for Automotive Re-
search. https://cuicar.com/

[38] Clemson - Metamoto Presentation at Nvidia GTC 2020. https:

/Iwww.youtube.com/watch?v=uACVoNThBdk&ab_channel=N
VIDIA

[39] gRPC https://grpc.io/
[40] Google-Protobuf https://developers.google.com/protocol-buffers
[41] Docker https://www.docker.com/

[42] Xavier, M. G., Neves, M. V,, Rossi, F. D., Ferreto, T. C., Lange,
T. & Rose, C. A. (2013). Performance Evaluation of Container-Based
Virtualization for High Performance Computing Environments. 2013
21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. doi:10.1109/pdp.2013.41.

[43] ROS http://wiki.ros.org/ROS/Introduction
[44] Autoware.Al https://www.autoware.ai/
[45] Autoware.Auto. https://www.autoware.auto/

[46] MATLAB/Simulink https://www.mathworks.com/products/matla
b.html

[47] ROS Toolbox - MATLAB https://www.mathworks.com/help/ros
/getting-started- with-ros-toolbox.html

[48] MATLAB Coder - MATLAB code to C/C++ code generator https:
/Iwww.mathworks.com/help/coder/

