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A B S T R A C T   

The COVID-19 pandemic has resulted in increased usage of ethanol-based disinfectants for surface inactivation of 
SARS-CoV-2 in buildings. Emissions of volatile organic compounds (VOCs) and particles from ethanol-based 
disinfectant sprays were characterized in real-time (1 Hz) via a proton transfer reaction time-of-flight mass 
spectrometer (PTR-TOF-MS) and a high-resolution electrical low-pressure impactor (HR-ELPI+), respectively. 
Ethanol-based disinfectants drove sudden changes in the chemical composition of indoor air. VOC and particle 
concentrations increased immediately after application of the disinfectants, remained elevated during surface 
contact time, and gradually decreased after wiping. The disinfectants produced a broad spectrum of VOCs with 
mixing ratios spanning the sub-ppb to ppm range. Ethanol was the dominant VOC emitted by mass, with con-
centrations exceeding 103 μg m−3 and emission factors ranging from 101 to 102 mg g−1. Listed and unlisted diols, 
monoterpenes, and monoterpenoids were also abundant. The pressurized sprays released significant quantities 
(104–105 cm−3) of nano-sized particles smaller than 100 nm, resulting in large deposited doses in the tracheo-
bronchial and pulmonary regions of the respiratory system. Inhalation exposure to VOCs varied with time during 
the building disinfection events. Much of the VOC inhalation intake (>60 %) occurred after the disinfectant was 
sprayed and wiped off the surface. Routine building disinfection with ethanol-based sprays during the COVID-19 
pandemic may present a human health risk given the elevated production of volatile chemicals and nano-sized 
particles.   

1. Introduction 

The COVID-19 pandemic has led to the surging use of disinfectants 
for inactivation of SARS-CoV-2 (U.S. CDC, 2020; Pitol and Julian, 2021; 
Zheng et al., 2020). Ethanol (C2H6O) can inactivate human coronavi-
ruses, including SARS-CoV-2 (Kratzel et al., 2020; Kumar et al., 2021; 
Meyers et al., 2021; Rabenau et al., 2005). Ethanol-based disinfectants 
have been widely used during the COVID-19 pandemic and are included 
in the U.S. EPA List N: Disinfectants for Coronavirus (U.S. EPA, 2020). 
Ethanol-based disinfection of buildings may pose a health risk due to 
inhalation exposure to ethanol and other volatile organic compounds 
(VOCs) included in the disinfectants. 

Inhalation exposure to gas-phase ethanol is associated with adverse 

toxicological outcomes. Preclinical studies on animals revealed poten-
tial neural, hepatic, pulmonary, and cardiovascular risks of inhalation of 
ethanol and 2-propanol (Budygin et al., 2007; Hirth et al., 2016; Mouton 
et al., 2016). An increase of multiple biomarkers (BrAC, EtG, and EtS) 
was observed after use of alcohol-based hand sanitizers (1–3 pumps 
every 2−20 min) in several studies (Ahmed-Lecheheb et al., 2012; Ali 
et al., 2013; Arndt et al., 2014; Hautemanière et al., 2013a, 2013b). 
Inhalation of ethanol is of concern as it can be directly transmitted to the 
brain via arterial circulation, which may increase the risk of addiction 
(Maclean et al., 2017). 

Given the diverse spectrum of ingredients included in commercial 
ethanol-based disinfectants, it is expected that such products can emit a 
wide range of VOCs. The human respiratory system, as the main route of 
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VOC intake (Gong et al., 2017; Zhao et al., 2019), is at risk of impair-
ment to pulmonary function when exposed to elevated VOC concen-
trations (Yoon et al., 2010; Zhao et al., 2019). Epidemiological studies 
have identified associations between inhalation exposure to VOCs and 
numerous respiratory diseases (Elliott et al., 2006; He et al., 2015). VOC 
exposures in residential and office buildings have been related to various 
adverse human health outcomes (Cakmak et al., 2014; Wolkoff et al., 
2006). Pressurized sprays can also release sub-10 μm droplets and 
sub-100 nm particles; the composition of which is influenced by the 
spray product applied (Bekker et al., 2014; Hagendorfer et al., 2010; 
Jiang et al., 2021a; Nazarenko et al., 2011). Sub-100 nm particles can 
penetrate deep into the human respiratory system and result in adverse 
health outcomes, including respiratory and cardiovascular diseases 
(Heinzerling et al., 2016; Knibbs et al., 2011; Li et al., 2016; Oberdör-
ster, 2000; Oberdörster et al., 2005; Stone et al., 2017; Weichenthal 
et al., 2007; Downward et al., 2018; Panas et al., 2014; Soppa et al., 
2014). 

Despite the potential exposure risks associated with increased use of 
disinfectant sprays during the COVID-19 pandemic, there is limited 
research characterizing the temporal emission profiles of such products. 
The objective of this study is to conduct real-time (1 Hz) emission 
measurements of gas- and particle-phase species released from ethanol- 
based disinfectants through use of a proton transfer reaction time-of- 
flight mass spectrometer (PTR-TOF-MS) and a high-resolution elec-
trical low-pressure impactor (HR-ELPI+), respectively. Such state-of- 
the-art instrumentation enables improved temporal characterization of 
the fate and transport of potentially health hazardous materials in the 
indoor environment during building disinfection activities and associ-
ated inhalation exposures among occupants. To the authors’ knowledge, 
this represents the first tandem application of a PTR-TOF-MS and HR- 
ELPI+ for real-time detection of VOCs and particles released from 
ethanol-based disinfectants. 

2. Materials and methods 

2.1. Study site: Purdue zero Energy Design Guidance for Engineers 
(zEDGE) Tiny House 

The measurement campaign was conducted in a residential archi-
tectural engineering laboratory – the Purdue zero Energy Design Guid-
ance for Engineers (zEDGE) Tiny House (Fig. S1). zEDGE is a 
mechanically ventilated single zone residential building with a condi-
tioned interior volume of 60.35 m3. A powered ventilator with a MERV 
16 filter supplied filtered outdoor air to zEDGE (Fig. S2). zEDGE was 
maintained at a positive pressure (+9 Pa) with an outdoor air exchange 
rate (AER) of 3 h−1. The details of the AER calculation are provided in 
the supplementary material. Two fans were used to promote mixing. 

2.2. Protocol for ethanol-based disinfectant emission experiments 

The disinfectant emission experiments were conducted on two 2 ft. ×
3 ft. glass panels positioned on the kitchen countertop of zEDGE. The 
glass panels were used to isolate the indoor surface onto which the 
disinfectant was applied. A clean set of glass panels was used for each 
experiment. Two ethanol-based disinfectant sprays included in List N 
were evaluated (products A, B). An ingredient summary is provided in 
Table S1. Products A and B contained ethanol at 30–60 %wt. and 58 % 
wt., respectively. Both sprays utilized alkanes as propellants (A, B: 
propane (C3H8), A: isobutane (i-C4H10), B: n-butane (n-C4H10)) and 
included fragrances. Product B incorporated triethylene glycol 
(C6H14O4) as an additional disinfectant at 6 %wt. n-Alkyl dimethyl 
benzyl ammonium saccharinate was present in both sprays (≤0.2 %wt.), 
however, it was not detected in the gas-phase. 

Three experiments were completed per disinfectant (A: A1, A2, A3 

and B: B1, B2, B3). Each experiment was conducted in three periods over 
80 min (Fig. S3). The first period included 10 min of background mea-
surements. The second period included 10 min of surface contact for the 
disinfectant that began with a spray event. 24 sprays were applied to the 
glass panels in a matrix with 3 rows and 8 columns at about 1 ft. above 
the surface. At the end of the second period, the liquid film of disin-
fectant was removed via wiping with two absorbent towels (removed 
from zEDGE after wiping). The third period included a 60 min concen-
tration decay. zEDGE was occupied by one researcher during the spray 
and wipe events and unoccupied for the remaining periods. The disin-
fectants were used as prescribed by the manufacturer. 

2.3. Real-time measurement of VOCs via PTR-TOF-MS and particles via 
HR-ELPI+

Mixing ratios of VOCs were measured at 1 Hz by a PTR-TOF-MS 
(PTR-TOF 4000, Ionicon Analytic Ges.m.b.H, Innsbruck, Austria) using 
hydronium (H3O+) as the reagent ion. In the drift tube, molecules with 
proton affinities greater than that of water (691 kJ mol−1) will collide 
with H3O+ and be ionized through a proton transfer reaction (Blake 
et al., 2009; Lindinger et al., 1998). The ionized molecules are then 
detected by a TOF-MS. Mass spectra for mass-to-charge ratios (m/z) from 
20 to 450 were recorded. Pressure, voltage, and temperature for the drift 
tube were set at 2.2 mbar, 600 V, and 70 ◦C respectively, maintaining 
the ionization field energy (E/N) at approximately 139 Td. The abun-
dance of impurity ions (O2+, NO+) was <10 %. The sampling inlet was 
located near the center of the zEDGE kitchen. A PFA tube (3/8 in. OD) 
was used as the sampling line. At the intake of the sampling line, a PTFE 
membrane filter (1 μm pore size) was installed to remove particles. The 
exhaust from the PTR-TOF-MS was directed outdoors. The PTR-TOF-MS 
was calibrated daily using two VOC gas standard mixtures (Table S2). 
Mixing ratios of VOCs not included in the gas standards were calculated 
based on proton transfer reaction theory (de Gouw and Warneke, 2007; 
Klein et al., 2018). Reaction rate constants were derived from the 
literature if available (Pagonis et al., 2019), otherwise 2 × 10-9 cm3 s−1 

was used (Table S3). Given the large number of ions detected by the 
PTR-TOF-MS during the disinfection events, only the ions that increased 
by >50 % beyond their average background mixing ratios and peaked at 
>0.1 ppb are reported. A material balance model was used to estimate 
ethanol emission factors (EFs, mg g−1 or mg ml−1), as described in the 
supplementary material. 

Particle size distributions from 6 to 10000 nm in aerodynamic 
diameter (Da) were measured at 1 Hz with a HR-ELPI+ (Dekati Ltd., 
Kangasala, Finland). The aerodynamic diameter of an irregularly shaped 
particle is the diameter of a spherical particle with a density of 1 g cm−3 

and the same settling velocity as the irregularly shaped particle (Hinds, 
1999). The HR-ELPI+ sampled air near the center of the zEDGE kitchen. 
Oil-soaked sintered collection plates were used to eliminate particle 
bounce and impactor overloading. Details on the operational principle 
of the ELPI+ can be found elsewhere (Järvinen et al., 2014; Lemmetty 
et al., 2005; Marjamäki et al., 2000; Marjamäki et al., 2005). The 
HR-ELPI+ uses an iterative inversion algorithm to improve the 
size-resolution beyond the standard ELPI+ (Saari et al., 2018). The 
exhaust of the HR-ELPI+ pump was directed outdoors via the bathroom 
exhaust (Fig. S2). Measured particle number size distributions (dN/dLog 
(Da), cm−3) were translated to particle mass size distributions (dM/dLog 
(Da), μg m−3) assuming spherical particles with a density of 1 g cm−3 for 
Da≤100 nm (Wu and Boor, 2020) and the density of the disinfectant 
solution for particles with Da>100 nm, which were likely generated by 
the spray process (Table S1). The particle number size distributions were 
used to estimate number respiratory tract deposited doses for the head 
airways, tracheobronchial region, and pulmonary region, as described in 
the supplementary material. 
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3. Results and discussion 

3.1. Temporal VOC emission profiles during ethanol-based disinfection 
events in buildings 

The use of ethanol-based disinfectants in buildings results in sudden 
changes in the chemical composition of indoor air. Products A and B 
emitted a complex mixture of VOCs. More than 50 ions were found to 
increase by >50 % relative to background, with individual ion mixing 
ratios spanning the sub-ppb to ppm range (Tables S4–S5). Detected ions 
were assigned to one of the following VOC categories: (1.) ethanol and 
ethanol cluster ions; (2.) listed fragrance compounds for product B; and 
(3.) compounds associated with essential oils. Remaining ions with 
identified ion formulas were categorized as: (4.) hydrocarbons (CxHy); 
(5.) oxygenated hydrocarbons (CxHyOz); and (6.) nitriles (CxHyN) for 
product B. Signals without identified formulas were reported as: (7.) 
unidentified. Experiments A2 and B1 were selected as case studies for 
each product. The real-time PTR-TOF-MS data was visualized in two 
forms: time-series of ion-resolved mixing ratios (Fig. 1(I.a., II.a.)) and 

time-series of categorized VOC mass concentrations (Fig. 2). Figs. 
S4–S11 show results for other experiments. 

Several of the detected ions are associated with ethanol. m/z 47.06 
(C2H7O+) is the parent ion of ethanol. m/z 45.03 (C2H5O+), m/z 65.06 
(C2H7O+⋅(H2O)), m/z 75.08 (C2H5+⋅(C2H6O)), m/z 93.10 (C2H7O+⋅(-
C2H6O)), and m/z 139.12 (C2H7O+⋅(C2H6O)2) are fragment or cluster 
ions of ethanol (Boscaini et al., 2004; Buhr et al., 2002). The formation 
of ethanol cluster ions in the drift tube of the PTR-TOF-MS at high 
ethanol mixing ratios, such as those observed here, is described in detail 
by Boscaini et al. (2004). The increase of m/z 31.02 (CH3O+) may be due 
to reactions between ethanol and O2+ impurity ions in the drift tube 
(Kushch et al., 2008; Schripp et al., 2010; Španěl and Smith, 2008). 
Ethanol can react with the hydroxyl radical and nitric oxide to form 
formaldehyde (CH2O) and acetaldehyde (C2H4O), which are detected at 
m/z 31.02 and m/z 45.03, respectively (Dunmore et al., 2016). How-
ever, the PTR-TOF-MS cannot separate isomers and fragment ions of 
different origins; thus, the potential indoor formation of formaldehyde 
and acetaldehyde cannot be evaluated. Real-time separation of isomers 
requires a PTR-TOF-MS configured with a fast gas chromatograph 

Fig. 1. (I.) Time-series for ethanol-based disinfection event A2 using product A. (a.) ion-resolved mixing ratios from m/z 31 to 193, (b.) particle number size dis-
tributions from Da = 6 to 300 nm, and (c.) particle mass size distributions from Da = 300 to 10000 nm. (II.) Time-series for ethanol-based disinfection event B1 using 
product B. (a.) ion-resolved mixing ratios from m/z 31 to 247, (b.) particle number size distributions from Da = 6 to 300 nm, and (c.) particle mass size distributions 
from Da = 300 to 10000 nm. Additional details on the detected ions can be found in Table S3. Peak and average background mixing ratios for each ion can be found in 
Tables S4–S5. Peak and average background particle number and mass concentrations can be found in Table S6. 
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(Claflin et al., 2021). 
During experiment A2, the ethanol mass concentration increased 

immediately after the disinfectant was applied, reaching a peak at 14.64 
mg m−3 (6575 ppb), 200-fold greater than background levels (0.073 mg 
m−3, Table S4) (Figs. 1(I.a.) and 2 (a.)). Ethanol concentrations 
remained elevated during the 10 min surface contact time, after which 
they gradually decayed following removal of the disinfectant residue 
from the glass panels. However, the ethanol mass concentration 
remained at 0.62 mg m−3 (326 ppb) at the end of the 60 min decay 
period, 9-fold greater than background. A similar temporal emission 
profile was observed during experiment B1, where the ethanol mass 
concentration peaked at 18.97 mg m−3 (7983 ppb), 600-fold greater 
than background (0.034 mg m−3, Table S5) (Figs. 1(II.a.) and 2 (b.)). 
Ethanol was the dominant VOC released from both disinfectant sprays 
by mass (Fig. 2). This is due in part to the abundance of ethanol in the 
disinfectant solutions (A: 30–60 %wt., B: 58 %wt.) and the high vola-
tility of ethanol (Salthammer, 2016). The mean ethanol EFs for disin-
fectants A and B were 99.32 mg g-1 (82.54 mg ml-1) and 32.31 mg g-1 

(26.17 mg ml-1), respectively (Table S7). This suggests that disinfection 
activities are important episodic indoor sources of ethanol. 

In addition to ethanol, the PTR-TOF-MS measurements revealed the 
presence of a myriad of VOCs in the disinfectant emissions; their tem-
poral emission profiles can be seen in Figs. 1 and 2. While product A did 
not specify fragrance ingredients, monoterpenes and monoterpenoids 
related to essential oils were detected by the PTR-TOF-MS (Angulo 
Milhem et al., 2020; Nematollahi et al., 2018); this enables character-
ization of the unlisted fragrances in the disinfectant. Mixing ratios of 
monoterpenes (C10H16, detected at m/z 81.07 (C6H9+) and m/z 137.14 
(C10H17+)) peaked at 10.7 ppb after applying product A. Mono-
terpenoids detected at m/z 151.13 (C10H15O+, possibly thymol or car-
vone), m/z 153.12 (C10H17O+, possibly camphor or citral), m/z 155.13 
(C10H19O+, possibly linalool, eucalyptol, citronellal, α-terpineol, or 
terpinen-4-ol), and m/z 193.16 (C13H21O+, possibly ionone or dam-
ascone) are components of essential oils (Babu et al., 2002; Kokkini 

et al., 1995; Msaada et al., 2007; Wang et al., 2009). Their mixing ratios 
increased 2.7-4.2-fold above background, but were relatively low in 
magnitude, with peaks ranging from 0.33-0.76 ppb. Many of the listed 
fragrance components for product B (>0.01 %wt. or on a designated list) 
were detected by the PTR-TOF-MS. m/z 135.09 (C6H15O3+, dipropylene 
glycol), m/z 137.14 (C10H17+, 3-carene, also detected at m/z 81.07), m/z 
157.15 (C10H21O+, dihydromyrcenol), m/z 165.09 (C10H13O2+, 
eugenol), m/z 197.17 (C12H21O2+, linalyl acetate), and m/z 247.21 
(C17H27O+, acetyl cedrene) reached peak mixing ratios 2.6-18.2-fold 
greater than background. Several unlisted monoterpenoids were also 
observed (m/z 151.13, m/z 153.12, m/z 155.13, and m/z 193.16). Their 
mixing ratios were 4.1-12.1-fold greater than background, however, 
peak mixing ratios were low (1.0–1.6 ppb). Monoterpenes and mono-
terpenoids are common fragrance ingredients in disinfectants and could 
cause occupational asthma (Malo and Chan-Yeung, 2009; Melchior 
Gerster et al., 2014; Vizcaya Fernández et al., 2011). 

Emissions from the two ethanol-based disinfectants led to significant 
increases in the mixing ratios (typ. 100−450 ppb) of m/z 42.04 (C3H6+), 
m/z 43.05 (C3H7+), and m/z 57.07 (C4H9+). These ions can be attributed 
to the high abundance of alkanes (often ≥5 %wt.) included in the sprays 
as propellants (Dinh et al., 2015). C3H6+, C3H7+, and C4H9+ can be 
formed due to reactions between i-C4H10 and n-C4H10 with O2+ impurity 
ions (Španěl and Smith, 1998; Wilson et al., 2003). Similarly, C3H7+ can 
be formed via reactions between C3H8 and O2+ and NO+ impurity ions. 
While i-C4H10 and n-C4H10 have low proton affinities (677.8 kJ mol−1), 
it has been shown they undergo slow association reactions with H3O+ to 
form C4H9+ (Wilson et al., 2003). Due to such reactions with H3O+ re-
agent ions and O2+ and NO+ impurity ions, PTR-TOF-MS measurements 
in the indoor environment are therefore sensitive to episodic emissions 
of C3-C4 alkanes from pressurized spray-based consumer products. This 
precludes identification of selected ingredients in the disinfectants, such 
as triethylene glycol and t-butanol, that have a major fragment at m/z 
57.07 (Pagonis et al., 2019). Several unlisted diols were also detected by 
the PTR-TOF-MS, including methanediol (m/z 49.03), 1,2-ethanediol 

Fig. 2. Time-series of the categorized VOC mass concentrations during: (a.) ethanol-based disinfection event A2 using product A and (b.) ethanol-based disinfection 
event B1 using product B. Detected ions associated with each VOC category can be found in Table S3. 
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(m/z 63.04), 1,2-propanediol (m/z 77.06), 1,4-butanediol (m/z 91.07), 
and diethylene glycol (m/z 107.08). Peak mixing ratios for most were 
between 1−10 ppb, with methanediol the most abundant at 18−28 ppb. 

3.2. Temporal particle emission profiles during ethanol-based disinfection 
events in buildings 

Application of ethanol-based disinfectant sprays was associated with 
a significant increase in indoor particle number (PN) and particle mass 
(PM) concentrations (Table S6). The temporal evolution in particle 
number and mass size distributions during disinfection events A2 and B1 
are illustrated in Fig. 1(I.b., II.b.) and (I.c., II.c.). The HR-ELPI+ mea-
surements revealed substantial formation of nano-sized particles with 
Da≤100 nm (modal Da~23 nm) immediately after application of prod-
uct A. Peak PN concentrations ranged from 8.3 to 11.5 × 104 cm−3, 
similar in magnitude to PN concentrations observed during cooking on 
gas and electric stoves (Jiang et al., 2021b). Product A also produced 
accumulation and coarse mode particles from Da = 300−10000 nm that 
dominated particle mass size distributions. PM2.5 and PM10 concentra-
tions built up rapidly to 706 μg m−3 and 2708 μg m−3, respectively. 
Product B produced fewer particles compared to A. The variation in 
particle emissions among the two products may be due to differences in 
the spray nozzles (Nuyttens et al., 2007) and the composition of the 
disinfectant solutions (Kim et al., 2020). The observed particles are 
likely disinfectant droplets formed by the propellant spray process 
(Bekker et al., 2014; Hagendorfer et al., 2010). 

Indoor production of nano-sized particles on the order of 104-105 

cm−3 by the ethanol-based disinfectant sprays resulted in number res-
piratory tract deposited doses of 108-109 particles for an adult during the 

spray and contact periods (Table S8). Much of the number dose was 
received in the tracheobronchial and pulmonary regions. Such sprays 
may present a human health risk as inhalation of sub-100 nm particles is 
associated with numerous adverse toxicological outcomes (Allen et al., 
2017; Hussein et al., 2020; Li et al., 2016; Stone et al., 2017). 

3.3. Human inhalation exposure to VOCs during ethanol-based 
disinfection events in buildings 

High-resolution VOC measurements with a PTR-TOF-MS enables 
evaluation of real-time human inhalation exposure to VOC emissions 
during and after application of ethanol-based disinfectants. Inhalation 
exposure was evaluated for an adult involved in an indoor disinfection 
event following the temporal sequence of the experiments: 2 min spray 
period, 8 min contact period, 2 min wipe period, and 58 min decay 
period. Fig. 3 illustrates the per-period inhalation intake of VOCs for 
events A2 and B1. Figs. S12–S15 show results for other experiments. 
Ethanol contributed 80 % and 83 % to the total VOC inhalation intake 
during disinfection events A2 and B1, respectively. A non-negligible 
fraction (>15 %) of the total VOC inhalation intake was attributed to 
the remaining VOC categories (Fig. 3). Thus, one will inhale a complex 
mixture of VOCs during application of ethanol-based disinfectants. The 
magnitude of the total VOC mass inhaled (7−8 mg) presents a health risk 
for those involved in routine building disinfection during the COVID-19 
pandemic. 

The PTR-TOF-MS revealed time-dependent variations in VOC inha-
lation intake during the disinfection events. The spray, contact, wipe, 
and decay periods contributed 3 %, 24 %, 6 %, and 67 % to the total VOC 
inhalation intake (7.54 mg) during the 70 min disinfection event A2, 

Fig. 3. Inhalation exposure assessment during: 
(a.) ethanol-based disinfection event A2 using 
product A: (left y-axis) inhalation intake of the 
categorized VOCs during the spray, contact, 
wipe, and decay periods and (right y-axis) 
fraction of the total VOC inhalation intake per 
period; and (b.) ethanol-based disinfection 
event B1 using product B: (left y-axis) inhala-
tion intake of the categorized VOCs during the 
spray, contact, wipe, and decay periods and 
(right y-axis) fraction of the total VOC inhala-
tion intake per period. Inhalation exposure is 
evaluated for an adult engaged in light activity 
with an inhalation rate of 1.25 m3 h−1 (U.S. 
EPA, 2011). Detected ions associated with each 
VOC category can be found in Table S3.   

J. Jiang et al.                                                                                                                                                                                                                                    



Journal of Hazardous Materials Letters 2 (2021) 100042

6

respectively. This is comparable to that of disinfection event B1 (6 %, 26 
%, 6 %, and 62 %). zEDGE was equipped with a powered ventilator that 
maintained an outdoor AER of 3 h−1; this aided in diluting VOCs 
released by the disinfectants. However, it can be observed that VOC 
mass concentrations remained elevated during the entirety of the decay 
period as compared to background (Figs. 1 and 2). The VOC inhalation 
intake during the decay period was significant, contributing >60 % to 
the total intake. A person remaining in the same indoor space they 
disinfected for one hour following completion of the disinfection pro-
cedure would inhale a greater VOC mass than during the disinfection 
procedure itself. 

4. Conclusions 

This study demonstrated that a PTR-TOF-MS and HR-ELPI+ can be 
used together for real-time indoor detection of gas- and particle-phase 
species during residential building disinfection activities. Ethanol- 
based disinfectant sprays emitted a complex multi-phase mixture that 
included a broad spectrum of VOCs and particles. Notably, the disin-
fectants released significant quantities of ethanol (6000−8000 ppb) and 
nano-sized particles (104-105 cm−3) to the indoor environment. Inha-
lation exposure was strongly time-dependent, with the majority of VOC 
inhalation intake occurring in the one hour period after the disinfectant 
was sprayed and wiped off the surface. Given the increased use of 
ethanol-based disinfectants during the COVID-19 pandemic, there is an 
urgent need to understand the health risks of exposure to elevated 
concentrations of VOCs and particles produced by such products. As 
shown in this study, PTR-TOF-MS and HR-ELPI+ measurements can 
characterize the emissions of potentially health hazardous materials 
released from disinfectant sprays. 
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