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Abstract: The growing adoption of steer-by-wire (SbW) systems in (semi-)autonomous vehicles
provide a unique opportunity to exploit steering control for vehicle stability systems. In our
previous work, we introduced a feedforward controller for an SbW vehicle employing optimal
reference shaping and demonstrated reduced yaw disturbances during fast (evasive) maneuvers.
Despite its beneficial effect on damping undesirable oscillations, open-loop input shaping can
lead to unreliable trajectory tracking without additional feedback compensation in the presence
of parameter inaccuracies and model uncertainties. In this study, we significantly advance the
previous idea by combining a model reference adaptive control (MRAC) framework with an
input shaper. Here, the MRAC framework converges quickly and maintains a nominal ‘inner
loop’ behavior for the input shaper during high-speed maneuvers. This work includes stability
and boundedness proof as well as extensive simulations.
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1. INTRODUCTION

The rise of Advanced Driver Assistance Systems (ADAS)
and autonomous vehicles has led to new avenues for the de-
velopment of technologies focusing on road safety. The re-
sponsibility of ensuring stability during sudden maneuvers,
unexpected disturbances, sensor failure, loss of function,
etc. no longer rests solely on the driver (Campbell et al.,
2010). Recently, there has been a significant shift from
active safety sub-systems (e.g. Electronic Stability Control
(ESC)) to ADAS systems (e.g. Lane Keep Assist) (Kalra,
2017). Active steering control now has the potential to
augment /complement the traditional differential braking
or torque distribution systems.

In sudden steering situations performed at high speed,
disturbance attenuation (yaw control) whilst following a
prescribed trajectory is not easily manageable (Rajamani,
2012). The main objective of a (supportive) steering con-
troller is to compensate for inadequate reference inputs,
arising either from a human driver or an ADAS planner.
Additionally, it also provides an opportunity to compen-
sate for unexpected dynamics without compromising on
path/trajectory tracking. Steer-by-Wire (SbW) systems
could be a suitable addition for yaw stability control dur-
ing high-speed emergency maneuvers. When no physical
steering column is present, preventative strategies rather
than mitigative strategies (e.g. ESC) could be deployed
by timely intervention. The opportunity to be proactive
instead of reactive allows for rethinking some of the pre-
existing active safety systems. The adoption of SbW as a
technology has already found its way into the mainstream
automotive industry (Arango et al., 2020).

In our previous work, Srinivasan et al. (2019), we demon-
strated the merit of extending steering control as a means
for yaw stabilization by introducing a feedforward SbW
controller based on the concept of optimal reference shap-
ing. This pre-filtering technique is computationally inex-
pensive and can act as a fail-safe during total sensor loss.
Despite its promising effect on undesirable transients, the
previously introduced stand-alone configuration proved it-
self unreliable for trajectory tracking without additional
feedback compensation, as it was highly dependent on
modeling accuracy and parameter knowledge. Systems
with parameter uncertainty and complex nonlinear dy-
namics in some areas of the operating domain are prime
applications for adaptive control methods that can effec-
tively cope with some parameter as well as modeling errors
(Slotine and Li, 2005; Kalur et al., 2016).

Several studies have employed a Model Reference Adaptive
Control (MRAC) scheme for steering control in vehicles
for path following or yaw stability (Fukao et al., 2001;
Ahmadian et al., 2021; Byrne and Abdallah, 1995; Mitov
et al., 2020; Vempaty et al., 2016). A combination of refer-
ence shaping and adaptive control techniques has also been
explored for flexible structures and robot manipulators by
effectively enforcing linear behavior (Tzes and Yurkovich,
1993; Khorrami et al., 1993). While robotic manipulators
usually operate at slower speeds (thus being very suited
for adaptive control), vehicles might require operation at
the limit where safety is of great concern.

In this study, we advance the previous feedforward control
idea by combining the reference shaping controller with
an MRAC framework to reasonably maintain nominal lin-



ear behavior for the input shaper even during high-speed
maneuvers. The remainder of the paper is organized as
follows: section 2 briefly summarizes our previous work and
sets up the problem for our study. Section 3 presents the
background and design approach of the employed adaptive
control scheme. Here, we also present a Lyapunov-based
stability proof for the configuration. Finally, numerical
simulation in section 4 is performed to validate the tar-
geted performance before section 5 concludes the study.

Table 1. Parameters in the vehicle model

Symbol Description Unit
ly Front axle to CG distance m
lr CG to rear axle distance m
m Vehicle mass Kg
I, Inertia with respect to z-axis Kng
g Gravitational acceleration m/s?

Cof,r Front/Rear cornering stiffnesses | Kg/rad
6 Road-Wheel steering angle rad
Vg Longitudinal velocity m/s
Y Lateral velocity m/s
P Yaw rate rad/s

2. PRELIMINARY CONSIDERATIONS

In this section we briefly summarize our previous work in
Srinivasan et al. (2019) to ensure continuity and context.
The general approach utilizes a simplified linear vehicle
dynamics model for controller development while numer-
ical evaluation is performed with a high fidelity model
as the ’true’ plant. Here, a five degrees of freedom (5-
DoF) model is utilized. Additionally, the ground-tire in-
teractions consider the wheels as rotating masses (1-DoF)
with drive/brake torques while the contact forces are given
by the Pacejka tire model (Pacejka, 2009) in combination
with a first order slip angle relaxation approach (1-DoF).
This yields a model with a total of 18 states. The relevant
equations together with a detailed description and nomen-
clature are provided in Srinivasan et al. (2019). The terms
utilized in the vehicle model are summarized in Table 1.

2.1 2-DoF Linear Vehicle Model

For the standard simplified model (Rajamani, 2012), the
left and right wheels on each axle are lumped together.
Constant longitudinal velocity (v, = const) and small
steering angles are assumed with a center of gravity on
the ground such that roll and pitch can be neglected.
Hence, the model yields 2 degrees of freedom, i.e. one
translational (lateral) and one rotational (yaw) motion.
This highly simplified linear formulation serves a dual
purpose by being employed as the control model for the
input shaper and as the reference model for the adaptive
control scheme:
z(t) = Arx(t) + brul(t)
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where x(t) and u(t) are the state and control input vectors,
A, and b, are the vehicle system and input matrices,
and the subscript ‘r” refers to the use of Eq. (1) as the
reference model in MRAC. As the above system represents
the instantaneous linearization at the current operating
point, it is a Linear Parameter Varying (LPV) system with
C, rapidly changing during certain maneuvers while v,
mildly varying even when velocity control is enforced. As
the reference model in this study, we consider a Linear
Time-Invariant (LTI) version, however, nominal parame-
ters are chosen and assumed constant under maneuvering.
Nominal cornering stiffnesses are derived from the known
tire model of our plant. For small angle approximations,
these result as (see Pacejka (2009))

Cop/r = By/r Cypir Dyg/r
where B is the stiffness factor, C represents the shape
factor, and D denotes the peak factor. These are known
parameters for an identified tire, thus providing a reason-
able assumption for the nominal value of C,. Note that
the cornering will vary very largely, however, under load
transfer or changes in the vehicle.

2.2 Standard Steer-by-wire Feedback Controller

For comparison of our control design, we utilize a standard
feedback steering control for yaw stability as given in
Rajamani (2012) and as depicted in Fig. 1. Here, the
effective steering angle applied to the front wheels consists
of the combination of the reference driver (or planner)
input with a compensation term generated by the feedback
controller to enforce stability and safe maneuvering. The
feedback term should only improve stability and safety
by reducing the yaw rate error between the actual and
(driver) desired yaw rate. It must not interfere with the
vehicle’s ability to follow the desired path as set by the
driver.

2.8 Reference Shaping Control Design

The purpose of an optimal reference shaping controller lies
within the prevention and/or fast damping of self-induced
transient disturbances, e.g. oscillations in linear or quasi-
linear dynamic systems. A vehicle can exhibit excessive
oscillatory transients during high-speed maneuvers such
as lane change, double lane change, and fishhook (Fancher
et al., 1976). This swaying motion might be exacerbated
by unnecessary or rather uncoordinated inputs from an
untrained driver or a kinematic planner. Reference or input
shaping control dampens these effects by placing timely



impulses to attenuate undesired transients. Such a feed-
forward or pre-filtering technique is advantageous in terms
of computational cost, design complexity, and hardware
requirements, as it is only based on the convolution of the
driver inputs with a series of designed impulses.

Given a system’s approximate natural frequency w, and
damping ratio ¢, the transients caused by a sequence of
impulses can be calculated as

V(wn, ¢) = e i\ /B(wn, ()2 + F(wn, ()2

E(wn,¢) = Y aze™ " cos(wat;)

where
i=1
m

and F(wn, () = Z e @nti sin(wgt;) (2)
i=1

Here, «; and t; are the amplitudes and execution times for
the impulse series whereas m is the chosen total number
of impulses. As usual, wg = wy/1 — (2 corresponds to the
damped natural frequency of the system. As we want to
reduce the oscillations caused by the input, we set Eq. (2)
equal to 0, and solve for the unknown amplitude and
timing, i.e.

o] [ K
[tf] 1+K 1+ K 3)
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with K = exp( 1__?2) and T, being the damped period of

the induced transient. In its most basic form, the input
shaper can be realized as a 2 impulse filter and hence
i = 1,2. For the detailed design process, derivation, and
theoretical background, we refer to Srinivasan et al. (2019)
and Singh (2019). Figure 2 depicts the simple feedforward
architecture.

The same results from our previous study demonstrating
the application of this control scheme to a double lane
change maneuver (DLC) at 80 km/h are shown in Fig. 3.
Note that the chosen maneuver is extremely aggressive
given the selected longitudinal velocity. Figure 3 also
compares the performance of the input shaper with the
standard feedback controller as described in section 2.2.
As evident, the best performance is achieved by the com-
bination of the input shaper with the feedback control loop
adding only minor computational load. It is important to
note that the input shaper will not modulate the raw input
signal if it does not cause dynamic instabilities by itself,
as illustrated in plots presented in Srinivasan (2021). As
a stand-alone controller, however, the reference shaping
controller is inferior to the standard feedback regulator.
In our previous work, we attributed this behavior to the
parametric uncertainty in the control model (2-DoF lin-
earized vehicle) and to the significant modeling errors in
comparison to the high fidelity nonlinear plant that is
even more pronounced when operating at the dynamic
envelope. The sensitivity of input shapers with respect to
modeling errors and nonlinearities has long been known
and motivated the study of an additional adaptive control
loop as introduced in section 3.

3. MODEL REFERENCE ADAPTIVE CONTROL

Reference shaping control utilizing a highly simplified
model does not perform adequately as a stand-alone so-
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Fig. 3. Plant response plots from previous work

lution for vehicle stability during extreme maneuvers. On
the other hand, the standard feedback compensator as de-
scribed in section 2.2 is still just a proportional controller
that experiences known deterioration and robustness is-
sues under disturbances (even when well-tuned). Addition-
ally, nonlinear state and parameter observers/estimators
are necessary for proper functionality. Some solutions ad-
dressing system uncertainty by utilizing methods such as
disturbance observers (Yamaguchi and Murakami, 2009)
and GPS-INS-based side-slip estimation for feedforward
compensation (Yih and Gerdes, 2005) have been explored
successfully, but those techniques are complex and often
less than ideal for practical applications. Identifying con-
trol parameters accurately online to ensure robust steering
performance is still an ongoing challenge.

In an alternative approach, we deploy an SbW controller
with a direct MRAC scheme to ensure a predictable and
fixed relation between a steering command (generated by
the driver or planner) and the vehicle output (yaw rate
and lateral velocity). The required feedback signals are
commonly measured/estimated quantities using inexpen-
sive Inertial Measurement Units (IMUs) that can be found
in most vehicles nowadays. In this setting, the primary
objective of MRAC is not to achieve an end-to-end control
performance, but to adapt for and to stably maintain a
nominal input-output behavior. This ideal behavior cor-
responds to the one prescribed by the bicycle model in
Eq. (1). The inner adaptive control loop formed by the
MRAC scheme now enforces an input-output behavior ac-
cording to the reference model for which the input shaper
is designed, thus mitigating uncertain system parameters
and nonlinear effects. Here, MRAC compares the output
of the reference model with the true behavior of the system
(nonlinear plant in simulation) and adapts learning param-
eters while the previously designed input shaper pre-filters
steering inputs before being applied to the MRAC loop.



3.1 General Control Scheme

As discussed in section 2.1, the reference model to be
used in MRAC is given by Eq. (1), and the plant is a
nonlinear system with 18 states. However, the states of
interest for the MRAC are simply @ = [ |7, which in our
case proves to be sufficient for the vehicle stability control
situation since driving down the error in these 2 states were
adequate to achieve desired performance in the control of
the plant. Note that this study does not focus on velocity
control, and thus, wheel torques in the plant are set to zero.
This is a reasonable assumption for high-speed evasive
maneuvers where the vehicle’s longitudinal velocity could
be held nearly constant (e.g., highway emergency lane
change whilst in cruise control mode). We realize MRAC
as direct adaptive control, i.e. as a feedback controller with
gains determined by a nonlinear adaptation scheme that
depends only on the chosen output of the system. The
extended theory of model-matching conditions is explained
in Nguyen (2018), and served as the foundation for the
control laws presented in this study.

Equation (1) provides the linear reference model for
MRAC, and we refer to the states arising from Eq. (1)
driven by the reference input r (here, shaped steering
signal) as . Our initial assumption for the unknown plant
model is of the linear form

= Az +bu 4)
Now, we assume that we can achieve model matching
between the reference model and the unknown plant, i.e.,

there is an ideal input @ for Eq. (4) such that the plant
states converge to the reference model states &:

o yl 91\ _
tlggos_tlggo (@—=) _tlggo <[1/J [w}) =0
Now, a mapping function between the reference (&, r) and

ideal-plant trajectories (&, ) can be expressed as

i - [ ][ ®

The natural conclusion would be to simply pick @ from
Eq. (5) as a control law for MRAC where a, and a,, are
the true but still unknown control gains, thus yielding the
closed-loop dynamics

= (A+bal)x + (ba,)r
with 4, = A+ bal and b, = ba,. However, estimation

errors for the control gains must be factored in. We assume
these errors to be of the form

Aa;|  |ay—ay

[Aau} - [du —ay | (6)
Hence, the closed-loop dynamics of the plant can be
rewritten as

&= (A+bal +bAal) x + (bay +bAay)r. (7)

If the initial assumption in Eq. (4) about the plant being
linear does not hold, the above control law does not lead to
asymptotic tracking. Hence, the inherent nonlinearities in
our true vehicle will cause a state tracking error € # 0. For
nonlinear plants, a usual assumption in the application of
MRAC (Zhang and Wei, 2017) is to lump the nonlinearities
together yielding a plant in the form

T =Azx+bu+ f(x) (8)
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with the nonlinear portion f(x) being linearly parametriz-
able as f(x) = ®7 ®(x). Here, O is a vector of uncertain
parameters that need to be estimated while ®(x) is a
vector of known basis functions. However, the nonlinear
plant used in this study cannot be expressed in this manner
(this holds for both the simulation model as well as the
physical truth for vehicle dynamics). Thus, we introduce
a closed-loop feedback term with an online-estimated gain
of a. to control the error caused by the insufficient input
comprised of the feedforward and state feedback terms
in Eq. (5). Following a similar approach and adjusting
Egs. (6) and (7) for the additional term leads to closed-
loop tracking error dynamics as

¢ =Ae+bAale —bAalx — bAa,r (9)

Now, with the 3 gains to be used in the MRAC design
finalized, the control law can be defined as

u=alx+a,r+ale (10)
Figure 4 now summarizes the control scheme in the graph-
ical form including the inner adaptation loop and the
shaping pre-filter.

8.2 Adaption Laws

As just discussed, the adaptation gains (@, a., ,,) need
to be estimated and therefore might not converge to
their true values (a., ac, a,,). Yet, instability issues can be
avoided as long as the adaption/estimation laws for the
gains are chosen appropriately. To determine closed loop
stability for the proposed control scheme in Eq. (10) in the
presence of estimation errors, we employ Lyapunov theory
with the following positive definite candidate function:
Ve, Aayg,Aay, Aa,) =
eTPe +tr(Aa’T, ' Aa,) + (Aa, ',  Aay)
+tr(AalT 'Aa,) . (11)
Here, I' and P are symmetric positive definite matrices.
While I' can be any such matrix, P is a unique solution to
the algebraic Lyapunov equation
PA, + ATP=—Q

with @ being any symmetric positive definite matrix.
Equation (11) can be abbreviated as V = V; + V5. For
stability, the time-derivative of the Lyapunov function is
required to be negative semi-definite. In order to show this
property, V7 can be evaluated as

Vi =el'Pe+¢e"Pe
= —e’'Qe +2e" PbAa’e — bAalx — bAa,r] .

(12)



where Egs. (9) and Eq. (12) have been employed. Now, we
can utilize the trace property tr(MNT) = NTM on the

terms in V7, i.e.
e’ PbAa”Q = tr(Aa” Qe” Pb)
where Aa was used as a placeholder for Aa,/Aa,/Aa.

and Q for x/r/e. Similarly, Vs can be simplified by using
Aa as above, yielding

Vo =tr(Aa’T'Aa + Aad’T ' Ada)
=2tr(Aal'Aa”)
where I' has been used as an encompassing term for
'y /T /Te. Thus, combining V; and V5 then results as

V =—€e"Qe + 2tr(Aa,[-zeT Pb+ T, Aal])
+ 2tr(Aay[-re? Pb+ T Aal])
+ 2tr(Aa.[eeT Pb+ T2t Aal]) (13)

In order to ensure V to be negative semi-definite, the gains
now can be chosen in adaptive fashion as

a, =I,ze’ Pb

ay = T,re’ Pb

a. = -T.ee"Pb . (14)
These result in the negative semi-definite quadratic form
V = —eTQe < 0 (substituting Eq. (14) in Eq. (13)),
thus proving Lyapunov stability. Additionally, V' satisfies

lim;_, ||€]] = 0 which indicates asymptotic tracking and
boundedness.

The I matrices are called learning rates and determine the
speed at which the errors settle to their minimum value
(ideally 0). The success of this control design will depend
on the learning and adaptation speed of the MRAC loop
in comparison to the vehicle’s eigenvalues and maneuver
length. While b is treated as an unknown in Eq. (8),
the adaptation laws in Eq. (14) assume knowledge of the
control gain matrix. In many applications - including our
plant - b is not fully known, and the control input is
included in the general form %X = f(x,u). In the current
approach, we adjust for differences between b, and b by
the simple introduction of a manually pre-tuned correction
factor A > 0, i.e., b = b, \.

4. NUMERICAL RESULTS

To validate our control performance, we have chosen 2
maneuvers: (i) double lane change; and (ii) sine wave.
These are aggressive maneuvers at the selected speeds of 80
and 120 km/h exciting nonlinear behavior and parameter
changes. The vehicle response plots are shown in Fig.
5. Here, we do not include the response of an uncon-
trolled/open loop vehicle, as the superior performance of
the stand-alone input shaper has already been shown in
Fig. 3.

As evident, the MRAC enforces linearity in the vehicle
throughout the maneuver despite the rapid change of
parameters (e.g., cornering stiffness). It can also be seen
from the response to the sinusoidal reference that the con-
trol input settles quickly despite some initial oscillations.
For boundedness and convergence analysis as indicated in
section 3, the DLC maneuver at 120 km/h is most suited.
At this speed and at this repetition rate, the uncontrolled
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Fig. 5. Vehicle responses for double lane change and
sinusoidal maneuver

vehicle’s behavior deviates largely and rapidly from the
reference behavior as nonlinear effects accumulate. Figure
6 shows the vehicle’s states under persistent DLC ma-
neuvers and illustrates how well the MRAC-input shaper
framework tracks the reference states. The convergence of
the adaptation gains is also demonstrated in Fig. 7. The
underlying code generating a variety of additional plots
can be found in Srinivasan (2021). Here, the boundedness
of the inputs can also be inferred from simulations.
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5. DISCUSSION AND FUTURE WORK

In this study, we explored an adaptive control framework
to enable a steer-by-wire vehicle operating in the nonlin-
ear range while tracking a reference trajectory. A direct
adaptive controller was developed to significantly advance
our previous work in reference shaping control for road ve-
hicles. Boundedness, stability, and asymptotic tracking for
the MRAC framework were demonstrated via a theoretical
approach as well as numerically. For the numerical studies,
the success of the new control framework was shown for a
high fidelity vehicle model subject to aggressive maneuvers
at high velocities. Errors and gains converged to a steady-
state as indicated by the Lyapunov analysis. For our future
work, we plan to further expand the adaptive control
approach in presence of other factors, such as measurement
noise, changing surface conditions, etc. An analysis of the
real-time performance of the suggested controller using
a Hardware-in-Loop (HiL) approach is also part of our
future scope.
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