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Abstract

Using molecular simulations, we study the processes of capillary condensation and capillary

evaporation in model mesopores. To determine the phase transition pathway, as well as the corre-

sponding free energy profile, we carry out enhanced sampling molecular simulations using entropy

as a reaction coordinate to map the onset of order during the condensation process, and of disorder

during the evaporation process. The structural analysis shows the role played by intermediate

states, characterized by the onset of capillary liquid bridges and bubbles. We also analyze the

dependence of the free energy barrier on the pore width. Furthermore, we propose a method to

build a machine learning model for the prediction of the free energy surfaces underlying capillary

phase transition processes in mesopores.
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I. INTRODUCTION

The formation of liquid bridges and vapor bubbles between solid surfaces has drawn

considerable interest in recent years. This is due to their significance in interface science

and adhesion1–7 and, in the case of nanoscopic capillaries, for their applications in nanotri-

bology and nanolithography8–17. Density functional theory calculations18–21 and molecular

simulation studies22–45 have been instrumental in furthering our understanding of the forma-

tion of liquid-like junctions and of cavitation in nanopores. They have also shown that the

mechanism proposed for macroscopic capillaries proposed by Everett and Haynes46 could

be applicable to nanoscopic pores, and that, e.g., capillary condensation proceeds through

a series of structural changes involving the formation of a liquid bridge across the pore

section37,39,45. Here we focus on combining machine learning with enhanced sampling simu-

lations to provide a complete characterization of the capillary condensation and evaporation

processes in cylindrical nanopores.

In recent years, machine learning has emerged as an extremely useful tool to explore and

predict complex phenomena47–50. Data-driven methods have shown to give excellent results

when applied to the identification of new force fields and coarse-grained models51–56, the re-

construction of complex high-dimensional potential energy surfaces57,58 and the prediction of

thermodynamic and kinetic properties59,60. This considerably accelerates the determination

of the key properties for these systems, since their computation via conventional molecular

simulation methods often requires an extensive sampling of the phase space, i.e. perform-

ing simulations over very large time-scales and length-scales that quickly become extremely

computationally intensive. Machine Learning can also lead to new insights into assembly

processes61 and yield predictive models for heterogeneous catalysis62. Artificial neural net-

works have indeed been shown to give a new way to obtain free energy landscapes that are

difficult to compute. This is especially the case for processes that involve transitions from

one state to another, a task for which rare event sampling and enhanced sampling simula-

tions are required63–67. In the field of adsorption, machine learning techniques are also used

to predict adsorption isotherms68, free energies of adsorption69, catalytic activity70,and to

screen materials for gas storage and separation68,71,72. For instance, ML predictions on gas

adsorption capabilities based on crystal designs such as MOFs and COFs at operating condi-

tions73–76 give excellent results when compared to conventional Monte Carlo and Molecular
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Dynamics simulations. They also provide unique routes to tailor new materials to enhance

adsorption capabilities77–79.

Here, we focus on the phenomena of capillary condensation and evaporation in nanopores.

Such processes rely on the transition from a vapor phase to a liquid phase (condensation)

or, alternatively, the transition from a liquid phase to a vapor phase (evaporation). As a

result, the system needs to overcome a free energy barrier to undergo a phase transition in

these confined geometries80. Indeed, capillary condensation and evaporation originate from

a metastable state and occur through an activated process, i.e., through a heterogeneous

nucleation event18,33–35,43–45. In order to study these transitions and the formation of liquid

bridges and bubbles during condensation and evaporation they entail, different molecular

simulations techniques, such as Monte Carlo Gauge-cell methods, Expanded Wang-Landau

algorithms or NPT-S approaches, have been employed35,45,81–83 on nanotubes of different

natures, e.g., hydrophobic or hydrophilic84. These studies have demonstrated that the cap-

illary condensation process starts with the nucleation of a liquid bridge across the pore,

that gradually extends through the length of the nanopore until the entire pore is filled

with a liquid-like phase39. Similarly, the capillary condensation process begins with the

nucleation of a vapor bubble across the pore, that gradually extends through the length

of the nanopore until the pore is completely filled with a vapor-like phase39. While recent

progress has shed light on the mechanisms underlying capillary phase transitions35,45,81, the

dependence of the process on the pore features has yet to be fully understood85–87. Most

notably, the characteristics of the free energy barrier that controls the nucleation events

and thus the capillary phase transition processes, and its dependence upon pore width,

have yet to be determined. We recently proposed a new simulation technique, termed as

the µV T − S simulation method, based on an an entropic reaction coordinate to elucidate

the nucleation pathway45,88,89 and apply it here to the case of capillary phase transitions in

pores of increasing diameters. After identifying the free energy profile for the capillary phase

transition processes through simulations for a few sets of conditions, we develop a Machine

Learning model that generalizes the prediction of the free energy profile to a broad range of

conditions.s

In this paper, we focus on generating data using the µV T − S simulation technique to

obtain free energy surfaces for the condensation and evaporation in nanopores of various ge-

ometries. Then, we use machine learning and, more particularly Artificial Neural Networks
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(ANNs), to predict free energies for a wide range of nanopore width and length. The paper

is organized as follows. In the next section, we present the force fields used to model the

adsorbed gas and the cylindrical nanocapillaries. We also give a brief account of the simula-

tion method and technical details employed in this work. We provide the main conclusions

from this work in the last section.

II. SIMULATION METHOD AND MODELS.

A. Force Fields

We use a Lennard-Jones potential to model the interactions between Argon atoms through

φ(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(1)

with the following parameters: m = 39.95 g/mol, σ = 3.4 Å and ε = 119.8 K. This force field

has shown to model very well the fluid properties for the liquid and vapor phases, as well as

the vapor-liquid equilibria. It has also been used to study adsorption in different materials,

including nanotubes, MOFs and COFs, leading to a very good agreement between simulation

results and experimental data39. We use the conventional system of reduced units90, in which

σ is the unit length, ε is the unit energy and m the unit mass.

The pores we model are MCM-41 silica mesoporous molecular sieves. As shown in prior

work by Neimark et al.39, this model provides an excellent agreement for Argon adsorp-

tion isotherms between simulations and experiments. In this work, we consider cylindrical

nanopores with 4 different pore widths (R = 10σ, R = 12σ, 16σ and 20σ) and a length of

H = 30σ (the axis of the cylindrical pore is along the z direction). The interactions between

Argon atoms and the nanopore are modeled with a functional form Usf (ri, R), commonly

used to model MCM-41 silica mesoporous molecular sieves39,45,91, and given by
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in which ri is the radial coordinate of an argon atom i in the pore, R is the pore radius, ρs is

the surface density of adsorption centers and F (α, β; γ; δ) is the hypergeometric series. The

parameters for the fluid-solid interactions are σsf,i = 3.17 Å and ρsεsf,i 2253 K/nm239,45. We

add that both the fluid model and the pore-fluid model have been parametrized to provide an

accurate account of the experimental data. The force field for the fluid was parametrized to

model the experimental data for the phase transitions and boiling point for Argon, and the

pore-fluid interaction was parametrized to model the experimental data for the adsorption

of Argon in MCM-4191.

B. µV T − S simulations

The formation of a liquid bridge during capillary condensation (or of a vapor bubble dur-

ing the evaporation) are rare events since they are associated with configurations with a very

low probability, and thus very rarely visited, when using conventional sampling methods. In

order to capture the mechanism underlying the transition phenomenon, i.e. the transition

from a metastable vapor to a stable liquid phase (condensation) or from a metastable liquid

to a vapor phase (evaporation), one needs to enable the system to overcome the large free

energy barrier related to the formation of either a bridge or a bubble. Several methods

have been developed to simulate nucleation processes. One of them, known as the umbrella

sampling, relies on the use of a bias potential to overcome the free energy barrier and then

to simulate the entire nucleation process45,66,92–101. The bias potential is a harmonic func-

tion of a reaction coordinate, which drives the nucleation process. For vapor → liquid and

liquid→ vapor transitions, it has been suggested that entropy could be an efficient reaction

coordinate102, since it gives a thermodynamic measure of order and disorder and clearly

distinguishes between the two phases. It is thus possible, for the vapor → liquid nucleation

process, to induce order within the system by decreasing the target value of the entropy in

the umbrella sampling potential. By the same token, it is also possible to study the liquid

→ vapor transition by increasing entropy. Here, we carry out grand-canonical Monte Carlo

(MC) simulations combined with the umbrella sampling technique using entropy as reaction

coordinate. As discussed in previous work34,45,84, the umbrella sampling potential is of the

form VUS = 1
2
k(S − S0)

2, in which k is a spring constant, S = U+kBT lnQ(N,V,T )
T

the value

taken by the entropic reaction coordinate for the configuration of the system, and S0 the
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target value for the entropy imposed to the system. Here, since the system is confined in

a nanopore, the product PV is very small compared to µN and thus can be neglected in

the determination of S45,102. This leads to the following expression for the entropic reaction

coordinate S = U−µN
T

. We add that we use the total entropy S∗ as the reaction coordinate

rather than, for instance, the number of atoms in the pore Np because Np does not char-

acterize the onset of organization in the system, i.e., the nucleation of the liquid bridge in

the case of capillary condensation. For instance, for the same Np, the confined fluid can

take the form of either a uniform fluid of intermediate density, or a fluid with a region of

high density (liquid bridge) and a region of low density (surrounding vapor-like fluid), or a

fluid with multiple small liquid-like clusters surrounded by a vapor-like fluid as a result of

”entropic breaks”103. For this reason, and in line with recent work in the field of nucleation

by, among others, Parrinello and co-worker104,105 and by our group45,66,88,89, we employ an

entropic reaction coordinate. As shown later in Figs. 3c) and 4), using S∗ allows for a steady

growth in the width of the liquid bridge that nucleates and extends across the pore and,

as a result, in the number of atoms in the pore. We add that, in prior simulation work,

Neimark and co-workers38,39,106 investigated the capillary phase transitions in nanopores,

and the formation of liquid bridges during capillary condensation, using grand-canonical,

gauge-cell and NVT Monte Carlo simulations. We tested in previous work45 the µV T − S

simulation method against the results obtained by Vishnyakov and Neimark39. This allowed

us to show that the µV T−S simulation method provides the same mechanism, involving the

nucleation of a liquid capillary bridge as an intermediate state along the capillary conden-

sation pathway, as that identified Vishnyakov and Neimark under the same thermodynamic

conditions (chemical potential and temperature). Technical details on the implementation

of this method can be found in previous papers45,84,88,89. Each µV T −S simulation provides

an histogram for the probability distribution of how often a given value for the entropy is

visited during the simulation. From a practical standpoint, we first carry out an equilibra-

tion run of 50× 106 MC steps, followed by a production run of 100× 106 MC steps during

which the entropy histogram is collected. Using 40 overlapping windows, and following

Torrie and Valleau’s work92, we can reconstruct the free energy barrier associated with the

nucleation process. Let us add that the MC moves used in the simulations are as follows:

(i) translation of a randomly chosen argon atom (50. % of the attempted MC moves), (ii)

insertion of an atom (25 % of the attempted moves) and (iv) deletion of a randomly chosen
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atom (25 % of the attempted moves). Simulations are performed for a temperature of 0.73

(87.454 K), which corresponds to the boiling point for Argon. Under these conditions, and

as shown by Neimark et al.38,91, capillary condensation and evaporation of Argon has been

observed in MCM-41. We add that, for bulk Argon, the vapor-liquid phase transition occurs

for µ=-10.53 in reduced units. In line with prior work, we use a cutoff of 15 Å and periodic

boundary conditions along the lateral direction z.

C. Machine-learned free energy surfaces

Simulations require generating billions of configurations to sample the entire phase tran-

sition pathway for a single value of the chemical potential. To identify accurately the con-

ditions of coexistence, simulations need to be repeated systematically for many chemical

potentials, with a small chemical potential interval between successive runs. Given the cost

of each simulation, we choose here to run simulations were for only a few values of the

chemical potential and use the simulation results to generate a training dataset for an ML

model. Once trained, the ML model has the advantage of being able to provide very rapidly

the free energy profile for any value of the chemical potential. In other words, the ML model

has the ability to interpolate between simulated conditions, and to extrapolate beyond these

conditions. Here, to generate machine-learned free energy surfaces for a given pore width,

we use an artificial neural network (ANN) with a feed-forward structure. The ANN weights

are optimized with a back-propagation algorithm107. We build on our previous work on

the bulk thermodynamic properties of single-component systems and binary mixtures108,109

to design a ML model that predicts the free energy surface of adsorption for a given pore

width as follows. We optimize an ANN with 4 layers: (i) 1 input layers with 2 neurons for

µ (chemical potential) and S (entropy), (ii) 2 hidden layers with h1 = 8 and h2 = 8 neurons

and (iii) 1 output layer, with 1 neuron for F (Free energy). We then have the following

analytic expression for the ML prediction for FML

FML = f4[b3 +

h2∑
l=1

W(3, 4, l, 1)f3(b2 +

h1∑
j=1

W(2, 3, j, l)f2[(b1 +
3∑
i=1

W(1, 2, i, j)Gi])] (3)

with W the weight matrix, f1,f2, f3 and f4 representing activation functions (here tanh for

the first three and the linear function for the forth one), bi the bias nodes and Gi the input

neurons. The network architecture is summarized in Fig. 1. The weight matrix W is initially
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FIG. 1: ANN for the prediction of the free energy surfaces for capillary condensation and capillary

evaporation.

filled with random numbers and optimized by minimizing the squared error function using

a back-propagation algorithm and a learning rate of 0.04. µV T − S simulation results are

split between training and testing data sets to optimize the ANN weights, with a training

dataset size of about 10,000 data points for each pore width.

III. RESULTS AND DISCUSSIONS

We start by analyzing the results obtained from the MC µV T − S simulations on the

example of a pore width of 12σ. We shown in Fig. 2 the free energy profiles reconstructed

from the simulation results for two different values of chemical potential, µ∗ = −10.2 and

µ∗ = −10.3. The free energy profile is plotted as a function of the reduced entropy of the

adsorbed fluid S∗, which stands for the total entropy. In other words, this is an extensive

quantity, function of the number of Argon atoms adsorbed in the pore, and low values for

the total entropy S∗ are associated with a low density, vapor-like, phase while high values

for the total entropy S∗ correspond to a high density, liquid-like, adsorbed phase. The

plots exhibit two free energy minima, as well as a free energy barrier that connects the two

minima. For each plot, the shallower minimum corresponds to the metastable phase that

is the starting point for the phase transition process, and the deeper free energy minimum
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FIG. 2: Capillary phase transitions in a nanopore with a pore width of 12σ: free energy against

entropy for µ∗ = −10.2 (capillary condensation in black) and for µ∗ = −10.3 (capillary evaporation

in red).

corresponds to the equilibrium state, i.e., the end point for the phase transition process.

In between, and as expected for any nucleation process, the system has to overcome a free

energy barrier to complete the phase transition process93,96,100. This feature, common to

all nucleation processes, corresponds to an interplay between two contributions to the free

energy of opposite signs. The first contribution has a positive sign and stems from the onset

of a nucleus of the new phase, and thus from the creation of an interface that results in a free

energy cost. The second contribution has a negative sign, and results from the stabilization

of the system as the metastable phase of higher free energy undergoes the transition to the

stable phase of lower free energy. As shown in previous work34,39,45 and in Figs. 3 and 4,

the free energy barrier is associated here with the formation of a liquid bridge across the

nanopore during capillary condensation, and of a vapor bubble across the nanopore during

capillary evaporation.

The correspondence between the total entropy S∗ and the nature of the two phases can

best be understood by examining snapshots of the system for the two minima exhibited
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by the free energy profile. Fig. 3(a) shows a snapshot for a configuration of the system

observed for S∗ = 1100, i.e., for the shallower minima in the free energy profile. The

configuration shows that the pore is coated with two layers of the adsorbed Argon fluid,

with a very low fluid density on the inside of the pore. Since the low density, vapor-like,

phase is associated with the shallower free energy minimum for µ∗ = −10.2, this means

that this phase is metastable and that the low density phase, akin to a supersatured vapor,

is the metastable phase for this set of conditions. On the other hand, Fig. 3(b) shows a

snapshot for a configuration of the system observed for the deeper free energy minimum,

reached for a total entropy of S∗ = 2250. This snapshot shows that a completely filled up

pore, corresponding to a high density liquid-like phase for the adsorbed fluid. Since this high

density phase is associated with the deeper free energy minimum, this means that the liquid-

like phase is the stable phase under those conditions. For a chemical potential µ∗ = 10.2,

we thus have a low density, vapor-like, metastable phase and a high density, liquid-like,

stable phase, which implies that the free energy profile shown in Fig. 2 for µ∗ = −10.2

corresponds to a capillary condensation process. Conversely, for µ∗ = −10.3, the deeper

free energy minimum is obtained for a total entropy of about 1000, corresponding to the

stable low density vapor-like phase, and the shallower free energy minimum is reached for

a total entropy of about 2300, which is associated to a metastable high density, liquid-

like, adsorbed phase. This implies that, for µ∗ = −10.3, the system undergoes a capillary

evaporation process as the total entropy decreases.

To identify the microscopic mechanisms underlying the phase transition process, we carry

out a series of structural analyses for the adsorbed fluid. For this purpose, we focus on the

capillary condensation process and analyze the structure of the adsorbed fluid for a chemical

potential of µ∗ = −10.2 and a pore width of 12σ. We show in Fig. 4(a) the radial density

profile obtained for conditions close to the two ”breaks” observed in the free energy profile.

For the first ”break”, i.e., for S∗ = 1600 and close to the free energy maximum during

the phase transition process, we observe the formation of a third peak in the radial density

profile at a distance of about 3.1 Å from the central axis of the pore, and the onset of a

couple of more peaks as the distance from the central axis decreases. This first ”break”

therefore indicates some structural change induces by a partial filling of the pore. For the

second ”break”, i.e., for S∗ = 2050 and close to the free energy valley attached to the stable

high density liquid-like phase, we can see 5 peaks in the radial density profile, in addition
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(a) (b)

(c)

FIG. 3: Snapshot of representative configurations for µ∗ = −10.2 for S∗ = 1100 (a) and S∗ = 2250

(b). (c) shows the variation of entropy as a function of the number of atoms in the pore.

to a developing peak in the center of the pore. The second ”break” thus corresponds to an

almost complete filling of the pore. We also provide in Fig. 3(c) a plot of the entropy as

a function of the number of atoms in the pore. We recall that S∗ is an extensive property

and, as such, the increase we observe in Fig. 3(c) for S∗ is in line with the expectations. We

add that S∗ does not vary strictly linearly with N , since S∗ provides a quantitative measure

of the amount of organization within the confined fluid as its density increases.

To provide further insight into the filling mechanism, we carry out a higher-resolution

analysis and compute a spatially resolved density distribution function n(r, z) along the

radius of the pore r as well as along the lateral dimension of the pore z. This enables the

spatial resolution of the developing peaks in the radial density profile of Fig. 4(a). This
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yields the plots shown in Fig. 4(b) and Fig. 4(c) for S∗ = 1600 and S∗ = 2050, respectively.

At S∗ = 1600, the plot in Fig. 4(b) shows that the density distribution is far from uniform

along the lateral dimension z. Instead, the plot shows that, for 10σ < z < 25σ, the

density of the adsorbed fluid remains fairly high for all r values, which means that for these

z values, a liquid region reaches across the width of the pore. For other z values, i.e.,

z < 10σ or z > 25σ, the fluid density remains low for all r values below 3.5σ. This means

that the liquid region is surrounded by a vapor-like fluid. Therefore, the spatially resolved

density distribution provide supporting evidence for the formation of a liquid bridge that

extends across the capillary. At S∗ = 2050, the Fig. 4(c) also shows a non-uniform density

distribution along the lateral dimension z. Indeed, the liquid region now extends between

0σ < z < 25σ, with a fluid density remaining high for all r values. On the other hand, the

low density is restricted to a much smaller range of z values (z > 25σ). This means that

the liquid bridge now occupies the major part of the pore. These profiles thus provide an

explanation for the two ”breaks” in the free energy profile, the first ”break” corresponding

to the onset of a capillary liquid bridge and the second ”break” to the capillary liquid bridge

taking over the entire pore. The simulation results show that the mechanism for capillary

condensation starts by the nucleation of a liquid bridge, that subsequently grows and takes

over the entire nanopore. This is in line with the mechanism proposed by Everett and

Haynes for capillary condensation in micropores46, and withe the machanism proposed by

Neimark et al. for capillary condensation in nanopores39.

We present in Fig. 5 the free energy profiles obtained for the two largest pore widths of

16σ and 20σ. While similar filling mechanisms are observed for the different pore widths

studied in this work, there are, however, three features of the free energy profiles that are

impacted by the change in pore width. First, the path that joins the metastable and stable

phases is much longer as the pore width increases. This translates into the much larger

range of values for S∗ spanned as the width increases from 16σ, with S∗ ranging from 1500

to 4500 (see Fig. 5(a)) to 20σ , with S∗ varying from 2500 to 7500 (see Fig. 5(b)). This

can be attributed to the fact that,for the same lateral length of the pore, many more fluid

particles can be accommodated by the fluid, which in turn results in much larger values for

the extensive property S∗. Second, the free energy barrier increases with the pore width.

Since the filling mechanism involves the formation of a liquid bridge across the pore, as

discussed earlier for the pore width of 12σ, this step will require overcoming a greater free
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(a)

(b) (c)

FIG. 4: Radial density profile P (r) in a pore with a diameter of 12σ for µ∗ = −10.2 (a) and

spatially resolved density distribution function n(r, Z) for S∗ = 1600 (b) and S∗ = 2050 (c)

energy for larger pores. Third, the chemical potential at coexistence is also impacted by

the pore width. Coexistence is achieved for a chemical potential between −9.9 and −10 for

a pore width of 16σ and of about −9.8 for a pore width of 20σ. This can be accounted

for by the change in balance between the relative contribution of wall-fluid interactions and

fluid-fluid interactions in the overall energy of the adsorbed phases. Indeed, coexistence
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here corresponds to two phases, one of low density and the other of high density, having

the same chemical potential. As shown in Fig. 3(a) for a pore width of 12σ, the low-density

phase consists of two fluid layers adsorbed on the inner surface of the pore, which means

that its chemical potential strongly depends on wall-fluid interactions. On the other hand,

as shown in Fig. 3(b), the high-density phase is a completely filled pore, for which fluid-fluid

interactions far outweigh wall-fluid interactions.

We now turn to the prediction by ML models of the free energy profiles for a pore with

a width of 12σ. In the next two figures, we present two different types of results. First,

we show in Fig. 6 a comparison between simulation and ML results to validation the model

plotted in Fig. 6, i.e., that the ML model can model accurately the simulation results.

Second, we use the ML model to extrapolate beyond the data and predict the entire free

energy surface shown in Fig. 7. As shown as the plot comparing the simulated free energy

and the ML predicted free energy in Fig. 6(a), the ANN architecture provides an excellent

model for the free energy of the adsorbed fluid during the capillary phase transition process.

Furthermore, Fig. 6(b) shows a direct comparison between the free energy profiles computed

from the µV T−S simulations and the free energy profiles predicted by ML. This plot further

established the reliability of the ML model to accurately account for the dependence of the

free energy along the transition pathway, both for evaporation and condensation processes.

The ML predicted free energy surface is shown in Fig. 7 over the (S∗, µ∗) parameter

space. As in the 2D free energy plots, and as a result of the training process, the origin

for the free energy is set to that of the low density, vapor-like, phase. As expected, the

ML free energy surface exhibits two troughs, corresponding to the two regions for which

a free energy minimum can be reached. The two valleys are observed for varying values

of µ∗ and either for S∗ around 1000 for the low density, vapor-like, adsorbed fluid, or for

S∗ around 2500 for the high density, liquid-like, adsorbed fluid. The free energy minimum

attached to the liquid-like fluid is found to steadily increase from a very low, and negative,

free energy at high µ∗ values (e.g., at −10.15) to a very high, positive, free energy at low µ∗

values (e.g., at −10.35). In addition to yielding the free energy value for any set of (S∗, µ∗),

the ML predicted free energy surface provides a way to estimate rapidly the conditions

of coexistence of the two phases for the adsorbed fluid, leading to an estimated chemical

potential at coexistence of µ∗ = −10.24, consistently with the simulation results shown in

Fig. 2.
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(a)

(b)

FIG. 5: Comparison between the free energy profile obtained for a pore width of 16σ (a) and 20σ

(b). Results are shown for chemical potentials of µ∗ = −9.9 (black), µ∗ = −10 (blue), µ∗ = −10.15

(red) and µ∗ = −10.48 (green) in (a). Results are shown for µ∗ = −9.7 (black), µ∗ = −9.8 (red)

and µ∗ = −9.9 (green) in (b).
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(a) (b)

FIG. 6: Comparison between the free energy obtained with the ML model (dashed line with circles)

and from the simulation results (squares) in a nanopore with a 12σ diameter. Results are shown

for chemical potentials µ = −10.15 (black), µ = −10.2 (red), µ = −10.25 (green), µ = −10.3 (blue)

and µ = −10.35 (pink). (Inset) Performance of the ML model against the simulation results.

FIG. 7: Free energy surface predicted by the ML model for a pore width of 12σ.

We also test the transferability of the approach to other pore widths and show that a

ML model with the same architecture, i.e. with 8 neurons per hidden layer, can also be

optimized for a larger pore width such as 20σ. Indeed, Fig. 8 shows that the simulated free

energy profiles can be accurately modeled by ML, as evidenced by the very good agreement
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FIG. 8: Capillary phase transitions in a pore with a width of 20σ: comparison between the free

energy obtained with the ML model (dashed line with circles) and from the simulation results

(squares). Results are shown for chemical potentials µ = −9.7 (black), µ = −9.8 (red) and

µ = −9.9 (green).

obtained between the simulations and the ML model for both capillary evaporation and

capillary condensation processes.

IV. CONCLUSIONS

In this work, we use molecular simulations and Machine Learning to study the capillary

phase transitions that occur in a series of model mesopores akin to MCM-41 as a function

of pore width. To this end, we employ a recently developed molecular simulation technique,

that leverages entropy as reaction coordinate for the transition process, to shed light on

the phase transition process. This allows to obtain the free energy profile corresponding to

either the capillary evaporation process, from a pore containing a metastable high-density

adsorbed fluid to a stable low-density adsorbed phase, or the capillary condensation pro-

cess, that spans the pathway connecting a metastable supersaturated vapor-like adsorbed

phase to a stable liquid-like adsorbed phase. The results allow us to characterize the

role played by intermediate states, that involve the formation of capillary liquid bridges

and bubbles, and to analyze the dependence of the free energy barrier, as well as of the

17



chemical potential that controls the coexistence of the two types of adsorbed phases.

Furthermore, we propose a method to build ML models by optimizing ANN for the pre-

diction of the free energy surfaces underlying capillary phase transition process in mesopores.
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Clementi, C. Machine Learning of Coarse-Grained Molecular Dynamics force fields. ACS

central science 2019, 5, 755–767.

61 Long, A.W.; Zhang, J.; Granick, S.; Ferguson, A.L. Machine Learning Assembly Landscapes

from Particle Tracking Data. Soft Matter 2015, 11, 8141–8153.

62 Jiang, B.; Yang, M.; Xie, D.; Guo, H. Quantum Dynamics of Polyatomic Dissociative

Chemisorption on Transition Metal Surfaces: Mode Specificity and Bond Selectivity. Chem.

Soc. Rev. 2016, 45, 3621–3640.

63 Mansbach, R.A.; Ferguson, A.L. Machine learning of single molecule free energy surfaces and

the impact of chemistry and environment upon structure and dynamics. J. Chem. Phys. 2015,

142, 03B607 1.
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