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ARTICLE INFO ABSTRACT

Keywords: The abundance of super-micron biological and abiotic particles in occupied indoor environments can be influ-
Indoor air quality enced by time-dependent changes in human-associated emissions and building ventilation conditions. Real-time
Bioaerosols

measurements of fluorescent aerosol particles (FAPs) were integrated with a building sensing platform to
evaluate the influence of human occupancy and ventilation on the temporal dynamics of fluorescent biological
and abiotic particles in a living laboratory office. Concentrations and size distributions of FAPs were measured
via laser-induced fluorescence (LIF). Human occupants were identified as a major source of super-micron FAPs in
mechanically ventilated office buildings. Mass concentrations and size distributions of FAPs larger than 3 pm
scaled with human occupancy in the office. Detailed single particle fluorescence data indicated that human-
associated emissions enriched the office atmosphere with specific FAP types that varied in morphology. Office
occupants were strong emitters of ABC-type particles (number and mass), and to a lesser extent, A-type particles
(number and mass), AB-type particles (mass), and B-type particles (mass). Such FAP types are related to common
indoor bacterial and fungal aerosols and fluorescent clothing fabric fibers. The introduction of natural ventilation
via a double skin glass facade increased the indoor abundance of FAPs due to the efficient transport of outdoor
FAPs into the office. While LIF provides valuable real-time data on indoor FAP dynamics, it lacks specificity and
cannot fully resolve the origins of fluorescent biological and abiotic particles in indoor spaces.

Laser-induced fluorescence (LIF)
Building ventilation
Indoor microbiology

1. Introduction surfaces can release the biological and abiotic content of settled dust into

indoor air [21].

Human occupants are a major source of super-micron biological and
abiotic particles in indoor environments. Human-associated emissions
include the release of super-micron particles from the human envelope
(skin, hair, clothing, exhaled breath) and human movement-induced
particle resuspension from indoor surfaces [1-20]. Such processes can
significantly increase coarse mode particle mass concentrations in
occupied spaces in residential and office buildings [21]. Primary emis-
sions of biological particles from the human envelope include bacterial
and fungal aerosols associated with the microbiota of the skin, hair, and
oral/nasal cavities; viral aerosols produced by respiratory activities; and
skin cells and fragments [22-33]. Clothing acts as a primary source of
abiotic particles, such as clothing fabric fibers, and as a secondary source
of biological and abiotic particles that collect on clothing over time [13,
14]. Human-driven particle resuspension from flooring and furniture

The transient nature of human occupancy patterns in residential and
office buildings is expected to drive time-dependent changes in the
concentrations of human-emitted super-micron particles. Studies have
identified temporal relationships between the presence of humans and
the abundance of airborne bacterial and fungal aerosols [1,14,29,34,
35]. Occupancy can change rapidly, from seconds to minutes to hours, in
indoor environments such as collaborative open-plan offices, class-
rooms, and other public spaces [36]. The operation of building heating,
ventilation, and air conditioning (HVAC) systems can also influence
concentrations of indoor-generated particles. Similar to occupancy,
their operational modes change over variable time-scales [37,38].
Coupled, real-time measurements of super-micron particles, human
occupancy, and building ventilation are therefore needed to understand
the factors that modulate airborne populations of human-emitted
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biological and abiotic particles in dynamic and densely occupied indoor
spaces.

Laser-induced fluorescence (LIF) techniques offer a basis to detect
fluorescent biological and abiotic particles of human origin in real-time
(1 Hz). LIF-based aerosol instruments can provide useful time-resolved
data on concentrations and size distributions of human-associated
fluorescent aerosol particles (FAPs) that cannot be captured through
offline measurement techniques that lack high time-resolution [39-44].
LIF classifies particles by their fluorescence properties, providing a basis
to identify specific types of biological and abiotic particles [45,46].
Measurement campaigns involving LIF-based instrumentation have
been conducted in outdoor environments [47-52] and selected indoor
environments [53-57], including two short-term (<1 week) campaigns
in office spaces [58,59]. There are few long-term indoor measurements
of FAPs that span several months [57].

The objective of this study is to integrate real-time measurements of
FAP concentrations and size distributions (0.5-10 pm), human occu-
pancy, and building ventilation conditions to evaluate the temporal
dynamics of human-emitted fluorescent biological and abiotic particles
in an open-plan office environment. A 3-month measurement campaign
was conducted in one of the four Living Laboratory (LL) offices at the
Purdue University Ray W. Herrick Laboratories [60,61]. The LL office
includes a novel occupancy sensing array and an advanced building
automation system that monitors and controls the HVAC system and a
full-size double skin glass facade. This enabled implementation of both
mechanical and natural ventilation modes during the campaign.

2. Materials and methods

2.1. Measurement of fluorescent aerosol particles via laser-induced
fluorescence

FAP concentrations and size distributions were measured in the LL
office via a LIF-based instrument — the Wideband Integrated Bioaerosol
Sensor (WIBS) (WIBS-NEO, Droplet Measurement Technologies LLC,
Longmont, CO, U.S.A.). The WIBS is a single particle fluorescence
spectrometer that measures the optical equivalent diameter (D,), fluo-
rescence characteristics, and asymmetry factor (AF) of particles in real-
time [62].

The WIBS uses a 635 nm continuous laser diode and two pulsed
Xenon ultraviolet (UV) sources (at 280 nm and 370 nm) [63,64]. The
particle stream is first directed towards the 635 nm laser diode using a
laminar flow system. Here, elastic scattering intensity is measured for
each particle at a 90° offset as they pass the laser diode [51]. This
scattered intensity is used to determine D, (WIBS D, range: 0.5-30 pm)
via Mie scattering theory [52]. WIBS optical size classification (D, vs.
physical diameter) was periodically evaluated throughout the campaign
using polystyrene latex spheres; an example is shown in Fig. S1. Next, a
quadrant photomultiplier tube probes the forward scattering intensity at
four angular offsets to calculate the AF [51]. The AF is an approximate
representation of particle shape, with AF = 0 to 15: spherical or nearly
spherical particles; AF = 15 to 30: aspherical particles; and AF = 30 to
100: rod or fiber-shaped particles [47]. After the particle passes the laser
diode, it is subjected to UV irradiation via two sequential UV pulses
peaking at 280 nm and 370 nm [51,52]. The resulting particle fluores-
cence from each excitation is captured, filtered, and sent to two different
fluorescence detectors: FL1 (detects light from 310 to 400 nm) and FL2
(detects light from 420 to 650 nm) [64].

The WIBS provides three fluorescence excitation and emission
channels: Channel A (excitation: 280 nm, emissions: 310-400 nm),
Channel B (excitation: 280 nm, emissions: 420-650 nm), and Channel C
(excitation: 370 nm, emissions: 420-650 nm). The WIBS reports the
emissions in each channel in terms of numerical values of arbitrary
units. Thus, to ascertain if a particle has or has not exhibited fluores-
cence, threshold emission values are calculated for all three channels
using the forced trigger method [47,51,52]. In forced trigger, the Xenon
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UV lamps are operated in the absence of sample flow to determine the
background fluorescent emissions in each channel [47]. Particles are
considered fluorescent in a channel if they exceed the mean background
fluorescence intensity plus three times its standard deviation measured
for that channel [13,47,62,65]. The forced trigger calculation was per-
formed once per day during the measurement campaign.

A single particle can fluoresce in more than one channel. Therefore,
fluorescent particles detected via the WIBS can be grouped into seven
categories: (I) Type ‘A’ (exhibiting fluorescence only in Channel A), (I)
Type ‘B’ (exhibiting fluorescence only in Channel B), (III) Type ‘C’
(exhibiting fluorescence only in Channel C), (IV) Type ‘AB’ (exhibiting
fluorescence in both Channel A and Channel B), (V) Type ‘BC’ (exhib-
iting fluorescence in both Channel B and Channel C), (VI) Type ‘AC’
(exhibiting fluorescence in both Channel A and Channel C), and (VII)
Type ‘ABC’ (exhibiting fluorescence in all the three channels).

The WIBS output file contains size-resolved single particle data at >
1 Hz time-resolution. In this study, particles from D, = 0.5-10 pm were
selected for analysis. A custom-written Python code converted single
particle data into a time-series of size-resolved number concentrations of
total particles (fluorescent and non-fluorescent) (N, m~>) and fluores-
cent particles (N, m’3) with a moving average over a 30 min window
with a step size of 1 min. Number concentrations were grouped into nine
bins of the following D, widths: 0.5-0.65 pm, 0.65-0.8 pm, 0.8-1 pm,
1-2 pm, 2-3 pm, 34 pm, 4-5 pm, 5-7.5 pm, and 7.5-10 pm. The size-
resolved number concentrations were converted to size-resolved vol-
ume concentrations assuming spherical particles [66] and then to
size-resolved mass concentrations assuming a density of 1 g cm > [13,
52]. Size-integrated particle mass concentrations (D, = 0.5-10 pm) were
calculated for both total (PMr, pg m™>) and fluorescent (PMg, pg m™>)
particles. As the density for indoor particles from D, = 0.5-10 pm can
range from about 1 to 2.5 g cm 3 [5], the PM concentrations reported
here can be considered as lower bounds of the true PM [13].
Size-resolved concentrations were converted to lognormal size distri-
butions as: total particles, number: dNy/dlogD,, (m~3); FAPs, number:
dNg/dlogD, (m’s); total particles, mass: dMr/dlogD, (ug m’3); and
FAPs, mass: dMg/dlogD, (ug m~>). FAP concentrations and size distri-
butions were further partitioned among FAP types (A, B, C, AB, BC, AC,
ABCQ). Size-resolved particle number concentration ratios (Ng/Nt) and
size-integrated particle mass concentration ratios (PMy/PMt) were
calculated to quantify the fractional amount of total particles that
exhibited fluorescence.

As the WIBS is a single particle instrument, situations may arise
where two particles pass through the irradiation channel simultaneously
before the Xenon UV lamps recharge themselves. In such a case, the
second particle is counted, but its fluorescence is not captured. These
situations are typical in environments with high particle loadings, and
are corrected using a dead time correction factor [50,58]. However, the
particle concentrations in the studied environment were comparatively
low (Fig. 1). For example, on the day with the highest observed particle
number concentrations during the campaign, the error due to missed
particles was approximately 4.9%. Thus, due to the low likelihood of
missing particles, dead time corrections were not used.

2.2. Measurement of seated occupancy via a chair-based temperature
sensor array

Seated occupancy in the LL office was measured with a chair-based
temperature sensor array, as described in Wagner et al. (2021) [36].
The LL office includes twenty desk-chair pairs assigned to graduate
students that are organized in a grid of four rows of five desks each
(Fig. S2). Each chair was equipped with a K-type epoxy coated tip
thermocouple (TC-PVC-K-24-180, Omega Engineering Inc., Norwalk,
CT, U.S.A.) connected to a battery-powered datalogger (EasyLog
EL-USB-TC, Lascar Electronics Inc., Erie, PA, U.S.A.). Total seated oc-
cupancy was calculated with a time-resolution of 15 s. In this study, the
total seated occupancy is a proxy for total room occupancy as the
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Fig. 1. Complete time-series of size-integrated total particle and FAP mass concentrations in indoor air (under MV and MV + NV modes) and outdoor air as measured

by the WIBS during the measurement campaign.

occupants were observed to remain seated aside from brief periods of
standing entry and exit and group discussions. Graduate students in the
LL office did not follow any specific work schedules and worked flexible
hours.

2.3. Site description: Herrick Living Laboratory offices at Purdue
University

The WIBS measurement campaign was conducted from February 15
to May 22, 2019 in one of the four Herrick LL offices in West Lafayette,
IN, U.S.A [36,67-69]. The LL offices are part of a high-performance
building that was awarded a LEED Gold Certificate. The building was
designed and constructed following criteria for future high-performance
buildings and includes a state-of-the-art building automation and
sensing platform and energy-efficient HVAC technologies. Each LL office
has its own HVAC system that is monitored and controlled through a
building automation system enabled by Tridium JACE controllers and
the Niagara/AX software framework (Tridium Inc., Richmond, VA, U.S.
A.) [67]. The LL office has hard tile flooring, painted walls, and ceiling
tiles. The dimensions are 10.5m x 9.9 m x 3.2m (L x W x H) and the
volume is 333 m>.

The LL office operated under two ventilation modes during the WIBS
measurement campaign: (1) mechanical ventilation (MV) and (2)
mixed-mode ventilation with mechanical ventilation and natural
ventilation (MV + NV). Under the MV mode, the LL office supply air
contains a mixture of outdoor air and recirculated room air. After the
outdoor air and recirculated room air are mixed, the MV supply air
passes through an HVAC filter bank including a MERV 8 pre-filter with
synthetic media and a MERV 14 filter with layered melt-blown synthetic
media. NV is enabled by a south-facing, full-size double skin glass facade
(Fig. S2). The fraction of outdoor air that enters via NV is not filtered.
The MV supply and return air blowers are activated under the MV + NV
mode to create a negative pressure in the LL office to entrain outdoor air
through dampers located along the fagade. The nominal supply air ex-
change rate under the two modes was 7 h™! (same for day/night and
weekday/weekend); this helped to ensure uniform mixing of indoor air
in the LL office. The supply air exchange rate was determined using
volumetric airflow rates obtained from the building automation system.

WIBS measurements during the campaign were conducted as fol-
lows: (1) indoor WIBS measurements under the MV mode from February
15 to April 11, 2019 and from May 10 to 13, 2019; (2) indoor WIBS
measurements under the MV + NV mode from May 14 to 22, 2019; and
(3) outdoor WIBS measurements from April 13 to May 08, 2019. During
(1) and (2), the WIBS was housed in a custom-built sound enclosure with
a vertical copper tube sample inlet (Fig. S2) to minimize sound propa-
gation from the internal diaphragm pump and Xenon UV lamps. During
(3), the WIBS sampled from the outdoor air duct of the HVAC system via
an isokinetic probe.

3. Results and discussion

The following sub-sections present selected results from the WIBS
measurement campaign. First, temporal dynamics of indoor FAPs

measured in the LL office under the MV mode are discussed. Second,
properties of FAP types as categorized by the WIBS (A, B, C, AB, BC, AC,
ABC) for the LL office under the MV mode are presented. Third, char-
acteristics of indoor FAPs in the LL office under the MV mode are
compared to those measured outdoors and in the LL office under the MV
-+ NV mode. Finally, the indoor FAP measurements are discussed within
the broader context of indoor biological particle dynamics and
microbiology.

3.1. Temporal dynamics of fluorescent aerosol particles in the LL office
under mechanical ventilation

Fig. 1 presents the complete time-series of the size-integrated total
(PMt) and fluorescent (PMy) particle mass concentrations as measured
by the WIBS during the measurement campaign. For the LL office under
the MV mode, PMy ranged from 0.033 to 7.487 pg m > (mean PMy =
0.62 pg m~3), PMg ranged from 0.004 to 6.762 pg m~> (mean PMy =
0.39 pg m~3), and the mean size-integrated FAP number concentration
was N = 4.2 x 10* m 2. Similar indoor FAP number concentrations
were reported for occupied days in a classroom in California, U.S.A.
(mean Ng = 3.9 x 10* m~) [54] and during the summer months in a
two-occupant residence in California, U.S.A. (mean Ny = 4 x 10*m™)
[57]. Comparable Np have been measured in outdoor air during the
summer months in Hyytiala, Finland (mean Ny = 4.6 x 10* m’g) [49].
However, the mean N for the LL office was lower than that for a hospital
in Brisbane, Australia (mean Ng = 6 x 10* m~3) [55].

Fig. 2 presents temporal trends in total and fluorescent particle
number and mass concentrations and size distributions, human occu-
pancy, and indoor environmental conditions for a one-week period
during the measurement campaign (April 01 to 07, 2019). The LL office
remained under the MV mode with a nominal supply air exchange rate
of 7 h ! and a mean recirculation ratio of 0.36. A distinct temporal trend
is evident whereby the abundance of super-micron total and fluorescent
particles followed human occupancy patterns. FAP number and mass
concentrations for D, > 1 pm were greater during occupied periods as
compared to unoccupied periods and during weekdays as compared to
weekends (Fig. 2). Coarse mode FAPs contributed significantly to total
particle concentrations during occupied periods, with PMg/PMr scaling
with occupancy. During occupied periods, PMg/PMry varied from 0.5 to
0.8 and Ng/Nrt exceeded 0.7 for D, > 4 pm. Diurnal profiles of PMg/PMr
and occupancy were similar during weekdays (Fig. 3). Across all days
under the MV mode, the mean PMg/PMr was 0.34 for 0 occupants, 0.56
for 1 to 3 occupants, 0.68 for 3 to 6 occupants, and 0.72 for >6 occu-
pants. Collectively, these results demonstrate that humans are a major
source of super-micron FAPs in mechanically ventilated office buildings.
Prior chamber studies confirm that human emissions enrich the indoor
atmosphere with FAPs [1,13,14,56,70].

PMy/PMt was more strongly associated with occupancy as compared
to Ng/Nt (Figs. 3 and S3). As illustrated in Fig. 4, size-resolved Ng/Nt
profiles were nearly identical for occupancy groupings of 1-3, 3 to 6,
and >6. Thus, the size-resolved contribution of FAPs to total particle
number concentrations remains approximately the same for occupancy
>1. However, Ny/Nt is a strong function of particle size. Ngp/Nt
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Fig. 2. Illustrative temporal sequence in the LL office for a one-week period (April 01 to 07, 2019) under the MV mode: (top-left) size-integrated total particle and
FAP mass concentrations, (top-right) size-resolved ratios of FAP number concentrations to total particle number concentrations, (second-row-left) total particle
number size distributions, (second-row-right) FAP number size distributions, (third-row-left) total particle mass size distributions, (third-row-right) FAP mass size
distributions, (forth-row-left) ratios of size-integrated FAP mass concentrations to total particle mass concentrations, (forth-row-right) human occupancy, (bottom-
left) supply air exchange rates, and (bottom-right) indoor air temperatures and relative humidities (RH).
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Fig. 3. Comparison of diurnal trends in the ratio of size-integrated FAP mass concentrations to total particle mass concentrations with human occupancy in the LL

office for all days under the MV mode.

increased with particle size from D, = 0.5-10 pm (Fig. 4). Across all
occupied periods under the MV mode, the mean Ng/Nt was 0.10 for D,
= 0.5-1 pm, 0.33 for D, = 1-3 pm, and 0.83 for D, = 3-10 pm. Similar
observations regarding the size-dependency of Np/Nrt in indoor envi-
ronments were reported Li et al. (2020) [53] and Yang et al. (2021) [13].
Possible explanations include larger particles containing a greater
number of fluorophores [65] and an increased prevalence of fluorescent

biological and abiotic material among larger indoor particles [12].
Consequently, the number of FAPs were observed to exceed the number
of non-FAPs from D, = 3-10 pm across all occupancy regimes (Fig. S4).
Nevertheless, both super-micron FAPs and non-FAPs scaled with occu-
pancy. The size-resolved ratio of FAPs to non-FAPs (by number) did not
change significantly with occupancy in the sub-micron region; however,
it increased significantly during occupied periods in the super-micron
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Fig. 4. Size-resolved ratios of FAP number concentrations to total particle number concentrations for different occupancy groupings in the LL office for all days under
the MV mode: (left) mean size-resolved ratios per hour of the day and (right) mean size-resolved ratios for each occupancy grouping.

region (Fig. S4). This corroborates the earlier stated observation that
humans are a major source of super-micron FAPs in mechanically
ventilated office buildings. It should be noted that on some occasions,
high PMg/PMry ratios were observed during low to zero occupancy pe-
riods (Fig. 3). This is likely due to the transport of FAPs of outdoor origin
to the LL office via the supply air.

To further illustrate the temporality in FAP concentrations in the LL
office under the MV mode, Fig. 5 presents two illustrative sequences
involving human occupancy transitions over 24 h (case I, top panel)
and a floor cleaning event (case II, bottom panel). For case 1, total and
fluorescent particle mass concentrations (PMt, PMy) track occupancy as

Case |I: Occupancy Transitions

the LL office transitions from an occupied period (12:00 to 23:00) to an
unoccupied period (23:00 to 07:00) and back to an occupied period
(07:00 to 12:00). In the absence of humans during the unoccupied
period, PMg drops to below 0.1 pg m > and the office air is nearly devoid
of FAPs with D, > 3 pm. The sudden decrease in FAP concentrations for
D, = 3-10 pm as occupants leave the LL office can be attributed to
accelerated FAP removal via gravitational settling to indoor surfaces,
ventilation (exhaust to outdoors), and HVAC filtration [71,72]. FAPs
from D, = 0.5-3 pm, however, did not exhibit this rapid decay and were
detected during the unoccupied period. The presence of fluorescent and
non-fluorescent particles during this period are likely attributed to

Fig. 5. Illustrative short-term temporal sequences in
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T 2  occupancy transitions over 24 h from February 19 to
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particle delivery to the LL office via the supply air given the reduced
removal efficiency for particles from D, = 0.5-3 pm by the MERV 8
pre-filter and for particles from D, = 0.5-1 pm by the MERV 14 filter in
the HVAC system [73]. As the supply air is a mixture of outdoor and
recirculation air, the detected FAPs include outdoor FAPs and indoor
FAPs released during occupied periods that remain airborne prior to
removal via surface deposition, ventilation (exhaust to outdoors), and
HVAC filtration.

Table S1 summarizes size-resolved particle deposition loss rate co-
efficients from D, = 0.5-10 pm from selected studies. For the analyzed
period, the LL office nominal supply air exchange rate was 7 h™". Thus,
the deposition loss rate coefficients suggest that for particles from D, =
0.5-3 pm, removal via ventilation is the dominant loss mechanism,
whereas for particles from D, = 3-10 pm, both removal via deposition
(gravitational settling) and ventilation are relevant. Furthermore, the
deposition loss rate coefficients indicate that particle deposition from D,,
= 0.5-10 pm scales with particle size (also observed in Fig. 5).

Cleaning the hard flooring of the LL office by a custodial staff
member was associated with a sudden increase in FAP mass concen-
trations (Fig. 5, case II, bottom panel). The cleaning period began at
around 06:00, continued until 07:00, and occurred during a period of
zero seated occupancy. Dry sweeping and wet mopping were sequen-
tially conducted. Indoor FAPs increased nearly 2200-fold, from PMg =
0.02 pg m 2 prior to floor cleaning to a maximum of PMg = 44.12 g
m~>3. An equivalent increase was observed for total particles (PMry).
Following the cleaning event, FAPs decayed toward background con-
centrations over a period of 2 h. The majority of emitted FAPs were in
the coarse mode, with D, > 1 pm. This suggests that floor cleaning ac-
tivities can be important episodic sources of super-micron FAPs in office
environments [74]. The FAPs were likely released into the air via the
resuspension of settled FAPs on the floor surface [21] during dry
sweeping, and to a lesser extent, during wet mopping.

Throughout the WIBS measurements in the LL office under the MV
mode, the air temperature (T) varied between 20 and 28 °C and the
relative humidity (RH) varied between 10 and 60%. Prior research
suggests that RH can influence FAP emissions from the human envelope
[13,75]. To discern the role of T and RH on the relative abundance of
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FAPs in the LL office, PMg/PMrt was plotted against T and RH (Fig. S5)
for three occupancy groupings. It is evident that T and RH have no
meaningful impact on PMg/PMy (R? < 0.05). Thus, under the range of
indoor environmental conditions measured, T and RH do not influence
the relative abundance of indoor FAPs.

3.2. Fluorescent aerosol particle apportionment in the LL office under
mechanical ventilation

The multi-channel single particle fluorescence data provided by the
WIBS enables classification of indoor FAPs among seven categories: A, B,
C, AB, BC, AC, and ABC. Such categorization provides a basis for
elucidating the possible biological and abiotic origins of the FAPs in the
LL office (discussed later in Section 3.4). Fig. 6 presents the appor-
tionment of the size-integrated FAP mass concentrations and FAP mass
size distributions by FAP type over a one-week period (April 01 to 07,
2019). Non-fluorescent particles are included in the former. ABC-type
particles dominated size-integrated FAP mass concentrations and
contributed significantly to FAP mass size distributions for D, > 2 pm.
ABC-type and non-fluorescent particles were similar in magnitude dur-
ing occupied periods. Mass concentrations and size distributions of ABC-
, A-, and AB-type particles closely followed occupancy patterns in the LL
office. On some days, so did B-type particles. A-, B-, and C-type particles
contributed meaningfully to sub-1 pm mass size distributions during
both occupied and unoccupied periods. AC-type particles were seldom
detected.

The relative contribution of each FAP type to FAP mass and number
concentrations for all days under the MV mode are provided in Table 1.
ABC-type particles contributed >50% to indoor FAP mass, while A-, B-,
and AB-type particles contributed 10-11%. FAP number concentrations
were dominated by A-, B-, and C-type particles. These results are
consistent with those reported by Yang et al. (2021) [13] and Zhou et al.
(2017) [75].

The size-resolved apportionment of each FAP type on a number-basis
is presented in Fig. 7 (right panel) (number size distributions resolved by
FAP type are provided in Fig. S6). Sub-micron FAPs are dominated by A-,
B-, and C-type particles. Together, they contribute more than 90% to the
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Fig. 6. Illustrative temporal sequence of FAP apportionment in the LL office for a one-week period (April 01 to 07, 2019) under the MV mode: (top-left) stacked size-
integrated particle mass concentrations partitioned by FAP type (A, B, C, AB, BC, AC, and ABC) and non-fluorescent (NF) particles (an enlarged version is shown in
Fig. S7 for better readability), (top-right) A-type mass size distributions, (second-row-left) B-type mass size distributions, (second-row-right) C-type mass size dis-
tributions, (third-row-left) AB-type mass size distributions, (third-row-right) BC-type mass size distributions, (bottom-left) AC-type mass size distributions, and

(bottom-right) ABC-type mass size distributions.
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Table 1

Relative contribution of FAP types to indoor FAP number and mass concentra-
tions in the LL office for all days under the MV mode. Values listed as: mean
(standard deviation).

FAP Type Contribution to FAP Number (Ng) Contribution to FAP Mass (PMg)
A 30.21% (11.75%) 10.68% (10.78%)

B 30.29% (10.30%) 10.39% (9.47%)

C 13.33% (4.63%) 3.52% (4.64%)

AB 8.04% (3.09%) 10.99% (8.26%)

BC 6.69% (3.41%) 6.73% (7.72%)

AC 0.61% (0.42%) 0.91% (3.06%)

ABC 10.83% (8.29%) 56.80% (25.44%)

smallest WIBS size fraction measured, D, = 0.5-0.65 pm. Conversely, A-,
B-, and C-type particles contribute negligibly to size fractions with D, >
3 pm. Thus, while A-, B-, and C-type particles dominate the number of
indoor FAPs, their comparatively small size limits their contribution
towards FAP mass concentrations (Fig. 6). For ABC-type particles,
approximately 58% are found in the D, = 1-4 pm size fraction and 28%
in the D, = 4-10 pm size fraction. Although ABC-type particles are low
in number (Table 1), their contribution to coarse mode FAPs is large,
thus, they dominate FAP mass concentrations in the LL office (Fig. 6).
AB-type particles exhibited a mode at D, = 2-3 pm. As a result, they
contributed second most to FAP mass. BC- and AC-type particles
contributed to all size fractions, the latter at very small percentages.
Temporal variations in the apportionment of each FAP type on a
number-basis is presented in Fig. 7 (left panel) for a one-week period
(April 01 to 07, 2019). As occupancy increases on weekdays (April 01 to
05, 2019), so does the proportion of A- and ABC-type particles. The
contribution of C-, AB-, and BC-type particles to FAP number concen-
trations did not show a strong association with occupancy during this
week. Correlation coefficients of human occupancy with apportionment
of each FAP type (by number) in the LL office under the MV mode were:
0.33 for A-type particles, —0.53 for B-type particles, —0.18 for C-type
particles, —0.08 for AB-type particles, —0.08 for BC-type particles, 0.23
for AC-type particles, and 0.64 for ABC-type particles. This suggests that
the office occupants were strong emitters, by number, of ABC-type
particles, and to a lesser extent, A-type particles. Conversely, B-type
particles (by number) exhibited a significant negative correlation with
occupancy. Their relative abundance increased as the occupancy was
reduced during the night hours and weekends (Fig. 7). This suggests that
B-type particles (by number) are likely of outdoor origin, introduced to
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the LL office via the HVAC system.

Diurnal trends in the ratio of the number of each FAP type to the total
number of FAPs (e.g. Ny/Ng) are shown in Fig. 8 for all days under the
MV mode. Variability in the relative number of each FAP type was
observed over the duration of the measurement campaign. For example,
on some weekdays, Na/Nr often exceeded 0.5 (e.g. February 26 to March
01, 2019), while on most others Na/Nr generally remained below 0.4.
The ratio of ABC-type particles to total FAPs on a number-basis often
tracked occupancy patterns in the LL office during the campaign. The
floor cleaning periods in the morning hours on February 21, March 20,
and March 21, 2019 were enriched with ABC-type particles (Napc/Nr >
0.4 on February 21 and March 21, 2019). The number contribution of
AB-type particles also rose during these periods. Thus, floor cleaning
(sweeping and mopping) is a source of ABC- and AB-type particles.
Ratios of B- and C-type particles showed no distinguishable diurnal
trends.

Collectively, the results presented in Figs. 6-8 demonstrate that
human occupants are a major source of ABC-type particles (number and
mass), and to a lesser extent, A-type particles (number and mass), AB-
type particles (mass only), and B-type particles (mass only). Human
occupants were not a major contributor to C-, BC-, and AC-type particles
(number and mass). During the unoccupied periods, FAPs were gener-
ally dominated by A-, B-, and C-type particles (by number). Thus, they
were very likely supplied to the LL office via the supply air. As all three
FAP types were most associated with sub-micron particles, they had the
highest likelihood of penetrating through the MERV 8 and 14 filters in
the HVAC system, thereby entering the LL office with the supply air.

Probability distribution functions of the asymmetry factor (AF, proxy
for particle shape) for each FAP type under two occupancy groupings
(low: < 3 occupants and high: > 3 occupants) for all days under the MV
mode are presented in Fig. 9. The AFs for each FAP type followed
lognormal distributions, as suggested by Xie et al. (2017) [58]. The AF
modes of A-, B-, C-, AB-, BC-, and AC-type particles lie within the range
of AF = 1 to 10, indicating that these particles are predominantly
spherical or nearly spherical [47]. In addition, their AF distributions
remain unchanged during periods of low and high occupancy in the LL
office. ABC-type particles, however, exhibit different trends in AF dis-
tributions. During low occupancy periods, the AF distribution of
ABC-type particles is like that of other FAP types, implying a largely
spherical or nearly spherical form. However, as the occupancy increases,
the frequency of ABC-type particles with AF > 10 rises (AF distribution
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Fig. 7. FAP apportionment in the LL office for a one-week period (April 01 to 07, 2019) under the MV mode: (left) comparison of the time-resolved relative
contribution of FAP types to FAP number concentrations with human occupancy and (right) mean size-resolved relative contribution of FAP types to FAP number

concentrations.
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Fig. 8. Comparison of diurnal trends in the ratio of the number concentrations for each FAP type to total FAP number concentrations with human occupancy in the
LL office for all days under the MV mode: (first row) A-type number ratios, (second row) B-type number ratios, (third row) C-type number ratios, (fourth row) AB-type
number ratios, (fifth row) BC-type number ratios, (sixth row) AC-type number ratios, (seventh row) ABC-type number ratios, and (eighth row) human occupancy.

becomes bimodal with one mode at AF < 1 and another mode at AF >
10). This suggests that ABC-type particles associated with human
emissions in the LL office likely include variable morphologies (spher-
ical, aspherical, and fiber-like).

3.3. Fluorescent aerosol particles: outdoors vs. indoors under mechanical
and natural ventilation

Indoor FAP mass and number concentrations in the LL office varied
between the MV and MV + NV modes, with higher concentrations
observed under the latter (Figs. 1 and 10 and Table 2). This is consistent
with the elevated levels of outdoor FAPs on both a mass- and number-
basis. The mean PM for outdoor air was 2.82-fold greater than that
indoors under the MV mode. The MV + NV mode increased the mean
indoor PMr by a factor of 1.92 compared to the MV mode. Mean FAP
number concentrations increased from Ny = 4.2 x 10* m~ under the
MV mode to Ny = 6.1 x 10* m~ under the MV + NV mode. Under the
MV + NV mode, unfiltered outdoor air enters the LL office via dampers
located along the double skin facade (mean outdoor air exchange rate of
2.55 h™1). This offers efficient entry of outdoor FAPs of biological and
abiotic origin across all size fractions into the office environment [76]. A
recent study also observed an increase in concentrations of total

particles in an office when natural ventilation was introduced [77].
Under the MV mode, some fraction of outdoor FAPs is removed via the
HVAC filters [78]. Thus, the filters act to protect the LL office from
outdoor FAPs, while enhancing the relative -contribution of
indoor-generated and human-associated FAPs during occupied periods.
Diurnal and weekly trends in size-integrated FAP mass concentra-
tions partitioned by FAP type for indoor air under both ventilation
modes and outdoor air are shown in Fig. 10. Non-fluorescent particles
are also included. In general, the apportionment of FAPs by FAP type
was similar between outdoor air and indoor air under both ventilation
modes (Table 2). The diurnal trend in PMg/PMt more closely followed
occupancy patterns under the MV mode as compared to the MV + NV
mode. FAP profiles under the MV + NV mode are influenced by both
occupancy and the significant outdoor-to-indoor transport of FAPs
across the double skin facade. The latter perturbs the strong FAP-
occupancy association for PMg/PMr observed under the MV mode.
There were no discernible trends in the diurnal pattern of PMg/PMry for
outdoor air, however FAP mass concentrations were generally the
greatest during the early morning and lowest during the night.
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Fig. 9. Asymmetry factor (AF) probability distribution functions (PDFs) for each FAP type (A, B, C, AB, BC, AC, and ABC) resolved by occupancy in the LL office for

all days under the MV mode.

3.4. Relating indoor fluorescent aerosol particles to biological particles: A
qualitative discussion

The WIBS measurements in the LL office during occupied periods
under the MV mode demonstrate that humans are a major source of
super-micron FAPs, including ABC-, A-, B-, and AB-types (Figs. 2 and 6).
Therefore, the majority of the measured FAPs with D, > 3 pm during
these periods are expected to be associated with human emissions.
Human-associated emissions include FAPs released from the human
envelope (skin, hair, clothing, exhaled breath) and human movement-
induced FAP resuspension from indoor surfaces. As the LL office occu-
pants remained seated aside from brief periods of standing entry and exit

and group discussions, walking-induced FAP resuspension from the hard
flooring was likely small compared to FAP emissions from the seated
human envelope [12]. Similarly, FAP emissions from exhaled breath are
expected to be small compared to FAP emissions from skin, hair, and
clothing. Occupants were asked to keep speech to a minimum in the LL
office and respiratory aerosol emissions for sedentary breathing are
generally low [79,80].

The detected FAPs include a combination of biological and abiotic
particles exhibiting fluorescence in the given excitation-emission bands
of the WIBS [13,65]. Coarse mode FAPs released from the seated human
envelope likely include bacterial and fungal aerosols, skin cells and
fragments, and fluorescent clothing fabric fibers [13,81]. Human skin,
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Fig. 10. Illustrative temporal sequences for: (left) LL office under MV mode (April 01 to 07, 2019), (middle) LL office under MV + NV mode (May 15 to 21, 2019),
and (right) outdoor air (May 01 to 07, 2019). For each condition, the following are shown: stacked size-integrated particle mass concentrations partitioned by FAP
type (A, B, C, AB, BC, AC, and ABC) and non-fluorescent (NF) particles (enlarged versions are shown in Fig. S8 for better readability) and ratios of size-integrated FAP

mass concentrations to total particle mass concentrations.

Table 2

Summary of total particle and FAP number and mass concentrations in indoor
air (under MV and MV + NV modes) and outdoor air. The relative contribution
of FAP types to FAP number concentrations is provided. Values listed as: mean
(standard deviation) across all days for each condition.

envelope in the form of larger bacterial cell agglomerates with D, ~2-5
pm [12,34]. Thus, the increase in the number and mass of A-type par-
ticles during occupied periods in the LL office (Figs. 6-7) might be due to
the emissions of bacterial cells and their agglomerates from the human
envelope. Hernandez et al. (2016) [86] found the majority of the eval-
uated fungal aerosols to be classified as A- and AB-type particles, with a
smaller fraction classified as B-, C-, AB-, AC-, and ABC-type particles.
Such a broad fluorescence profile makes it difficult to relate the presence

of fungal aerosols to specific FAP types measured in the LL office.
Clothing fabric fibers that are white in color or contain whitening
agents associated with detergent residue [3,87] have been categorized
as ABC-type particles and are typically associated with D, > 1 pm [13,
65]. It is likely a fraction of the detected coarse mode ABC-type particles
during occupied periods are clothing fibers (Fig. S6). Such particles may

have aspherical and fiber-like shapes. This may explain the increased

prevalence of ABC-type particles with AF > 10 under high occupancy
periods (Fig. 9). Clothing can also serve as a vector for the redistribution
of environmental bacteria and fungi that deposit on clothing while in

Parameter  Indoor Air: MV Indoor Air: MV + NV Outdoor Air
Mode Mode

N 47 x 10°m™3 6.0 x 10°m 3 1.3 x 10°m 3

T (3.8 x 10°m™3) (4.8 x 10°m™3) (2.0 x 10°m™3)

4.2 x10*m™ 6.1 x 10*m™ 7.7 x 10*m™3

Ng 4 3 4 3 4 -3
(8.4 x10"m ™) (5.0 x 10" m™>) (5.7 x10°m™>)
0.62 pg m~> 1.35 pgm™> 2.17 pgm~>

PMy _3 -3 -3
(2.23 ygm™) (1.78 ygm™) (2.03 ygm™)
0.39 ug m 0.75 pg m 1.10 pg m

PMy _3 -3 -3
(1.53 ugm °) (1.47 pgm ™) (1.04 pgm °)

FAP Type Contribution to FAP Number (Ng)

A 30.21% 29.66% 32.26%
(11.75%) (10.14%) (14.12%)

B 30.29% 27.10% 26.35%
(10.30%) (9.71%) (7.79%)

C 13.33% 11.20% 9.48%
(4.63%) (6.08%) (3.34%)

AB 8.04% 10.36% 11.20%
(3.09%) (3.68%) (3.40%)

BC 6.69% 6.34% 6.81%
(3.41%) (2.78%) (3.39%)

AC 0.61% 0.85% 0.83%
(0.42%) (0.59%) (0.45%)

ABC 10.83% 14.49% 13.07%
(8.29%) (7.77%) (5.34%)

hair, and oral/nasal cavities harbor a diversity of bacterial and fungal
communities that can be shed into the indoor environment (along with
skin cells), thereby shaping the office microbiome [40,82-84]. Clothing
fabric fibers can be released into the air via textile friction induced by
bodily movements [85].

The WIBS has been shown to reliably detect common bacterial and
fungal aerosols of indoor origin [86], including bacterial groups such as
Mycobacterium, Pseudomonas, Acinetobacter, Micrococcus, and Staphylo-
coccus [2,15,30,34,35] and fungal groups such as Aspergillus, Cladospo-
rium, Fusarium, Penicillium, Phoma, Stachybotrys, and Ulocladium [2,15,
34]. Hernandez et al. (2016) [86] found most single bacterial cells to be
categized as sub-micron A-type particles by the WIBS. However, single
bacterial cells may be more commonly emitted from the human

10

outdoor environments. One study found that clothed occupants are
secondary emitters of bacteria and fungi of outdoor origin [14]. It is
therefore likely that the observed human emissions of FAPs in the LL
office include some contribution of secondary emissions of environ-
mental bacterial and fungal aerosols from clothing.

Relating indoor FAPs to specific biological and abiotic particles is
challenging without supplemental data, such as offline particle charac-
terization with culture-, DNA-, and microscopy-based methods. While
the WIBS enables real-time detection of FAPs, it lacks specificity and the
size-dependency of particle fluorescence makes FAP identification based
on a single threshold value challenging [65]. A recent literature review
has outlined the major limitations of LIF-based instruments for real-time
detection of biological FAPs [44]. Novel data-driven techniques can
improve the ability of the WIBS to broadly identify FAP origins. For
example, clustering analysis has been used to group measured FAPs into
biological and abiotic categories [88-91]. Application of such tech-
niques to evaluation of indoor FAP dynamics can provide additional
insights on their possible origins.

4. Conclusion

Real-time measurements of fluorescent aerosol particles (FAPs), oc-
cupancy, and HVAC system operation were integrated together to
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evaluate how humans and building ventilation conditions influence the
indoor abundance of fluorescent biological and abiotic particles in an
open-plan office environment. Indoor measurements with a laser-
induced fluorescence (LIF)-based instrument (WIBS) in a living labora-
tory office demonstrated that humans are a major source of super-
micron FAPs. Under mechanical ventilation, mass concentrations and
size distributions of FAPs larger than 3 pm scaled with human occupancy
in the office. Human occupants enriched the office with super-micron
FAPs across a variety of fluorescence types (ABC-, A-, B-, and AB-
types), some of which were associated with asymmetry factors sugges-
tive of aspherical and fiber-like particle shapes. During unoccupied pe-
riods in the office under mechanical ventilation, FAPs larger than 3 pm
were seldom detected. The introduction of unfiltered supply air via
natural ventilation with a full-size double skin glass facade increased
indoor FAP concentrations due to the efficient transport of outdoor FAPs
to the office space. The measurements demonstrate how the composition
of indoor air can change over variable time-scales due to time-dependent
changes in human occupancy patterns and HVAC operational modes.
While LIF offers valuable insights into the temporal dynamics of fluo-
rescent biological and abiotic particles in a dynamically changing indoor
environment, it has limitations that prevent unambiguous identification
of particle types. Coupled online and offline measurement techniques
can improve detection of specific biological and abiotic particles in
occupied offices.
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