

1

2

3

4 **Enhanced Feedback between Shallow Convection and Low-level**
5 **Moisture Convergence Leads to Improved Simulation of MJO**
6 **Eastward Propagation**

7

8 Yan Liu, Zhe-Min Tan*

9 School of Atmospheric Sciences and Key Laboratory of Mesoscale Severe
10 Weather/MOE, Nanjing University, Nanjing, China

11

12 Zhaohua Wu

13 Department of Earth, Ocean and Atmospheric Science, and Center for Ocean-
14 Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida

15

16

17

18

19

20 *Corresponding author: Zhe-Min Tan. School of Atmospheric Sciences, Nanjing
21 University, Nanjing, 163 Xianlin Avenue, Nanjing 210023, China.
22 E-mail: zmtan@nju.edu.cn.

Abstract

Recent study indicates that the noninstantaneous interaction of convection and circulation is essential for large-scale convective systems. It is incorporated into cumulus parameterization (CP) by relating cloud-base mass flux of shallow convection to a composite of subcloud moisture convergence in the past. Three pairs of 19-yr simulations with original and modified CP schemes are conducted in a tropical channel model to verify their ability to reproduce the MJO. Improved eastward propagation signal and stronger intraseasonal variability are observed in the simulations with the modified CP schemes based on the noninstantaneous interaction. It is found that enhanced feedback between shallow convection and low-level moisture convergence results in amplified shallow convective heating and/or extended heating duration, shaping tilted heating as in observations. It also generates enhanced moisture convergence which transports more moisture upward. The improved simulations of eastward propagation of the MJO are largely attributed to higher specific humidity in the lower troposphere to the east of maximum rainfall center, which is related to stronger boundary layer moisture convergence forced by shallow convection. Large-scale horizontal advection causes asymmetric moisture tendencies relative to rainfall center (positive to the east and negative to the west) and also gives rise to eastward propagation. The zonal advection, especially the advection of anomalous specific humidity by mean zonal wind, is found to dominate the difference of horizontal advection between each pair of simulations.

44

45

46 **1. Introduction**

47 The Madden-Julian oscillation (MJO) is a planetary-scale convectively coupled
48 equatorial wave that usually propagates eastward at a speed of 5-8 m s⁻¹ (see Zhang
49 (2005) for a complete review). The MJO has long been the focus of research community
50 for its far-reaching influences on global climate and weather systems (Lau and Waliser
51 2012; Zhang 2013). Though much improvement in the simulations of MJO has been
52 made in terms of model resolution, physical parameterization, air-sea coupling, etc.,
53 general circulation models still struggle to realistically simulate the MJO (Lin et al.
54 2006; Hung et al. 2013; Jiang et al. 2015). Among the most salient features that should
55 be reproduced, eastward propagation is hardly captured by models participating in the
56 MJO task force global model comparison project (Jiang et al. 2015). More than two
57 thirds of participating models show a stationary or even westward propagating
58 intraseasonal signals.

59 Associated with the eastward-moving convective envelope of the MJO, a
60 prominent transition from convectively suppressed to active phase can be observed in
61 the regions of equatorial Indian and western Pacific oceans (Hendon and Salby 1994;
62 Johnson and Ciesielski 2013). During the transition period, clouds over the region also
63 develop gradually from shallow cumulus/congestus mode to deep convective and
64 stratiform mode (Kikuchi and Takayabu 2004; Riley et al. 2011; Xu and Rutledge 2016).
65 Considering the significant importance of tropospheric moisture content for tropical
66 convection (Bretherton et al. 2004; Holloway and Neelin 2009, Ahmed and
67 Schumacher 2018), it is proposed that shallow convection serves to moisten the lower

68 troposphere for subsequent transition to deep convection and thus is vital for the
69 eastward propagation of the MJO.

70 A direct moistening mechanism related to shallow convection is vertical transport
71 of the tropospheric moisture. Benedict and Randall (2007) conducted moisture-budget
72 analysis using reanalysis data and found that vertical advection by shallow cumulus
73 dominated moisture tendency prior to the onset of deep convection. This gradual
74 increase of positive moisture and temperature anomaly corresponds to the “recharge”
75 process of organized convection in the tropics (Bladé and Hartmann 1993; Kemball-
76 Cook and Weare 2001). By comparing performance of parameterized shallow and deep
77 cumulus in the global compressible nonhydrostatic Model for Prediction Across Scales
78 (MPAS), Pilon et al. (2016) showed that shallow convection plays a key role in
79 transporting moisture upward to the lower and middle troposphere and then enhances
80 diabatic heating and precipitation. Many other studies also come to a similar conclusion
81 though different observation data or numerical simulations are analyzed (e.g., Hagos
82 and Leung 2011; Del Genio et al. 2012; Bellenger et al. 2015; Janiga and Zhang 2016;
83 Hirota et al. 2018).

84 However, local (convective scale) moistening of shallow cumulus and congestus
85 clouds seems inadequate to explain the observed increase in lower-troposphere
86 moisture. According to the estimation made by Hohenegger and Stevens (2013) with
87 bulk analysis and large-eddy simulations, actual time taken by the transition from
88 congestus to deep convection is much shorter than that needed for congestus clouds to
89 sufficiently moisten the atmosphere. They suggested that upward motion forced by

90 large-scale disturbances may contribute to the extra moistening. Hagos et al. (2014)
91 conducted a regional cloud-resolving simulation that captures the shallow-to-deep
92 convection transition of the MJO. Their results indicate that the probability of transition
93 is highly sensitive to midlevel large-scale humidity and uplift. The increased moisture
94 at midlevel can also be attribute to large-scale updraft. Observation analysis with
95 satellite (Masunaga 2013) and radar (Kumar et al. 2013) data both confirm the
96 significant moistening by large-scale process. Particularly, Masunaga (2013)
97 highlighted the importance of large-scale upward transport of moisture and heat through
98 cloud base (i.e., large-scale convergence in subcloud layer) to this moistening,
99 especially in organized convective systems.

100 Evidence also exists that interaction between large-scale disturbances and shallow
101 convective heating/moistening favors initiation and propagation of MJO convection
102 (e.g., Hsu and Li 2012; Ruppert and Johnson 2015; Rowe and Houze 2015). Wave-
103 CISK is one of the mechanisms that explain the interaction, but horizontal scale
104 predicted by wave-CISK is unrealistically small (Crum and Dunkerton 1992; Matthews
105 and Lander 1999). Recently, Liu et al. (2019, hereafter LTW19) revealed that bottom-
106 heavy heating profile of shallow convection drives intense wind response and
107 converges low-level moisture, which effectively feeds back to diabatic heating via
108 upward transport and condensation. This cooperative interaction between shallow
109 convection and low-level moisture convergence may lead to unstable growth and
110 upscale organization of convection systems. Unlike conventional wave-CISK, feedback
111 in LTW19 is noninstantaneous as the time is needed for convective heating to force

112 low-level moisture convergence, and moisture convergence to moisten and heat the
113 lower troposphere as well. Although the noninstantaneous wave-CISK mechanism has
114 been proved to be able to capture the eastward propagation of large-scale Kelvin wave
115 signals quite well in an idealized model as in LTW19, its performance in reproducing
116 the propagation of the MJO in a more realistic model configuration still needs to be
117 verified.

118 A tropical channel configuration of the Weather Research and Forecasting (WRF;
119 Skamarock et al. 2008) model is widely used to test mechanisms of the MJO (Ray et al.
120 2011; Ulate et al. 2015; Hall et al. 2017), for its convenience in choosing different
121 boundary conditions and physical parameterizations. In the present study the tropical
122 channel model is used with cumulus parameterizations (CPs) modified to incorporate
123 the basic idea of noninstantaneous convection-circulation interaction based on the
124 theoretical diagram in LTW19. Comparison is made between simulations with original
125 and modified CP schemes to see how feedback between shallow convection and low-
126 level moisture convergence (hereafter FSM) influence convective organization and
127 promote eastward propagation of the MJO. Relative contributions of convergence
128 (vertical transport) and horizontal advection are identified.

129 The remainder of the paper is arranged as follows. We first briefly introduce the
130 basic concept of noninstantaneous wave-CISK in section 2. In section 3, introduction
131 of data sources, model settings and modification of CP scheme is given. Section 4
132 presents mean-state features of simulations with different CP schemes. Section 5 and 6
133 compare related processes that lead to enhanced FSM and improved eastward

134 propagation. Discussion and summary are offered in section 7 and 8.

135

136 **2. Noninstantaneous wave-CISK**

137 It is compelling that the time scale of large-scale system is larger than that of
138 individual cumulus convection embedded in it. As small-scale convective process can
139 be regarded as instantaneous (ignoring the convective time scale of hours), large-scale
140 system is rather noninstantaneous. The time scale generally comes from two main
141 aspects of large-scale convective process (or two legs of convection-circulation
142 feedback). Firstly, even suitable dynamical condition for convection is provided by
143 large-scale circulation, it still takes time for numerous clouds to moisten the troposphere
144 through detrainment and re-evaporation of precipitation and thus morphological
145 structures could be built up (Johnson and Ciesielski 2013; Powell and Houze 2015).
146 Secondly, time is also needed for the forced response to convective heating to propagate
147 out and serve the development and propagation of convective system (e.g., Wu 2000).

148 In order to represent this noninstantaneous character of the FSM, LTW19
149 constructed a simple cumulus parameterization scheme in which shallow convective
150 heating is determined by the weighted mean of subcloud moisture convergence in the
151 past period, i.e.,

$$152 M^* = \frac{\int_{t-\tau}^t rM dt_i}{\int_{t-\tau}^t r dt_i}, \quad (1)$$

153 where M is the subcloud moisture convergence at the time of t_i , t is the current time, τ
154 is the specific time scale of composite, which is called the accumulation-consumption
155 time scale of moisture in LTW19. The quantity r is a time dependent weighting function

156 of which the definition is:

$$157 \quad r = 1 - \left[\frac{t_i - (t - \tau/2)}{\tau/2} \right]^2, \quad t - \tau \leq t_i \leq t. \quad (2)$$

158 In this circumstance, moisture convergence keeps nourishing convective development
159 (by releasing latent heat) for a period of τ once it is forced by convective heating. On
160 the other hand, convective heating is also slowly varying and exerting long-term
161 influence on the atmosphere.

162

163 **3. Data and model runs**

164 **3.1. Data**

165 The European Center for Medium-Range Weather Forecasting (ECMWF) ERA-
166 Interim reanalysis data (Dee et al. 2011) are used for model initiation and lateral
167 boundary conditions. Atmospheric state computed with ERA-interim data is also
168 referred to as observation. Sea surface temperature (SST) data is obtained from NOAA
169 1/4° daily Optimum Interpolation Sea Surface Temperature Analysis Version 2
170 (OISSTv2; Reynolds et al. 2007). In order to validate simulated rainfall and propagation
171 signal of MJO, we utilize data of the Global Precipitation Climatology Project (GPCP)
172 daily precipitation estimates (Huffman et al. 2001) and the National Oceanic and
173 Atmospheric Administration (NOAA) Climate Data Record (CDR) of Daily Outgoing
174 Longwave Radiation (OLR; Lee and NOAA CDR Program 2011). Both of them are
175 daily analysis data defined on a global $1.0^\circ \times 1.0^\circ$ longitude-latitude grid.

176

177 **3.2. Model configuration**

178 The model used is the WRF Model version 3.7.1 with a tropical channel
179 configuration, which is similar to that of Ray et al. (2009) and Hall et al. (2017).
180 Horizontal resolution is set to $1.0^\circ \times 1.0^\circ$. 32 model levels are placed vertically with the
181 top level at 50 hPa. The model domain is periodic in the zonal direction and bounded
182 at 30°S and 30°N in the meridional direction. Geopotential, temperature, relative
183 humidity, and zonal and meridional winds from ERA-Interim reanalysis are
184 interpolated to model grids at these boundaries. Prescribed SST from OISSTv2
185 interpolated to 1° resolution and 4 times daily is also used as lower boundary to force
186 the model. The followings are the physical parameterization schemes used in this study:
187 the WRF single-moment 3-class simple ice scheme (Hong et al. 2004), the Yonsei
188 University planetary boundary layer scheme (Hong et al. 2006) with a surface layer
189 scheme based on the Monin-Obukhov similarity theory (Monin and Obukhov 1954),
190 the unified NOAA land-surface model (Chen and Dudhia 2001), the Rapid Radiative
191 Transfer Model for longwave scheme (Mlawer et al. 1997), and the Dudhia (1989)
192 shortwave scheme.

193 FSM emphasizes the importance of low-level moisture convergence forced by
194 shallow convection to upward transport of moisture and heat, which is usually
195 determined by mass flux at cloud base in some CPs. To facilitate modification and
196 analysis, three mass-flux type CP schemes with particular treatments of shallow
197 convection are chosen for the control runs in the present study. These schemes are the
198 new Simplified Arakawa-Schubert (SAS) scheme (Han and Pan, 2011), the new Tiedtke
199 (TDK) scheme (Zhang and Wang, 2017), and the Kain-Fritsch scheme (Kain, 2004)

200 with the Ma-Tan trigger (Ma and Tan, 2009; hereafter KFMT). The new trigger is used
201 in Kain-Fritsch scheme for its better performance under weak synoptic forcing.
202 Although these schemes differ greatly in their treatment of convective process (see the
203 listed papers above and the references therein), they can all be divided into relatively
204 separated parts, i.e., convective trigger, cloud model and closure assumption. Here we
205 modify closure assumptions of these three schemes to that constructed based on the
206 noninstantaneous wave-CISK.

207

208 **3.3. Modification of cumulus parameterization**

209 According to LTW19, two main facts that should be considered in CP are: 1)
210 shallow convection drives low-level moisture convergence which is strong enough to
211 sustain itself, while deep convection does not; 2) feedback between shallow convection
212 and low-level moisture convergence is noninstantaneous and usually takes a couple of
213 days for large-scale convection systems. Noninstantaneous wave-CISK assumes that
214 convective heating rate is proportional to low-level moisture convergence, but in mass-
215 flux type CP schemes, it is difficult to assign heating rate directly. Closure assumptions
216 of SAS, TDK and KFMT all relate cloud-base mass flux to boundary layer process
217 (Table 1), which controls the intensity of shallow convective activity. As noted by
218 Arakawa (2004), boundary layer moisture convergence is the dominant contributor to
219 moisture flux tendency. Suhas and Zhang (2015) also confirmed the significant positive
220 correlation between moisture convergence and mass flux. Here cloud-base mass flux is
221 set to be proportional to a composite of subcloud moisture convergence in the past. In

222 this way, shallow convective heating is related to low-level moisture convergence
 223 indirectly. We still use Eq. (1) and (2) to calculate the composite of moisture
 224 convergence. The time scale τ , which can be regarded as the time needed for moisture
 225 convergence to force upward mass flux, is set to 6 h after several sensitive tests. Low-
 226 level moisture convergence is calculated as:

$$227 \quad \begin{aligned} M &= -\int_0^{z_b} \rho \nabla_h \cdot (\mathbf{v} q) dz \\ &= -\int_0^{z_b} \rho q \nabla_h \cdot \mathbf{v} dz - \int_0^{z_b} \rho \mathbf{v} \cdot \nabla_h q dz, \end{aligned} \quad (3)$$

228 where ρ and q are the density of air and the specific humidity respectively, z_b is the
 229 height of cloud base (calculated in each CP schemes), and \mathbf{v} is horizontal velocity. The
 230 last two terms in Eq. (3) represent mass convergence and horizontal moisture advection
 231 respectively. The modified closure assumption can thus be written as:

$$232 \quad F = \begin{cases} \alpha M^*, & M^* > 0 \\ 0, & M^* \leq 0, \end{cases} \quad (4)$$

233 where F is cloud-base mass flux, α is a factor tuned in each CP schemes. Except for
 234 closure assumption of shallow convection parameterization, other aspects of CP are
 235 kept unchanged.

236 The procedure to distinguish deep and shallow convection follows that of original
 237 CP schemes. Table 1 summaries the criteria for shallow convection in each scheme. At
 238 each time step, subcloud moisture convergence (M) is saved once the criteria for
 239 shallow convection are satisfied, but shallow convection will not be activated until the
 240 time composite of moisture convergence (M^*) turns positive. After the transition from
 241 shallow to deep convection, stored memory of moisture convergence is eliminated for
 242 the consumption of them by deep convection is very fast (LTW19). It should also be

243 noted that definitions of shallow convection are different in these schemes, but the main
244 conclusion drawn in this study is not altered by the difference.

245

246 **4. Mean-state feature**

247 In this study, six 19-yr simulations from 1996 to 2014 are carried out with original
248 (denoted as SAS, TDK and KFMT, respectively) and modified (denoted as SAS-n,
249 TDK-n and KFMT-n, respectively) CP schemes. Diagnostics are focused on boreal
250 winters (November-April) during this period. Averaged winter precipitation for
251 observation and simulations is shown in Fig. 1. All the experiments with original CP
252 schemes reproduce rain belts along climatological convergence zones in the western
253 Pacific and over the Maritime Continent, though the amount of rainfall is generally
254 overestimated (left panels of Fig. 1). However, these simulations miss the rainfall center
255 in the eastern Indian Ocean and produce too much rainfall in the middle to western
256 Indian Ocean. In the right panels, boreal winter-mean precipitation differences between
257 modified and original schemes are displayed. Although the modification is only made
258 to shallow convection which basically is nonprecipitating, rainfall is still modulated
259 through interaction between shallow and deep convection. The modulation is quite
260 moderate over the simulation region, except that precipitation is largely suppressed over
261 the Maritime Continent in TDK-n. It means deep convection is largely mitigated in this
262 case.

263 As rainfall is overestimated in the Indian Ocean, so is the MJO-filtered
264 precipitation variance (Fig. 2). Here only eastward-propagating signals with zonal

265 wavenumbers 1–5 and periods 20–100 days are saved in order to filter MJO-related
266 precipitation. Modification of shallow convection schemes is able to raise the
267 precipitation variance to a level close to observation, but the location is still uncorrected.
268 The precipitation variance over the Maritime Continent in TDK-n also decreases as
269 precipitation itself.

270 In the following analyses, a lag-regression/correlation method is used. Before
271 calculating regression/correlation coefficient, the climatological annual cycle (annual
272 mean and three leading harmonics) is removed first, and then a 20–100 day band-pass
273 filtering is operated with Butterworth filter. Regression/correlation coefficients are thus
274 calculated against anomalies averaged over a box (80–90°E; 5°S–5°N) in the Indian
275 Ocean. Lag correlations of filtered OLR with itself averaged over the box is shown in
276 Fig. 3. Compared to observations, the propagation signals in control runs are rather
277 weak and confined in the Indian Ocean area. Modification of shallow convection
278 schemes helps to strengthen the eastward propagation of convection systems and extend
279 them further into the western Pacific Ocean. Notice that the most significant
280 improvement is observed in TDK-n (Fig. 3e), but the rainfall and its variance are
281 decreased markedly (Figs. 1e and 2e). It suggests that vigorousness of shallow
282 convection may lead to a suppression of deep convection.

283 Following Wheeler and Kiladis (1999), the wave number-frequency power spectra
284 of equatorially symmetric component of tropical OLR between 15°S and 15°N is
285 depicted in Fig. 4. Although control runs are able to reproduce the spectral power peak
286 in the right range corresponding to MJO, its amplitude is reduced to a much lower level.

287 The modification of CPs generally augments the spectral power, especially in TDK-n
288 and KFMT-n.

289

290 **5. Enhanced feedback between shallow convection and low-level
291 moisture convergence**

292 As seen from above assessments, modification of shallow convection produces
293 stronger intraseasonal variability and more importantly the improved eastward
294 propagation. To figure out how the noninstantaneous moisture convergence closure
295 improve MJO simulations, we will investigate the process of FSM first. Moisture
296 content has been recognized to dominate the buildup and propagation of MJO
297 convection (Sobel and Maloney 2012; Raymond and Fuchs 2009; Majda and
298 Stechmann 2009). Fig. 5 displays lagged regression of specific humidity anomaly at
299 850 hPa against rainfall over the Indian Ocean, together with regressed zonal wind at
300 the same level. With the implication of new shallow convection closure, moisture and
301 zonal wind anomalies increase, propagation signals extend to the further east, and the
302 propagation speed slows down to that of the MJO (8 m s^{-1}). According to Wu (2003),
303 decreased propagation speed is due to the smaller equivalent depth corresponding to
304 enhanced shallow convection. Another noteworthy feature is that moisture anomalies
305 lag easterly winds and collocate with the convergence zone of easterly winds. Above
306 analysis indicates a concurrent enhancement of large-scale convergence, shallow
307 convection, and low-level moisture content.

308 To display the changes of FSM brought about by noninstantaneous moisture

309 convergence closure, we calculate lag-regression of 10°S-10°N averaged diabatic
310 heating at the longitude of 90°E against intraseasonal precipitation over the Indian
311 Ocean. The total diabatic heating is derived with a residual budget analysis based on
312 the temperature equation (Yanai et al., 1973; Ling and Zhang, 2011). Vertical-time
313 regression pattern is shown in Fig. 6. The vertical backward tilting of diabatic heating
314 is clearly seen in observation, but few of the control runs reproduce this tilted structure.
315 As modified closure strengthens shallow convective heating which usually leads the
316 main convective heating of MJO, simulations with modified CP schemes show more
317 tilted heating structures. In simulations with TDK scheme, the time lag between shallow
318 and deep convection on intraseasonal timescales is so short that they burst almost at the
319 same time (Fig. 6d). Modification of shallow convection closure marginally alters the
320 time lag, but it effectively enhances shallow convective heating and inhibits deep
321 convective heating (Fig. 6e).

322 As in Fig. 6, the regression patterns of mass convergence and horizontal moisture
323 advection terms composing moisture convergence (rhs terms of Eq. 3) are plotted in
324 Figs. 7 and 8, respectively. The magnitude of horizontal advection is about one order
325 smaller than that of mass convergence, so it is the mass convergence term that
326 dominates moisture convergence. Similar to that of diabatic heating, regression patterns
327 of mass convergence also show tilted structures which are better captured with modified
328 CP schemes. Since shallow convection transports moisture upward (Benedict and
329 Randall 2007; Pilon et al. 2016), enhanced shallow convection helps to extend mass
330 convergence zone to higher levels. In contrast, horizontal advection of moisture usually

331 leads diabatic heating by about 10 days. Larger positive moisture advection seen near
332 day -10 in modified simulations may be related to more suppressed convection ahead
333 of major convection (Kim et al., 2014). This positive moisture advection contributes to
334 moisture convergence and thus helps to trigger noninstantaneous convection-
335 circulation feedback. Afterwards, enhanced shallow convection induces stronger
336 moisture advection in the boundary layer (near day 0 in Fig. 8). It also helps to
337 transports more moisture to higher levels and increase moisture content in the lower
338 troposphere.

339 To better illustrate the influence of shallow convection closure on FSM, evolutions
340 of regressed diabatic heating in the lower troposphere (850 hPa) and moisture
341 convergence in the boundary layer (925 hPa) are plotted in Fig. 9. These two particular
342 layers are chosen because shallow convective heating usually peaks at 850 hPa and
343 moisture convergence maximizes and is vertically uniform in the boundary layer (Fig.
344 7). In observation, diabatic heating leads boundary layer moisture convergence, which
345 may be related to the fact that anomalous short wave heating starts near the surface
346 before day -10 when convection is suppressed (Ciesielski et al. 2017). Numerical
347 simulations seem not able to reproduce this time lag. Low-level diabatic heating and
348 moisture convergence are almost in phase therein. Introducing a shallow convection
349 closure based on the noninstantaneous wave-CISK helps to extend heating duration
350 (Fig. 9b), increase heating amplitude (Fig. 9c), or both (Fig. 9d), and strengthen
351 boundary layer moisture convergence as well. Although LTW19 suggests
352 noninstantaneous convection-circulation feedback should be able to alter the phase

353 relationship between heating and moisture convergence, a finer time resolution is
354 needed to display this change.

355

356 **6. Eastward propagation of MJO convection**

357 The remained question is, how this enhanced FSM promotes eastward propagation
358 of MJO convection. Fig. 10 displays horizontal patterns of regressed moisture
359 convergence at 925 hPa and horizontal winds at 850 hPa. Note that convection
360 (precipitation) center is located in the Indian Ocean box (80° - 90° E; 5° S- 5° N). The
361 prominent feature of observation is that boundary layer moisture convergence extends
362 to the east of MJO convection center and all the way to the western Pacific Ocean.
363 Easterly winds are prevalent over the Indo-Pacific warm pool region and located to the
364 further east of moisture convergence. These features can also be found in numerical
365 simulations, with increased convergence and easterly winds over the warm pool region
366 in SAS-n and KFMT-n. In the simulations with TDK type schemes, eastward extension
367 of low-level moisture convergence is narrowly confined near the convection center over
368 the Indian Ocean, which is consistent with the little vertical tilt in regressed heating
369 structure (Fig. 6). Besides the enhanced shallow convective heating, boundary layer
370 friction may also contribute to the increased moisture convergence (Wang and Rui 1990;
371 Hsu and Li 2012).

372 Vertical-longitude regressions of specific humidity anomaly averaged between
373 10° S and 10° N associated with rainfall over the Indian Ocean box are shown in Fig. 11.
374 Westward tilt of specific humidity can be observed in observation, with positive

375 moisture anomaly in the lower troposphere to the east of convection center (80°-90°E).
376 Comparing simulation results with different CP schemes, the biggest change is the
377 enhanced positive moisture anomaly in lower levels to the east of 90°E, corresponding
378 to the enhanced moisture convergence zone (Fig. 10).

379 Following Eq. 3, moisture convergence is decomposed into two terms associated
380 with mass convergence and moisture advection. Difference between regressed moisture
381 convergence terms at 925 hPa are plotted in Fig. 12. Obviously, mass convergence term
382 dominates moisture convergence. In SAS simulations, modified CP scheme increases
383 moisture convergence along the equator from the middle Indian Ocean to the western
384 Pacific Ocean. While in the other two cases moisture convergence increments are found
385 in smaller regions, they help to foster new convection to the east of convection center
386 all the same. In contrast, positive horizontal advection in the boundary layer is usually
387 located in regions where vigorous deep convection present, which can also be deduced
388 from Fig. 8.

389 Although advection term makes little contribution to the total amount of moisture
390 convergence, it may noticeably modulate the propagation of MJO due to its asymmetric
391 pattern relative to convection center. Here the longitude-height plot of horizontal
392 moisture advection averaged in tropical belt (10°S–10°N) and the difference between
393 simulations with modified schemes and original ones are shown in Fig. 13. In
394 agreement with previous studies (Kim et al. 2014; Adames and Wallace 2015; Zhu and
395 Hendon 2015), the asymmetric structure of horizontal advection relative to rainfall
396 center also contributes to eastward propagation (Figs. 13a, 13b, 13d and 13f). It

397 moistens the lower troposphere before the maximum rainfall (east of 90°E) while dries
398 the lower troposphere after that (west of 90°E). Compared to control runs, modified
399 schemes almost double the asymmetric advective tendencies and thus give rise to the
400 eastward propagation (Figs. 13c, 13e and 13g).

401 Differences of horizontal moisture advection can be partitioned into contributions
402 from zonal and meridional components. Fig. 14 displays differences of regressed zonal
403 (Figs. 14a, 14c and 14e) and meridional (Figs. 14b, 14d and 14f) advection between
404 simulations with modified CP schemes and control runs. Obviously, the difference of
405 horizontal moisture advection mainly comes from the difference of zonal advection
406 over the Indian and western Pacific Ocean. This result contradicts previous studies that
407 the meridional component plays a key role in producing the asymmetric structure of
408 horizontal moisture advection (Maloney 2009; Kim et al. 2014; Zhu and Hendon 2015).
409 It may be related to enhanced shallow convection that usually locates to the east of
410 maximum rainfall center and causes kelvin-wave response.

411 Following Maloney (2009) and Zhu and Hendon (2015), further analysis by
412 separating horizontal advection into time mean and deviation from the time mean shows
413 that the main contribution of the difference of regressed zonal advection is from that of
414 advection of anomalous specific humidity by mean zonal wind (not shown). It means
415 that, although enhanced shallow convection with modified CP schemes does not induce
416 substantially stronger easterly winds to the east of 90°E (Fig. 10), it effectively moistens
417 the lower troposphere there (Fig. 11), and then easterly winds advect anomalous
418 moisture in the region of 90°E–120°E (see Fig. 14a, 14c and 14e).

419

420 **7. Discussion**

421 Previous studies demonstrate that shallow convection preconditions the
422 atmosphere for the subsequent onset of active deep convection, which is fundamental
423 to the eastward propagation of the MJO (Benedict and Randall 2007; Adames and
424 Wallace 2015). However, if upward transport by large-scale forcing is not incorporated,
425 shallow convection alone is not able to sufficiently moisten the lower troposphere
426 (Hohenegger and Stevens 2013; Masunaga 2013; Kumar et al. 2013). In fact, shallow
427 convective activity cannot be separated readily from its large-scale background, since
428 a strong interaction exists between them. Notice that modified closure assumption of
429 shallow convection only relates cloud-base mass flux to low-level moisture
430 convergence. The feedback between shallow convection and low-level moisture
431 convergence is not guaranteed therein. Improved simulation with modified CP scheme
432 demonstrates that this feedback is an intrinsic character of large-scale convective
433 system, and that the modified closure assumption helps to patch this feedback to make
434 it work.

435 It is widely recognized that improved simulation of the MJO can be realized by
436 increasing the sensitivity of deep convection to tropospheric humidity, such as
437 increasing convective entrainment rate (Tokioka et al. 1988; Bechtold 2008; Benedict
438 et al. 2014) or rain evaporation fraction (Maloney 2009; Hannah and Maloney 2011;
439 Kim et al. 2012). These two modifications both help to suppress deep convection until
440 other processes like shallow convection sufficiently moisten the atmosphere.

441 Noninstantaneous wave-CISK mechanism behaves quite similarly. Change of the ratio
442 of shallow and deep convection in three pairs of simulations are plotted in Fig. 15. In
443 agreement with above discussion, enhanced shallow convection is related to suppressed
444 deep convection. KFMT scheme produces the largest increment of shallow convection,
445 consistent with the strongest heating and moistening tendency seen in Figs. 6 and 11 in
446 the lower troposphere. In this sense, merely modifying closure assumption seems
447 inadequate to get a satisfying MJO simulation. Further work is required to study the
448 interaction of shallow and deep convection and improve its description in CP scheme
449 in the future.

450 Jiang et al. (2016) analyzed simulations with 25 climate models and observed an
451 anti-correlation between convective time scale and MJO amplitude. The variable of
452 convective time scale in their study is a measure of how rapidly precipitation must
453 increase to remove excess column water vapor (see also Bretherton et al., 2004; Sobel
454 and Maloney 2012). Similarly, the time scale (τ) here is a description of how rapidly
455 converged moisture is transported upward through cloud base. $\tau = 6$ h used in modified
456 CP schemes is a rather rough estimation. We cannot determine its exact value at this
457 moment. Sensitivity tests show that increased time scale leads to decreased amplitude
458 of intraseasonal variability and westward propagation tendency. Suhas and Zhang (2015)
459 estimated a time lag between moisture convergence and mass flux of about 1 h using
460 cloud-resolving model simulation. But their model domain is 256×256 km², which
461 means only meso-scale or small-scale process is included. Considering the large-scale
462 system we intend to deal with, the time scale of 6 h is a reasonable estimation. More

463 study on the time scale τ with observations and high-resolution numerical simulations
464 will be conducted in the future.

465

466 **8. Summary**

467 Based on the noninstantaneous wave-CISK proposed in LTW19, three CP schemes
468 are modified to couple shallow convection with large-scale circulation through low-
469 level moisture convergence in this study. Simulations with modified CP schemes show
470 improved eastward propagation signals and stronger intraseasonal variabilities of
471 convection (OLR) without degrading the mean states. Through positive feedback
472 between shallow convection and large-scale circulation, the intrinsic instability of
473 noninstantaneous wave-CISK incorporated in CP schemes results in amplified shallow
474 convective heating and/or extended heating duration, shaping tilted heating structure as
475 in observations (Fig. 6). On the other hand, enhanced moisture convergence transports
476 more moisture upward with horizontal advection augmenting the moistening prior to
477 deep convection onset (Fig. 7 and 8).

478 The eastward propagation of the MJO is highly sensitive to the lower troposphere
479 moisture content. To the east of major convection center, strong boundary layer
480 moisture convergence is forced by shallow convection, which effectively moistens the
481 lower atmosphere. Large-scale horizontal advection gives rise to eastward propagation
482 by causing positive moisture tendency in the front of convection center and negative
483 tendency in the tail. Zonal component is found to dominate the changes of moisture
484 advection brought about by modification of CP schemes. In addition, the difference of

485 zonal advection mainly comes from the advection of anomalous specific humidity by
486 mean zonal wind, which means FSM generates larger moisture anomaly than zonal
487 wind anomaly.

488

489 ***Acknowledgements.*** This work is jointly supported by the National Key R&D Program
490 of China under Grants 2017YFC1501601, the National Natural Science Foundation of
491 China (61827901). The authors thank Pallav Ray for his suggestions on WRF model
492 settings. We also thank Jianping Tang for providing ERA-Interim data, and Ming Bao
493 for the help with data analysis.

494

495 **References**

496 Adames, Á.F. and J.M. Wallace, 2015: Three-dimensional structure and evolution of
497 the moisture field in the MJO. *J. Atmos. Sci.*, **72**, 3733–3754.

498 Ahmed, F., and C. Schumacher, 2018: Spectral signatures of moisture–convection
499 feedbacks over the Indian Ocean. *J. Atmos. Sci.*, **75**, 1995–2015.

500 Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future.
501 *J. Climate*, **17**, 2493–2525.

502 Bechtold, P., M. Kohler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F.
503 Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with
504 the ECMWF model: From synoptic to decadal time-scales, *Quart. J. Roy. Meteor.
505 Soc.*, **134**, 1337–1351.

506 Bellenger, H., K. Yoneyama, M. Katsumata, T. Nishizawa, K. Yasunaga, and R.
507 Shirooka, 2015: Observation of moisture tendencies related to shallow convection.
508 *J. Atmos. Sci.*, **72**, 641–659.

509 Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative
510 to maximum rainfall. *J. Atmos. Sci.*, **64**, 2332–2354.

511 ——, E. D. Maloney, A. H. Sobel, and D. M. W. Frierson, 2014: Gross moist stability
512 and MJO simulation skill in three full-physics GCMs, *J. Atmos. Sci.*, **71**, 3327–
513 3349.

514 Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillation in a simple
515 nonlinear model, *J. Atmos. Sci.*, **50**, 2922–2939.

516 Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water

517 vapor path and precipitation over the tropical oceans. *J. Climate*, 17, 1517–1528.

518 Chen, F., and J. Dudhia 2001: Coupling an advanced land - surface/hydrology model
519 with the Penn State/NCAR MM5 modeling system, Part I: Model description and
520 implementation, *Mon. Wea. Rev.*, 129, 569–585.

521 Ciesielski, P. E., R. H. Johnson, X. Jiang, Y. Zhang, and S. Xie, 2017: Relationships
522 between radiation, clouds, and convection during DYNAMO, *J. Geophys. Res.
Atmos.*, 122, 2529–2548.

523 Crum, F. X., and T. J. Dunkerton, 1992: Analytic and numerical models of wave–CISK
524 with conditional heating. *J. Atmos. Sci.*, 49, 1693–1708.

526 Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and
527 performance of the data assimilation system. *Quart. J. Roy. Meteor. Soc.*, 137,
528 553–597.

529 Del Genio, A. D., Y. Chen, D. Kim, and M. Yao, 2012: The MJO transition from shallow
530 to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. *J.
Climate*, 25, 3755–3770.

532 Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon
533 experiment using a mesoscale two-dimensional model, *J. Atmos. Sci.*, 46, 3077–
534 3107.

535 Hagos, S. and L. R. Leung, 2011: Moist thermodynamics of the Madden–Julian
536 Oscillation in a cloud-resolving simulation. *J. Climate*, 24, 5571–5583.

537 ——, Z. Feng, K. Landu, and C. N. Long, 2014: Advection, moistening, and shallow-
538 to-deep convection transitions during the initiation and propagation of Madden–

539 Julian Oscillation, *J. Adv. Model. Earth Syst.*, 6, 938–949.

540 Hall, N. M. J., S. Thibaut, and P. Marchesiello, 2017: Impact of the observed
541 extratropics on climatological simulations of the MJO in a tropical channel model.

542 *Clim. Dyn.*, 48, 2541–2555.

543 Han J., H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the
544 NCEP Global Forecast System. *Wea. Forecasting*, 26, 520–533.

545 Hannah, W. M. and E. D. Maloney, 2011: The role of moisture–convection feedbacks
546 in simulating the Madden–Julian oscillation. *J. Climate*, 24, 2754–2770.

547 Hendon, H.H. and M.L. Salby, 1994: The life cycle of the Madden–Julian oscillation.
548 *J. Atmos. Sci.*, 51, 2225–2237.

549 Hirota, N., T. Ogura, H. Tatebe, H. Shiogama, M. Kimoto, and M. Watanabe, 2018:
550 Roles of shallow convective moistening in the eastward propagation of the MJO
551 in MIROC6. *J. Climate*, 31, 3033–3047.

552 Hohenegger, C. and B. Stevens, 2013: Preconditioning deep convection with cumulus
553 congestus. *J. Atmos. Sci.*, 70, 448–464.

554 Holloway, C. E., and J. D. Neelin, 2009: Vertical structure, column water vapor, and
555 tropical deep convection. *J. Atmos. Sci.*, 66, 1665–1683.

556 Hong, S.-Y., J. Dudhia, and S.-H. Chen 2004: A revised approach to ice microphysical
557 processes for the bulk parameterization of clouds and precipitation. *Mon. Wea.
558 Rev.*, 132, 103–120.

559 ——, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit
560 treatment of entrainment processes. *Mon. Wea. Rev.*, 134, 2318–2341.

561 Hsu, P. and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the
562 eastward propagation of the Madden–Julian oscillation. *J. Climate*, 25, 4914–4931.

563 Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B.
564 McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily
565 resolution from multisatellite observations. *J. Hydrometeorol.*, 2, 36–50.

566 Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and
567 convectively coupled equatorial waves simulated by CMIP5 climate models, *J.
568 Clim.*, 26, 6185–6214.

569 Janiga, M. A. and C. Zhang, 2016: MJO moisture budget during DYNAMO in a cloud-
570 resolving model. *J. Atmos. Sci.*, 73, 2257–2278.

571 Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the
572 Madden-Julian oscillation: Exploring key model physics in climate simulations. *J.
573 Geophys. Res. Atmos.*, 120, 4718–4748.

574 ——, M. Zhao, E. D. Maloney, and D. E. Waliser, 2016: Convective moisture
575 adjustment time scale as a key factor in regulating model amplitude of the
576 Madden–Julian oscillation. *Geophys. Res. Lett.*, 43, 10412–10419.

577 Johnson, R.H. and P.E. Ciesielski, 2013: Structure and properties of Madden–Julian
578 oscillations deduced from DYNAMO sounding arrays. *J. Atmos. Sci.*, 70, 3157–
579 3179.

580 Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. *J. Appl.
581 Meteor.*, 43, 170–181.

582 Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–

583 Julian oscillation. *J. Climate*, 14, 780–793.

584 Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection
585 associated with the MJO during TOGA COARE IOP: Trimodal characteristics.

586 *Geophys. Res. Lett.*, 31, L10101.

587 Kim, D., A. H. Sobel, A. D. Del Genio, Y. Chen, S. J. Camargo, M. Yao, M. Kelley, and
588 L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA
589 GISS general circulation model. *J. Climate*, 25, 4641–4659.

590 ——, J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–
591 Julian oscillation events. *J. Climate*, 27, 111–125.

592 Kumar, V. V., C. Jakob, A. Protat, P. T. May, and L. Davies, 2013: The four cumulus
593 cloud modes and their progression during rainfall events: A C-band polarimetric
594 radar perspective, *J. Geophys. Res. Atmos.*, 118, 8375–8389.

595 Lau, W. K.-M., and D. E. Waliser, 2012: Intraseasonal variability in the atmosphere–
596 ocean climate system. Springer-Verlag, 614 pp.

597 Lee, H.-T., and NOAA CDR Program, 2011: NOAA Climate Data Record (CDR) of
598 daily outgoing longwave radiation (OLR), Version 1.2. NOAA National Climatic
599 Data Center.

600 Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4
601 climate models. Part I: Convective signals. *J. Climate*, 19, 2665–2690.

602 Ling, J. and C. Zhang, 2011: Structural evolution in heating profiles of the MJO in
603 global reanalyses and TRMM retrievals. *J. Climate*, 24, 825–842.

604 Liu, Y., Z. Tan, and Z. Wu, 2019: Noninstantaneous wave-CISK for the interaction

605 between convective heating and low-level moisture convergence in the tropics. *J.*
606 *Atmos. Sci.*, 76, 2083–2101.

607 Ma, L. M., and Z.-M. Tan, 2009: Improving the behavior of the cumulus
608 parameterization for tropical cyclone prediction: Convection trigger. *Atmos. Res.*,
609 92, 190–211.

610 Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal
611 oscillations. *Proc. Natl. Acad. Sci. USA*, 106, 8417–8422.

612 Maloney, E. D., 2009: The moist static energy budget of a composite tropical
613 intraseasonal oscillation in a climate model. *J. Climate*, 22, 711–729.

614 Masunaga, H., 2013: A satellite study of tropical moist convection and environmental
615 variability: A moisture and thermal budget analysis. *J. Atmos. Sci.*, 70, 2443–2466.

616 Matthews, A. J., and J. Lander, 1999: Physical and numerical contributions to the
617 structure of Kelvin wave-CISK modes in a spectral transform model. *J. Atmos.*
618 *Sci.*, 56, 4050–4058.

619 Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface
620 layer of the atmosphere, *Contrib. Geophys. Inst. Acad. Sci. USSR*, 151, 163–187.

621 Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997:
622 Radiativetransfer for inhomogeneous atmosphere: RRTM, a validated
623 correlated - k model for the longwave, *J. Geophys. Res.*, 102, 16663–16682.

624 Pilon, R., C. Zhang, and J. Dudhia, 2016: Roles of deep and shallow convection and
625 microphysics in the MJO simulated by the Model for Prediction Across Scales, *J.*
626 *Geophys. Res. Atmos.*, 121, 10575–10600.

627 Powell, S. W., and R. A. Houze Jr., 2015: Effect of dry large-scale vertical motions on
628 initial MJO convective onset. *J. Geophys. Res. Atmos.*, 120, 4783–4805.

629 Ray, P., C. Zhang, J. Dudhia, and S. S. Chen, 2009: A numerical case study on the
630 initiation of the Madden–Julian oscillation. *J. Atmos. Sci.*, 66, 310–331.

631 ——, C. Zhang, M. Moncrieff, J. Dudhia, J. Caron, L. Leung, and C. Bruyère, 2011:
632 Role of the atmospheric mean state on the initiation of the MJO in a tropical
633 channel model. *Clim. Dyn.*, 36, 161–184.

634 Raymond, D. J., and Z. Fuchs, 2009: Moisture modes and the Madden–Julian
635 oscillation. *J. Climate*, 22, 3031–3046.

636 Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax,
637 2007: Daily high-resolution-blended analyses for sea surface temperature. *J.*
638 *Climate*, 20, 5473–5496.

639 Riley, E.M., B.E. Mapes, and S.N. Tulich, 2011: Clouds associated with the Madden–
640 Julian oscillation: A new perspective from CloudSat. *J. Atmos. Sci.*, 68, 3032–
641 3051.

642 Rowe, A. K., and R. A. Houze Jr., 2015: Cloud organization and growth during the
643 transition from suppressed to active MJO conditions. *J. Geophys. Res. Atmos.*, 120,
644 10, 324–10, 350.

645 Ruppert, J. H., Jr., and R. H. Johnson, 2015: Diurnally modulated cumulus moistening
646 in the pre-onset stage of the Madden–Julian oscillation during DYNAMO. *J.*
647 *Atmos. Sci.*, 72, 1622–1647.

648 Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF

649 version 3. NCAR Tech. Note NCAR/TN-4751STR, 113 pp.,
650 <https://doi.org/10.5065/D68S4MVH>.

651 Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling
652 the Madden-Julian Oscillation. *J. Atmos. Sci.*, 69, 1691–1705.

653 Suhas, E., and G. J. Zhang, 2015: Evaluating convective parameterization closures
654 using cloud-resolving model simulation of tropical deep convection, *J. Geophys.*
655 *Res. Atmos.*, 120, 1260–1277.

656 Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30–60 day
657 oscillation and the Arakawa-Schubert penetrative cumulus parameterization, *J.*
658 *Meteor. Soc. Japan*, 66, 883–901.

659 Ulate, M., C. Zhang, and J. Dudhia, 2015: Role of water vapor and convection-
660 circulation decoupling in MJO simulations by a tropical channel model. *J. Adv.*
661 *Model. Earth Syst.*, 7, 692–711.

662 Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on
663 an equatorial b-plane. *J. Atmos. Sci.*, 47, 397–413.

664 Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves:
665 Analysis of clouds and temperature in the wavenumber–frequency domain. *J.*
666 *Atmos. Sci.*, 56, 374–399.

667 Wu, Z., E. S. Sarachik, and D. S. Battisti, 2000: Vertical structure of convective heating
668 and the three-dimensional structure of the forced circulation on an equatorial beta
669 plane. *J. Atmos. Sci.*, 57, 2169–2187.

670 ——, 2003: A shallow CISK, deep equilibrium mechanism for the interaction between

671 large-scale convection and large-scale circulations in the tropics, *J. Atmos. Sci.*, 60,

672 377–392.

673 Xu, W., and S. A. Rutledge, 2016: Time scales of shallow-to-deep convective transition

674 associated with the onset of Madden-Julian Oscillations, *Geophys. Res. Lett.*, 43,

675 2880–2888.

676 Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of

677 tropical cloud clusters from large-scale heat and moisture budgets, *J. Atmos. Sci.*,

678 30, 611–627.

679 Zhang, C., 2005: Madden-Julian oscillation. *Rev. Geophys.*, 43, RG2003.

680 ——, 2013: Madden-Julian oscillation: Bridging weather and climate. *Bull. Amer.*

681 *Meteor. Soc.*, 94, 1849–1870.

682 Zhang, C., and Y. Wang, 2017: Projected future changes of tropical cyclone activity

683 over the western North and South Pacific in a 20-km-Mesh regional climate model.

684 *J. Climate*, 30, 5923–5941.

685 Zhu, H., and H. H. Hendon, 2015: Role of large scale moisture advection for simulation

686 of the MJO with increased entrainment. *Quart. J. Roy. Meteor. Soc.*, 141, 2127–

687 2136.

688

689 **Table captions**

690 **Table 1.** Summary of criteria and closure assumptions for shallow convection in 3

691 cumulus parameterization schemes used in this study. P_s is the surface pressure.

692 D_{\min} is the minimum cloud depth, which is a function of the temperature of lifting

693 condensation level.

694

695 **Tables**

CP schemes	Criteria for shallow convection	Closure assumptions for shallow convection (cloud-base mass flux)
Simplified Arakawa-Schubert (SAS)	Cloud depth ≤ 150 hPa, cloud top pressure $\geq 0.7P_s$	Related to surface buoyancy flux
Tiedtke (TDK)	Cloud depth ≤ 200 hPa	Related to tendency of boundary layer moist static energy
Kain-Fritsch with trigger (KFMT)	Cloud depth $\leq D_{\min}$, D_{\min} varies from 2 km to 4 km	Related to subcloud layer turbulent kinetic energy

696 **Table 1.** Summary of criteria and closure assumptions for shallow convection in 3
 697 cumulus parameterization schemes used in this study. P_s is the surface pressure. D_{\min} is
 698 the minimum cloud depth, which is a function of the temperature of lifting condensation
 699 level.
 700

701 **Figure captions**

702 **Figure 1.** Boreal winter-mean precipitation (mm d^{-1}) in observation (a) and simulations
703 with CP schemes of SAS (b), TDK (d) and KF (f). The difference of boreal winter-
704 mean precipitation (mm d^{-1}) between simulations of SAS-n and SAS (c), TDK-n
705 and TDK (e), KF-n and KF (g).

706 **Figure 2.** Boreal winter variance of MJO-filtered (periods 20-100 days, eastward
707 propagating wavenumbers 1-5) precipitation ($\text{mm}^2 \text{ d}^{-2}$) in observation (a) and
708 simulations with CP schemes of SAS (b), SAS-n (c), TDK (d), TDK-n (e), and KF
709 (f) and KF-n (g).

710 **Figure 3.** Longitude-time evolution of OLR anomalies by lag correlations of 20-100
711 day band-pass-filtered anomalous OLR with itself averaged over the equatorial
712 Indian Ocean box ($80\text{-}90^\circ\text{E}$; $5^\circ\text{S}\text{-}5^\circ\text{N}$). (a) is for observation and (b)-(g) are for
713 simulations with different CP schemes. Fields are averaged between 10°S and
714 10°N . Solid lines in each panel denote the eastward propagation speed of 8 m s^{-1} .

715 **Figure 4.** Frequency-zonal wavenumber power spectra of the symmetric component
716 (about the equator) of OLR for (a) observation and (b)-(g) simulations with
717 different CP schemes. Shaded is the base-10 logarithm of the averaged power
718 between 15°S and 15°N .

719 **Figure 5.** Longitude-time evolution of specific humidity anomalies (g kg^{-1} , shading)
720 and 850 hPa zonal wind anomalies (contours, interval of 0.3 m s^{-1} , positive, zero
721 and negative values represented by thin dashed, thick solid and thin solid lines) by
722 lag regression of 20-100 day band-pass-filtered anomalous specific humidity and

723 zonal wind against Indian Ocean precipitation (80-90°E; 5°S-5°N). (a) is for
724 observation and (b)-(g) are for simulations with different CP schemes. Regression
725 is scaled to 3 mm d⁻¹ precipitation rate. Fields are averaged between 10°S and
726 10°N. Solid straight lines in each panel denote the eastward propagation speed of
727 8 m s⁻¹.

728 **Figure 6.** Time-height structures of diabatic heating anomalies (K) by lag regression of
729 20-100 day band-pass-filtered anomalous total diabatic heating at the longitude of
730 90°E against Indian Ocean precipitation (80-90°E; 5°S-5°N). (a) is for observation
731 and (b)-(g) are for simulations with different CP schemes. Thick solid lines
732 represent zero heating anomaly. Regression is scaled to 3 mm d⁻¹ precipitation rate.
733 Fields are averaged between 10°S and 10°N.

734 **Figure 7.** As in Fig. 6, but for the mass convergence term (10⁻⁶ g kg⁻¹ s⁻¹) in Eq. (3).

735 **Figure 8.** As in Fig. 6, but for the horizontal moisture advection term (10⁻⁶ g kg⁻¹ s⁻¹) in
736 Eq. (3).

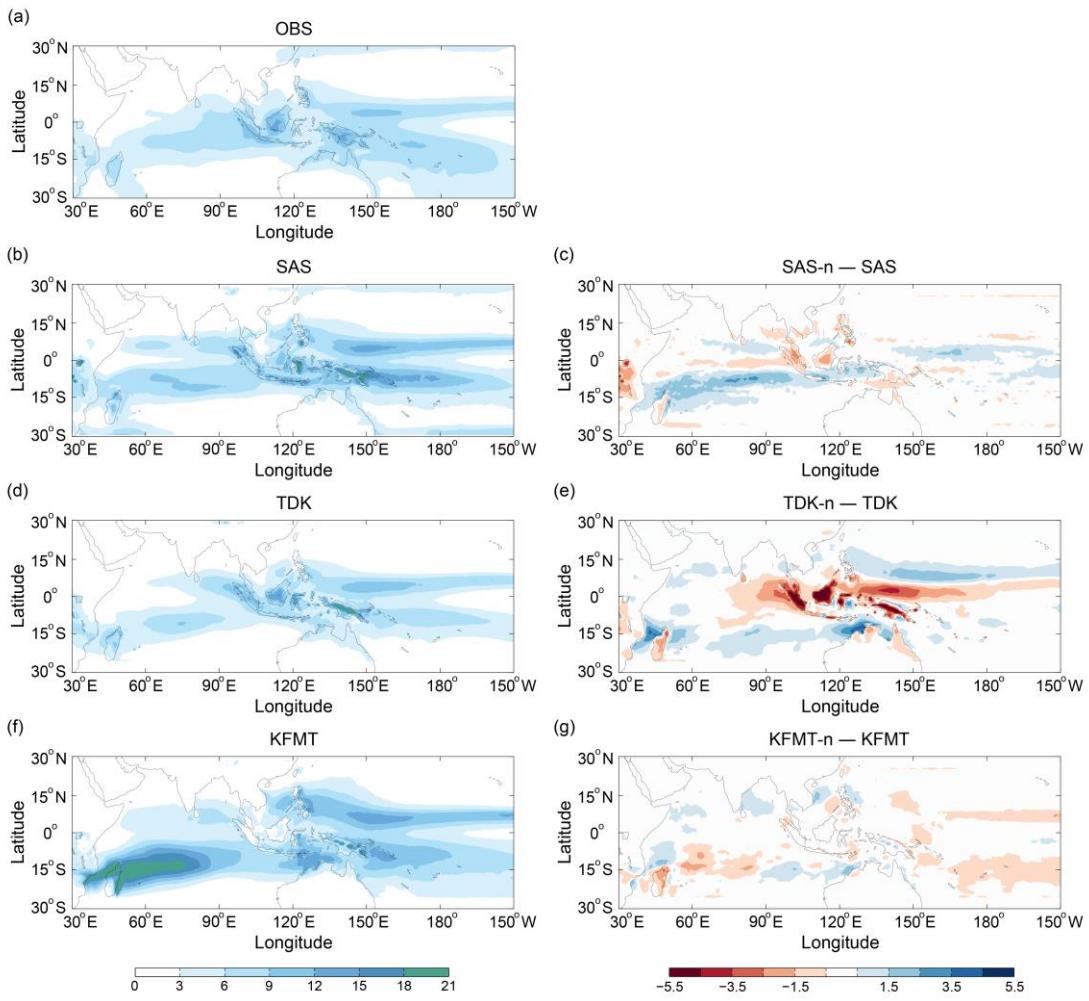
737 **Figure 9.** Time evolution of diabatic heating (K, red line) and moisture divergence (10⁻⁶ g kg⁻¹ s⁻¹, sign reversed moisture convergence, blue line) anomalies by lag
738 regression of 20-100 day band-pass-filtered anomalous of 850-hPa total diabatic
739 heating and 925-hPa moisture convergence at the longitude of 90°E against Indian
740 Ocean precipitation (80-90°E; 5°S-5°N). (a) is for observation and (b)-(d) are for
741 simulations with different CP schemes. In (b)-(d), solid and dashed lines represent
742 original and modified schemes respectively. Regression is scaled to 3 mm d⁻¹
743 precipitation rate. Fields are averaged between 10°S and 10°N.

745 **Figure 10.** Horizontal patterns of moisture convergence ($10^{-6} \text{ g kg}^{-1} \text{ s}^{-1}$) and horizontal
746 wind anomalies calculated by zero lag-regression of 20-100 day band-pass-filtered
747 anomalous 925-hPa moisture convergence and 850-hPa horizontal wind against
748 Indian Ocean precipitation (80-90°E; 5°S-5°N). (a) is for observation and (b)-(d)
749 are for simulations with different CP schemes. Regression is scaled to 3 mm d^{-1}
750 precipitation rate.

751 **Figure 11.** Longitude-height structures of specific humidity (g kg^{-1}) calculated by zero
752 lag-regression of 20-100 day band-pass-filtered anomalous specific humidity
753 against Indian Ocean precipitation (80-90°E; 5°S-5°N). (a) is for observation and
754 (b)-(g) are for simulations with different CP schemes. Regression is scaled to 3
755 mm d^{-1} precipitation rate. Fields are averaged between 10°S and 10°N.

756 **Figure 12.** Horizontal patterns of the differences of moisture convergence terms (10^{-6}
757 $\text{g kg}^{-1} \text{ s}^{-1}$) between 3 pairs of simulations with different CP schemes, calculated by
758 zero lag-regression of 20-100 day band-pass-filtered anomalous 925-hPa mass
759 convergence (a, c, e) and moisture advection (b, d, f) against Indian Ocean
760 precipitation (80-90°E; 5°S-5°N). Regression is scaled to 3 mm d^{-1} precipitation
761 rate.

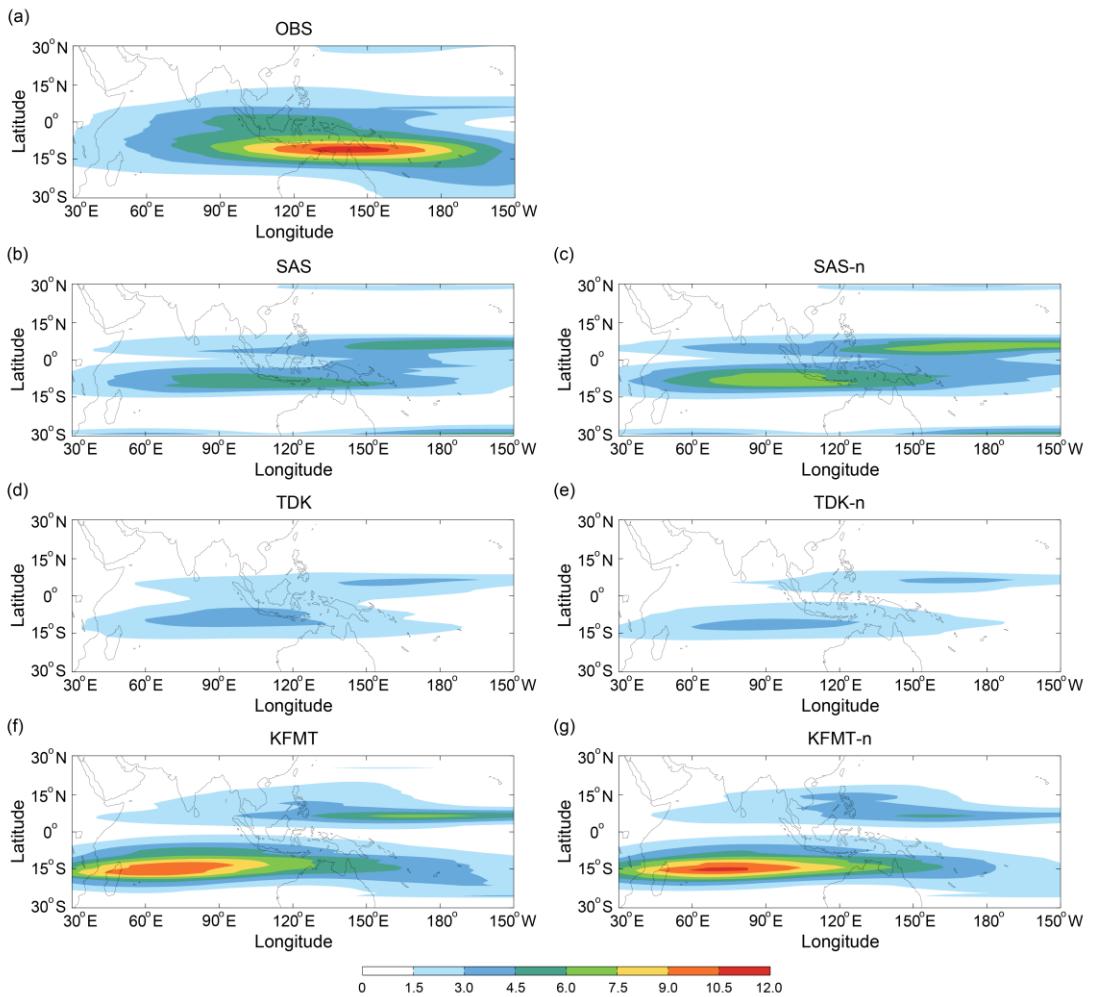
762 **Figure 13.** Longitude-height structures of moisture advection ($10^{-6} \text{ g kg}^{-1} \text{ s}^{-1}$) calculated
763 by zero lag-regression of 20-100 day band-pass-filtered anomalous horizontal
764 moisture advection against Indian Ocean precipitation (80-90°E; 5°S-5°N). (a) is
765 for observation and (b), (d), (f) are for simulations with SAS, TDK, and KF
766 schemes respectively. (c), (e), (g) are the differences between 3 pairs of


767 simulations. Regression is scaled to 3 mm d⁻¹ precipitation rate. Fields are
768 averaged between 10°S and 10°N.

769 **Figure 14.** As in Fig. 13 (c), (e) and (g), but for the zonal (a, c, e) and meridional (b, d,
770 f) moisture advection (10^{-6} g kg⁻¹ s⁻¹).

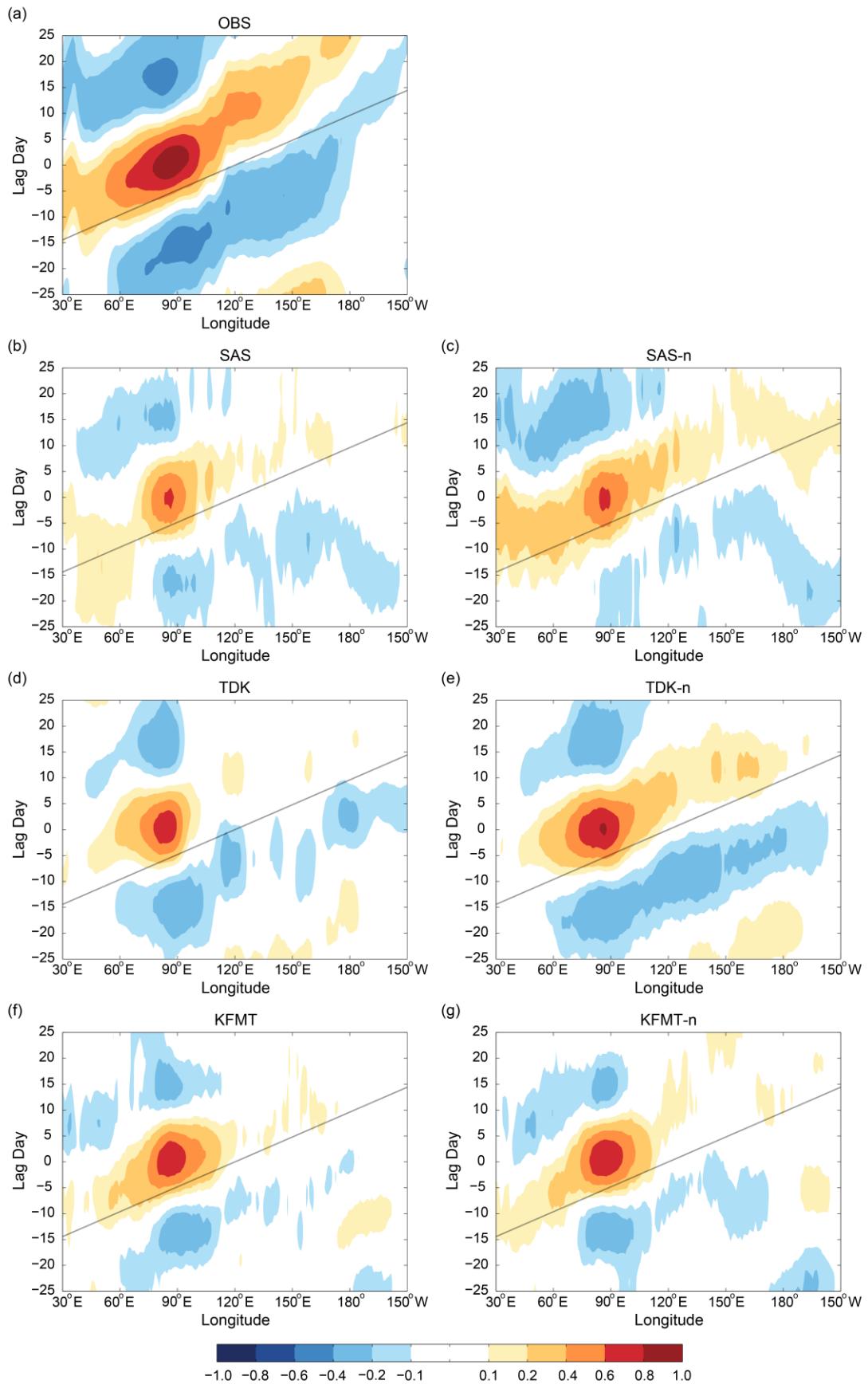
771 **Figure 15.** Ratio number (occurrence times averaged by total time steps and the number
772 of horizontal grids in the region of 60-180°E, 15°S-15°N) change for shallow
773 (circle) and deep (triangle) convection in 3 pairs of simulations with different CP
774 schemes.

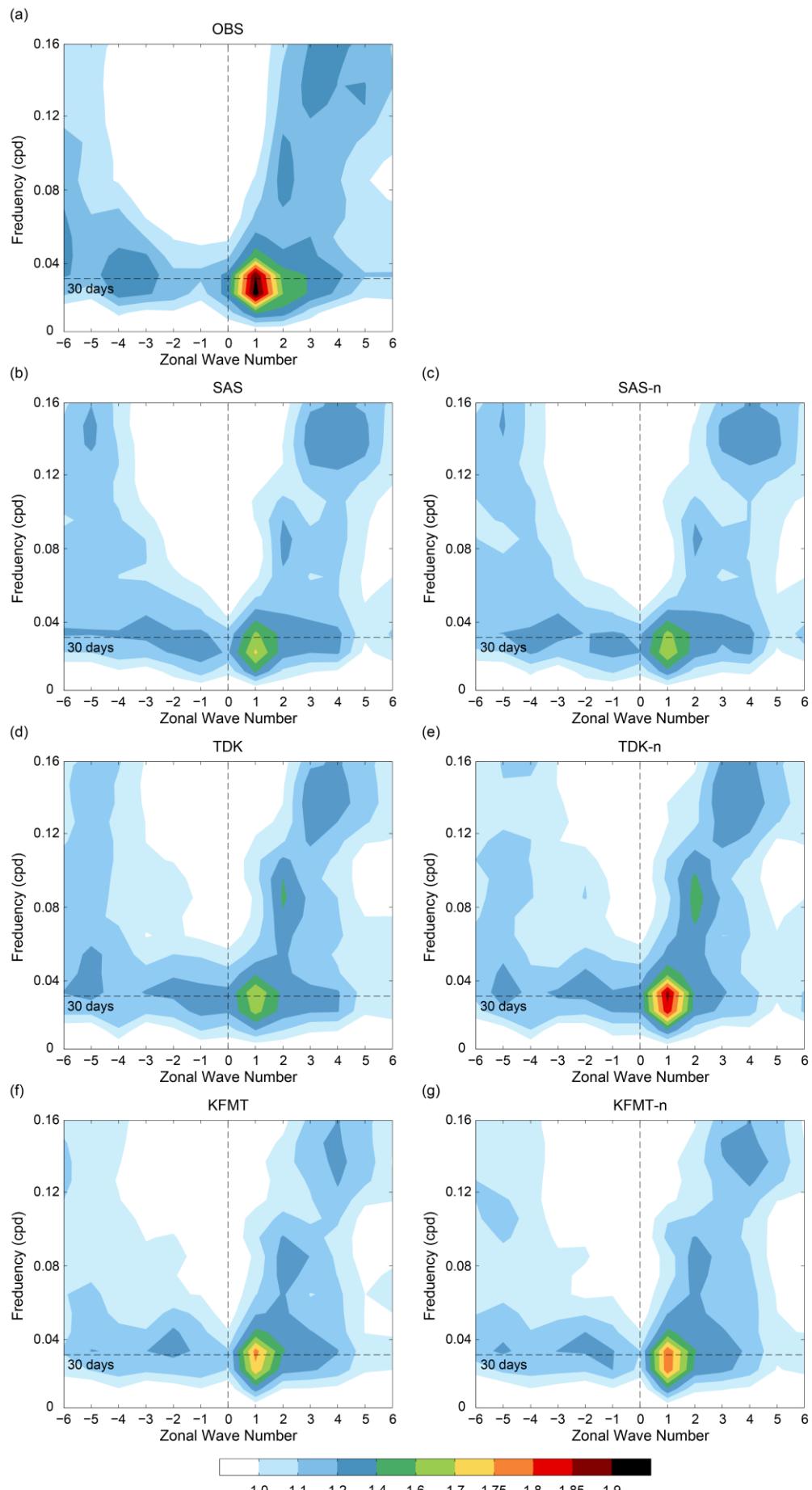
775


776 **Figures**

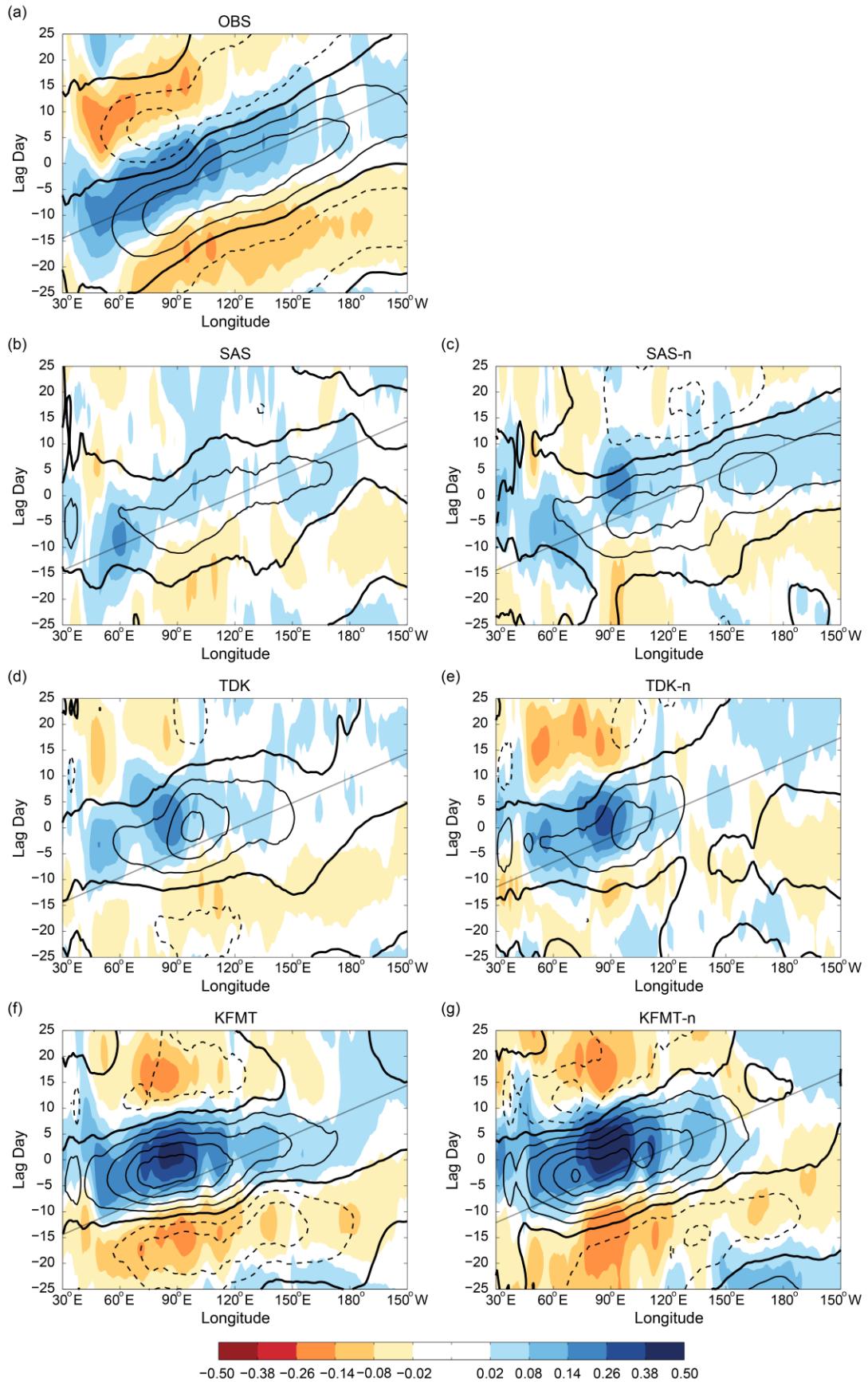
777

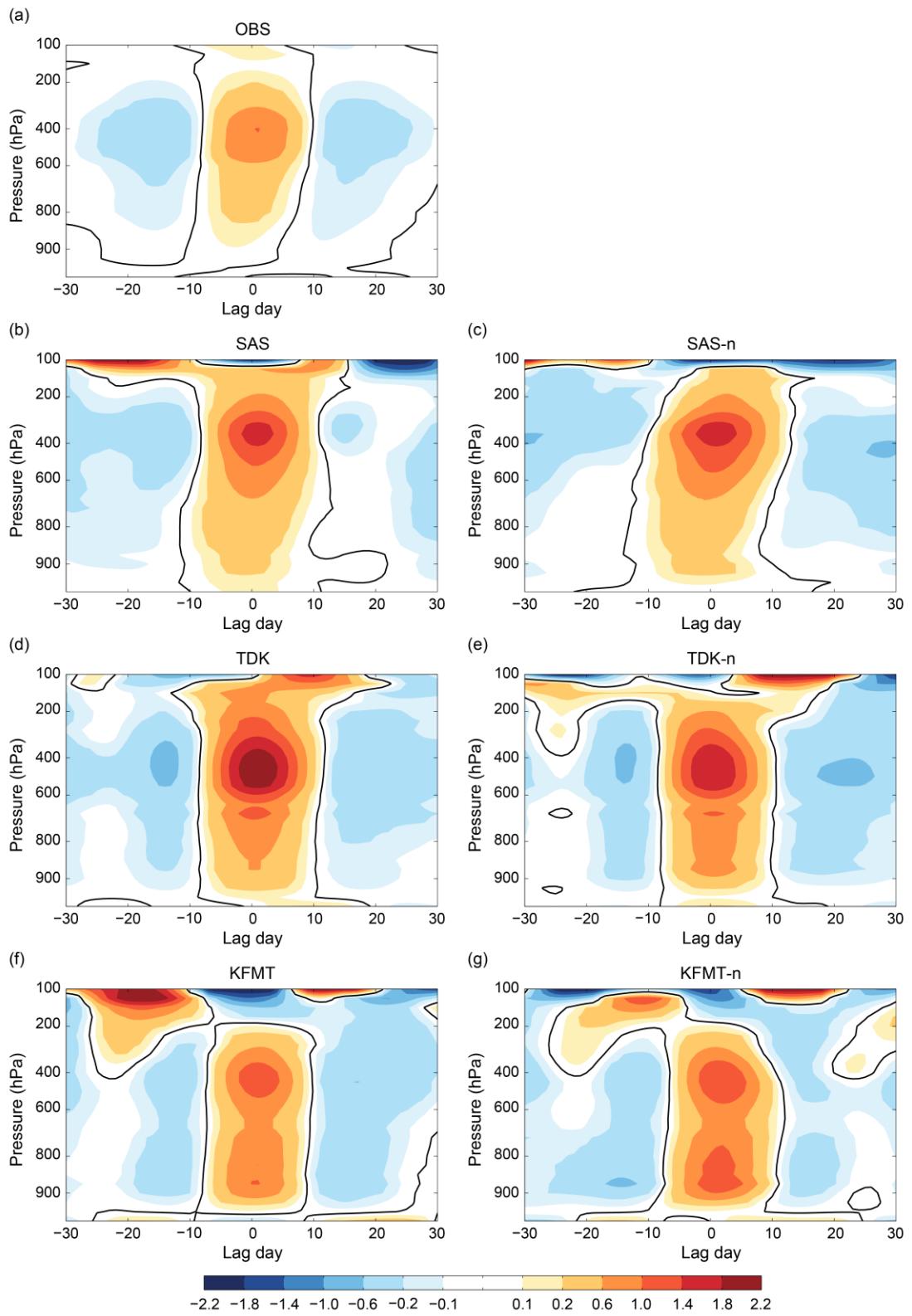
778 **Figure 1.** Boreal winter-mean precipitation (mm d⁻¹) in observation (a) and simulations
 779 with CP schemes of SAS (b), TDK (d) and KFMT (f). The difference of boreal winter-
 780 mean precipitation (mm d⁻¹) between simulations of SAS-n and SAS (c), TDK-n and
 781 TDK (e), KFMT-n and KFMT (g).


782

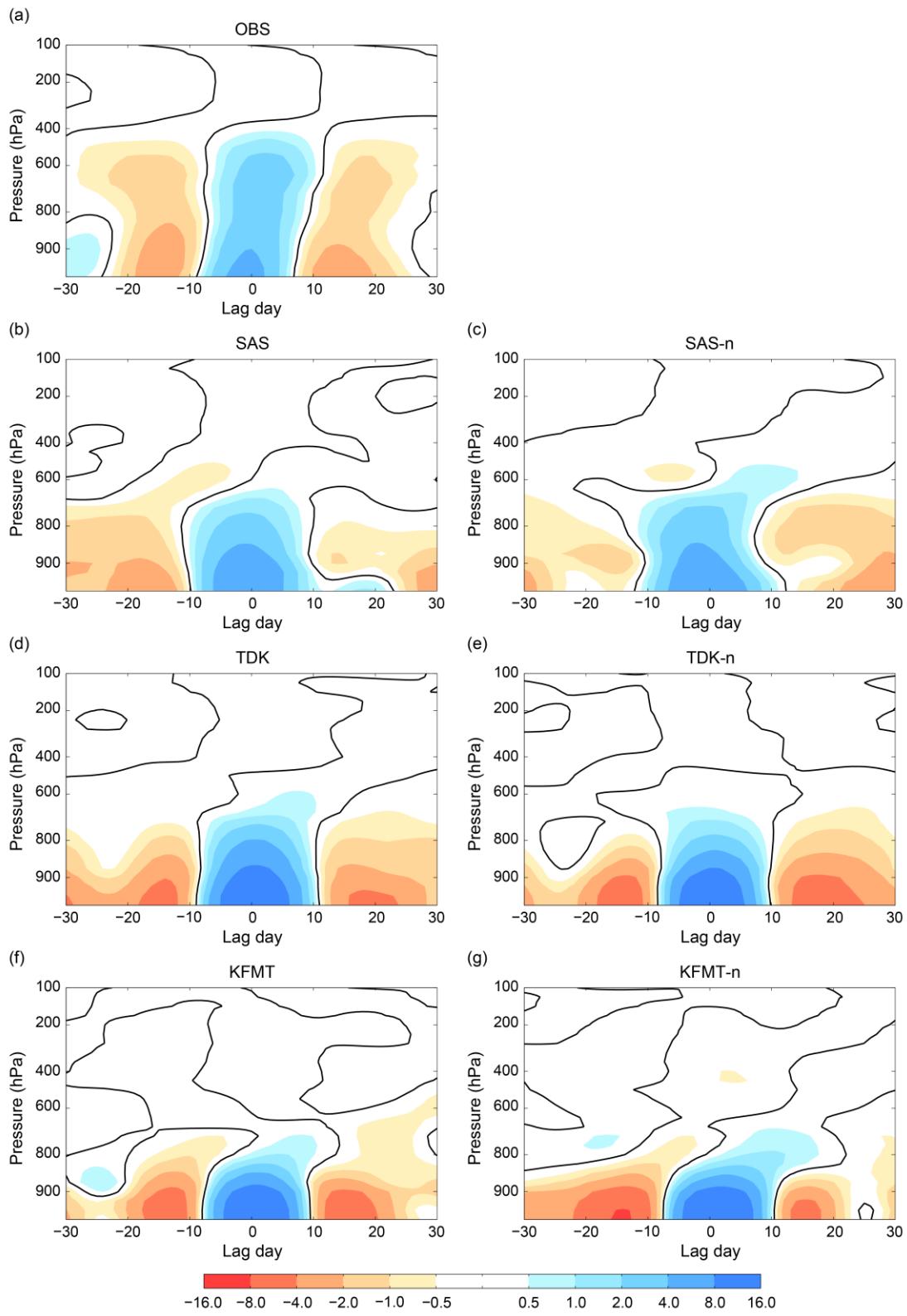

783

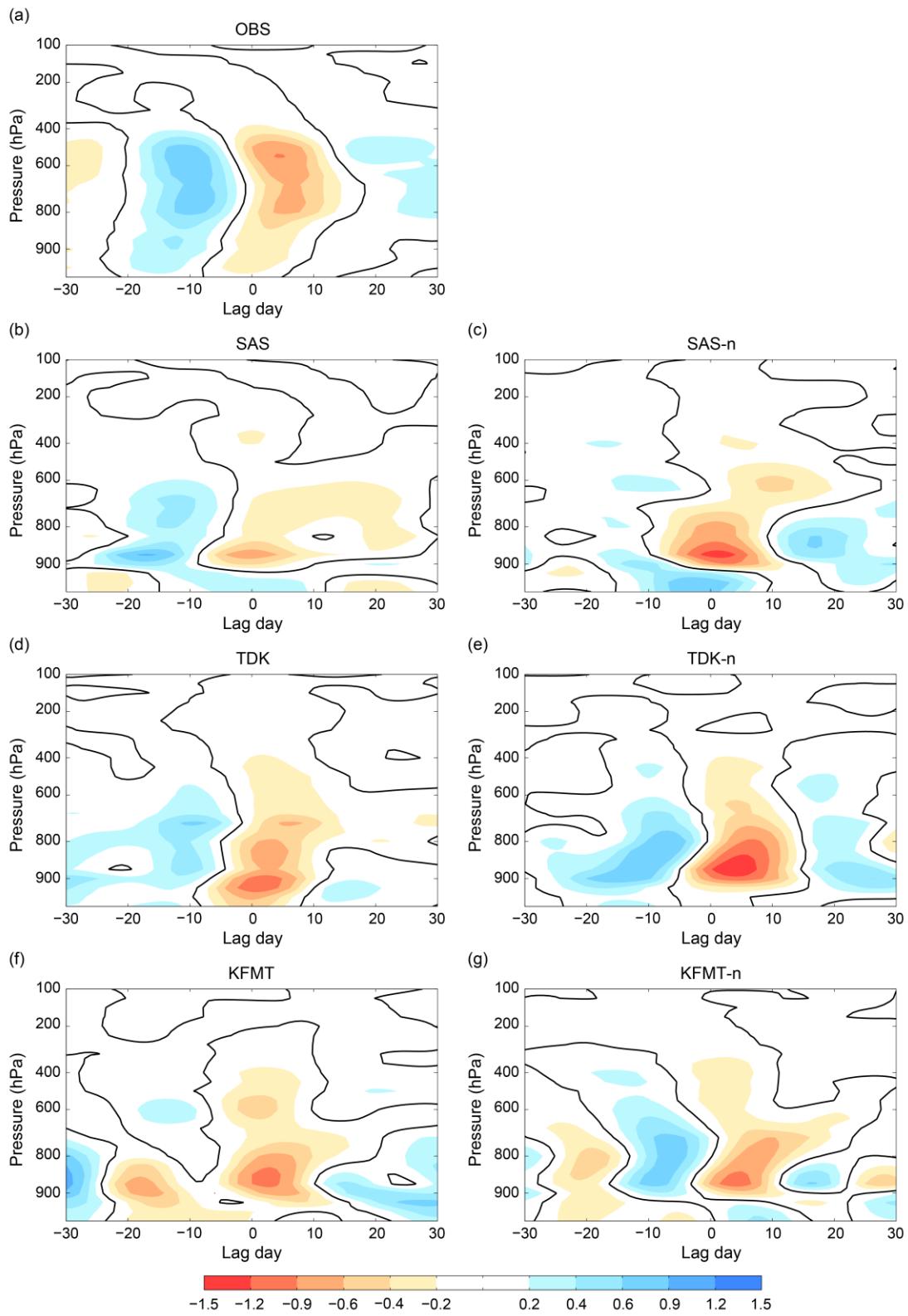
784 **Figure 2.** Boreal winter variance of MJO-filtered (periods 20-100 days, eastward
 785 propagating wavenumbers 1-5) precipitation ($\text{mm}^2 \text{ d}^{-2}$) in observation (a) and
 786 simulations with CP schemes of SAS (b), SAS-n (c), TDK (d), TDK-n (e), KFMT (f)
 787 and KFMT-n (g).


788


790 **Figure 3.** Longitude-time evolution of OLR anomalies by lag correlations of 20-100
791 day band-pass-filtered anomalous OLR with itself averaged over the equatorial Indian
792 Ocean box ($80\text{-}90^\circ\text{E}$; $5^\circ\text{S}\text{-}5^\circ\text{N}$). (a) is for observation and (b)-(g) are for simulations
793 with different CP schemes. Fields are averaged between 10°S and 10°N . Solid lines in
794 each panel denote the eastward propagation speed of 8 m s^{-1} .
795

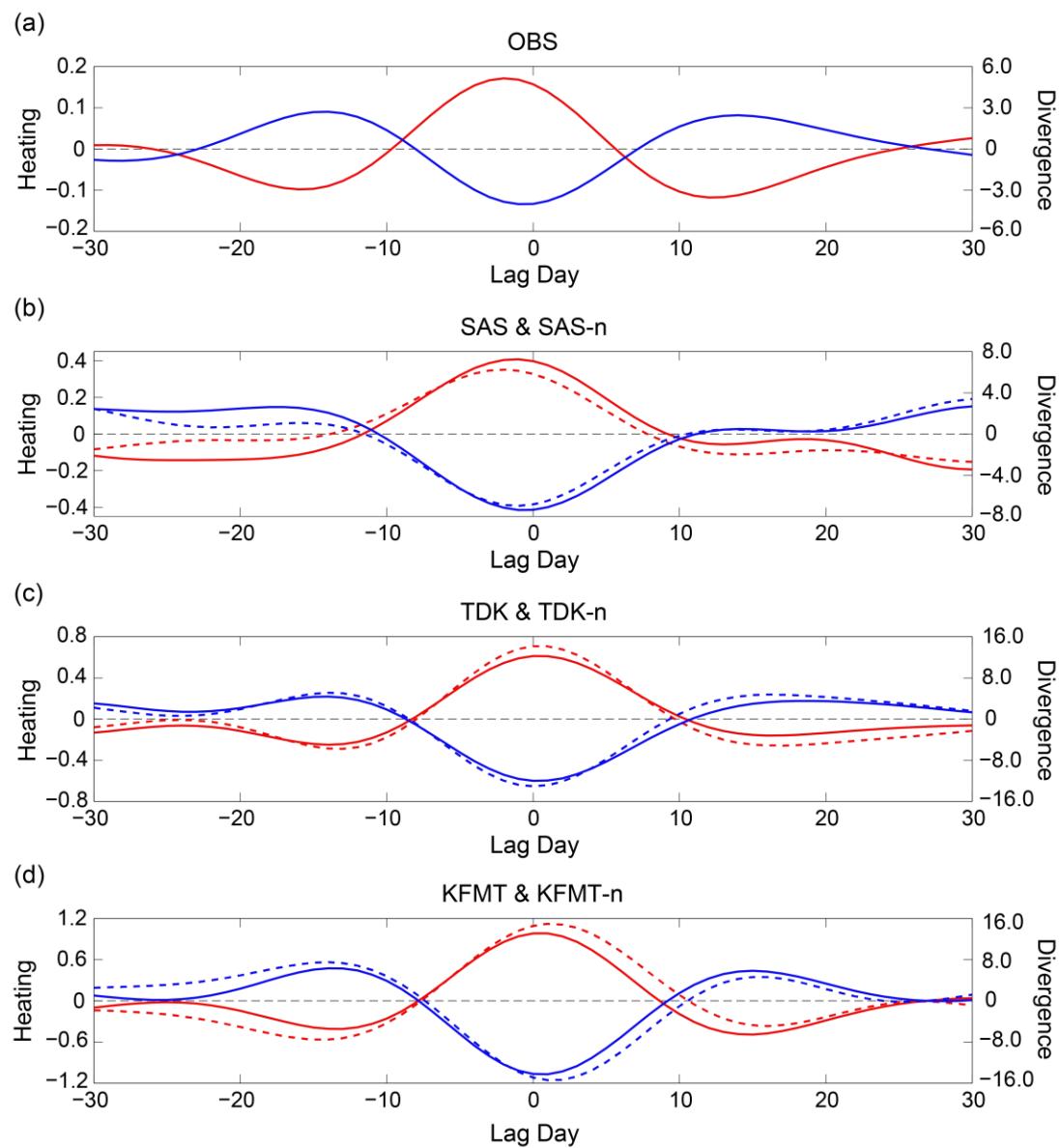
797 **Figure 4.** Frequency-zonal wavenumber power spectra of the symmetric component
798 (about the equator) of OLR for (a) observation and (b)-(g) simulations with different
799 CP schemes. Shaded is the base-10 logarithm of the averaged power between 15°S and
800 15°N.
801




803 **Figure 5.** Longitude-time evolution of specific humidity anomalies (g kg^{-1} , shading)
804 and 850 hPa zonal wind anomalies (contours, interval of 0.3 m s^{-1} , positive, zero and
805 negative values represented by thin dashed, thick solid and thin solid lines) by lag
806 regression of 20-100 day band-pass-filtered anomalous specific humidity and zonal
807 wind against Indian Ocean precipitation ($80\text{-}90^\circ\text{E}$; $5^\circ\text{S}\text{-}5^\circ\text{N}$). (a) is for observation and
808 (b)-(g) are for simulations with different CP schemes. Regression is scaled to 3 mm d^{-1}
809 precipitation rate. Fields are averaged between 10°S and 10°N . Solid straight lines in
810 each panel denote the eastward propagation speed of 8 m s^{-1} .
811

813 **Figure 6.** Time-height structures of diabatic heating anomalies (K) by lag regression of
814 20-100 day band-pass-filtered anomalous total diabatic heating at the longitude of 90°E
815 against Indian Ocean precipitation (80-90°E; 5°S-5°N). (a) is for observation and (b)-
816 (g) are for simulations with different CP schemes. Thick solid lines represent zero
817 heating anomaly. Regression is scaled to 3 mm d⁻¹ precipitation rate. Fields are
818 averaged between 10°S and 10°N.

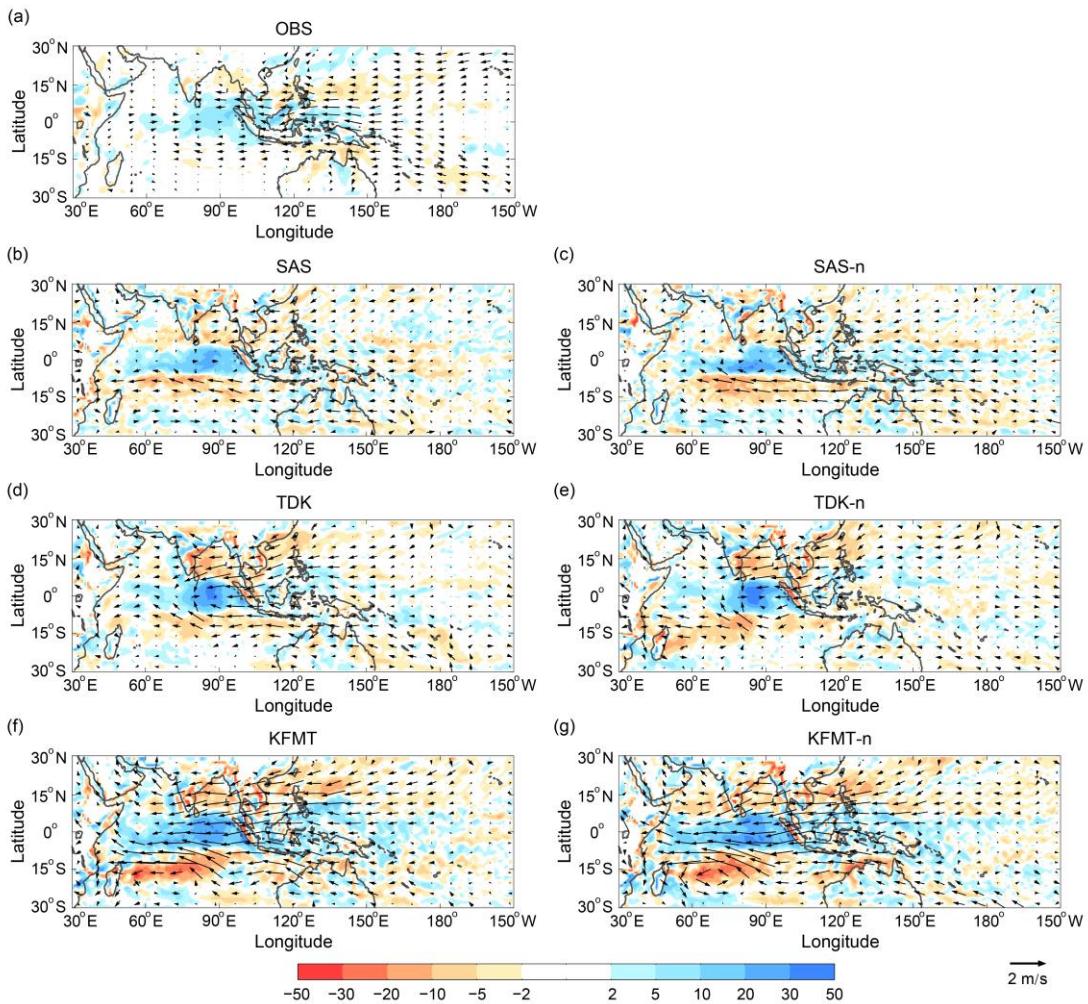
819



823

824 **Figure 8.** As in Fig. 6, but for the horizontal moisture advection term ($10^{-6} \text{ g kg}^{-1} \text{ s}^{-1}$) in
825 Eq. (3).

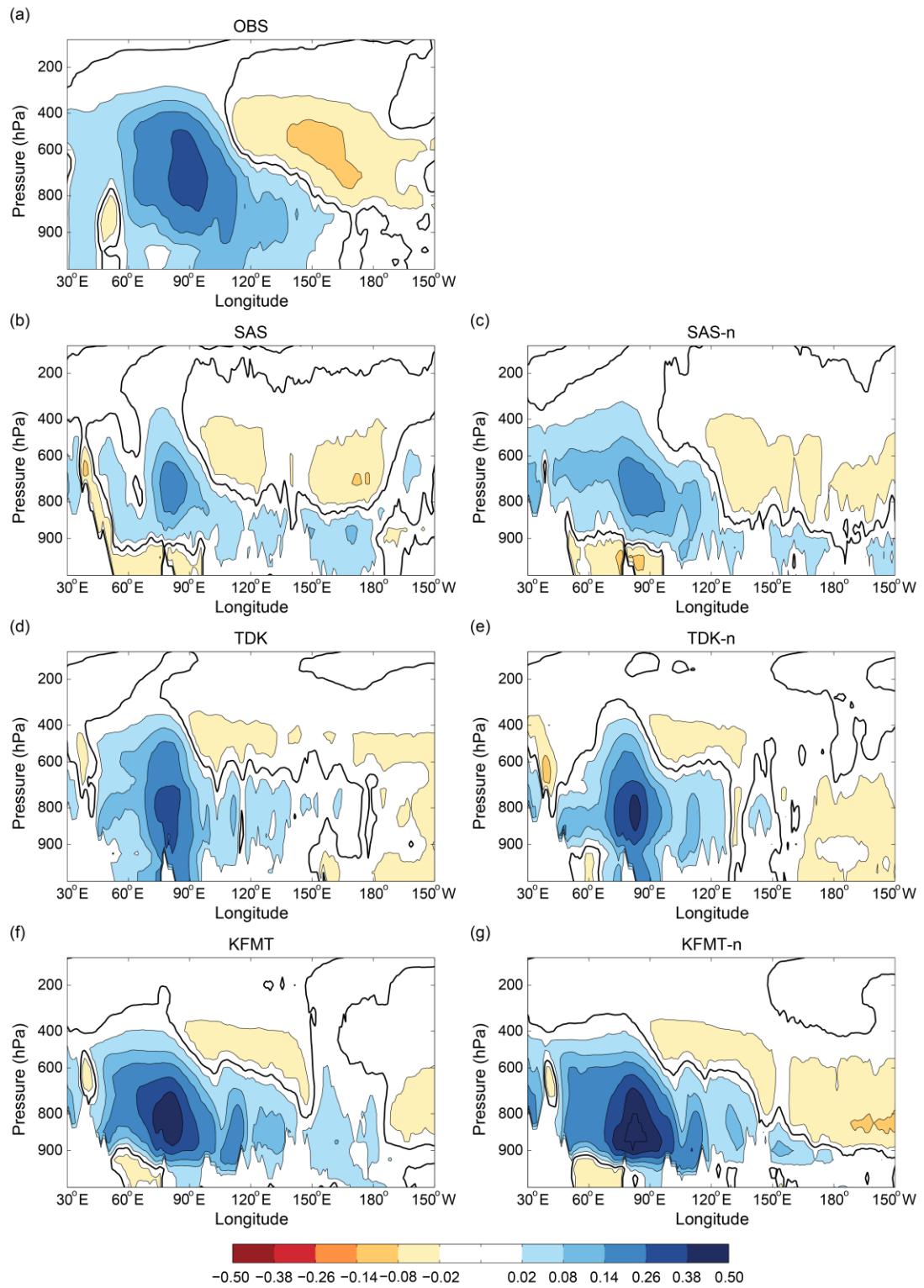
826



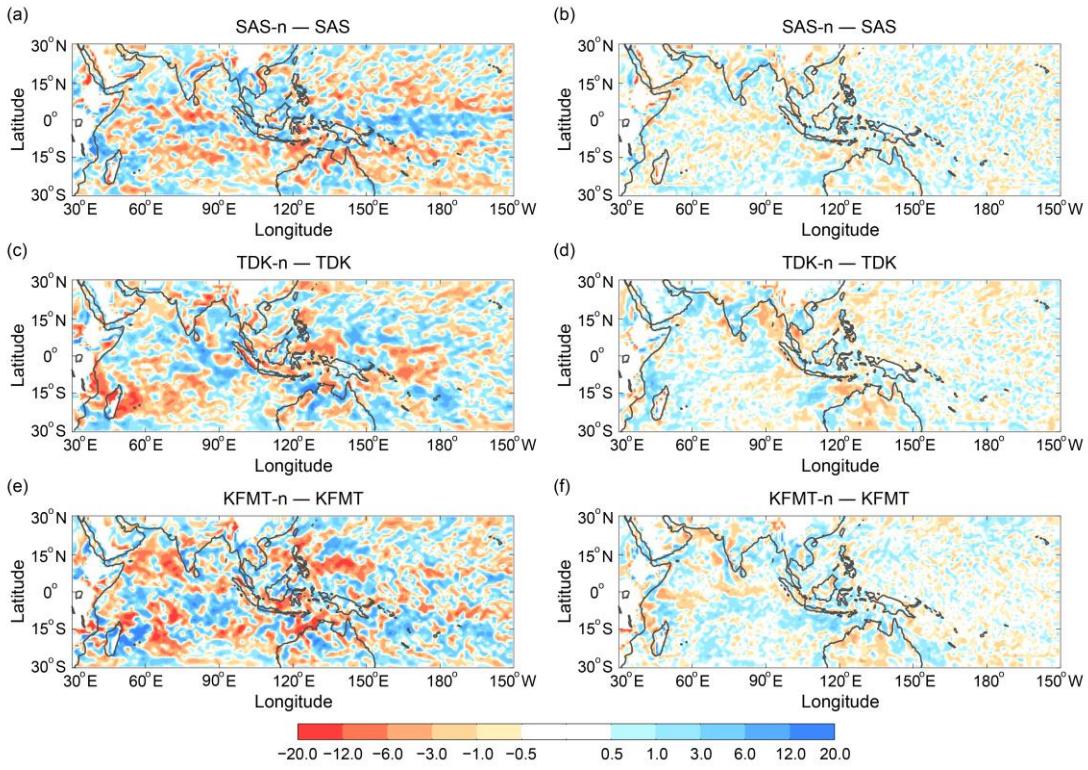
827

828 **Figure 9.** Time evolution of diabatic heating (K, red line) and moisture divergence ($10^{-6} \text{ g kg}^{-1} \text{ s}^{-1}$, sign reversed moisture convergence, blue line) anomalies by lag regression
829 of 20-100 day band-pass-filtered anomalous of 850-hPa total diabatic heating and 925-hPa moisture convergence at the longitude of 90°E against Indian Ocean precipitation
830 (80-90°E; 5°S-5°N). (a) is for observation and (b)-(d) are for simulations with different
831 CP schemes. In (b)-(d), solid and dashed lines represent original and modified schemes
832 respectively. Regression is scaled to 3 mm d^{-1} precipitation rate. Fields are averaged
833 between 10°S and 10°N.

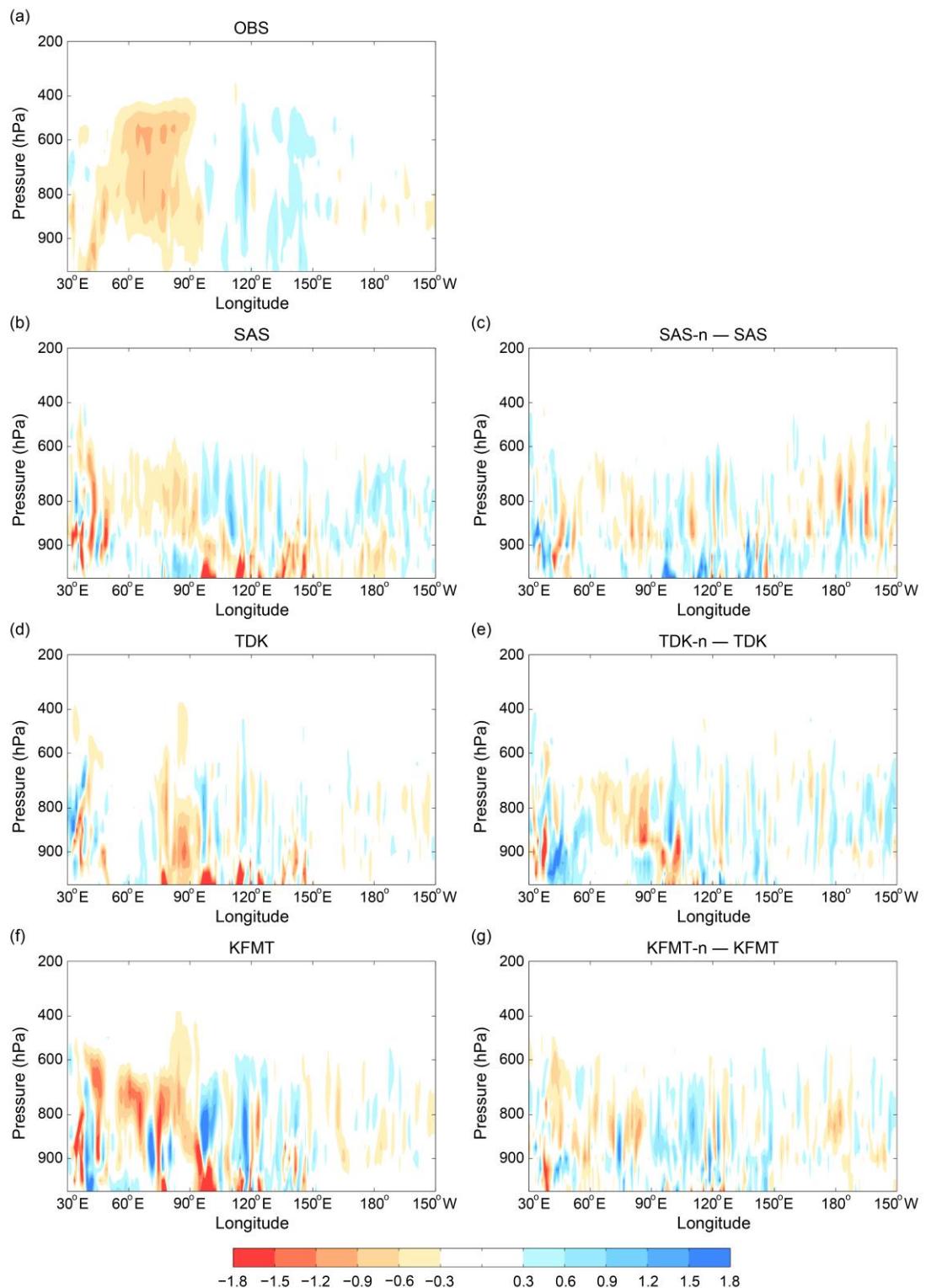
834


835

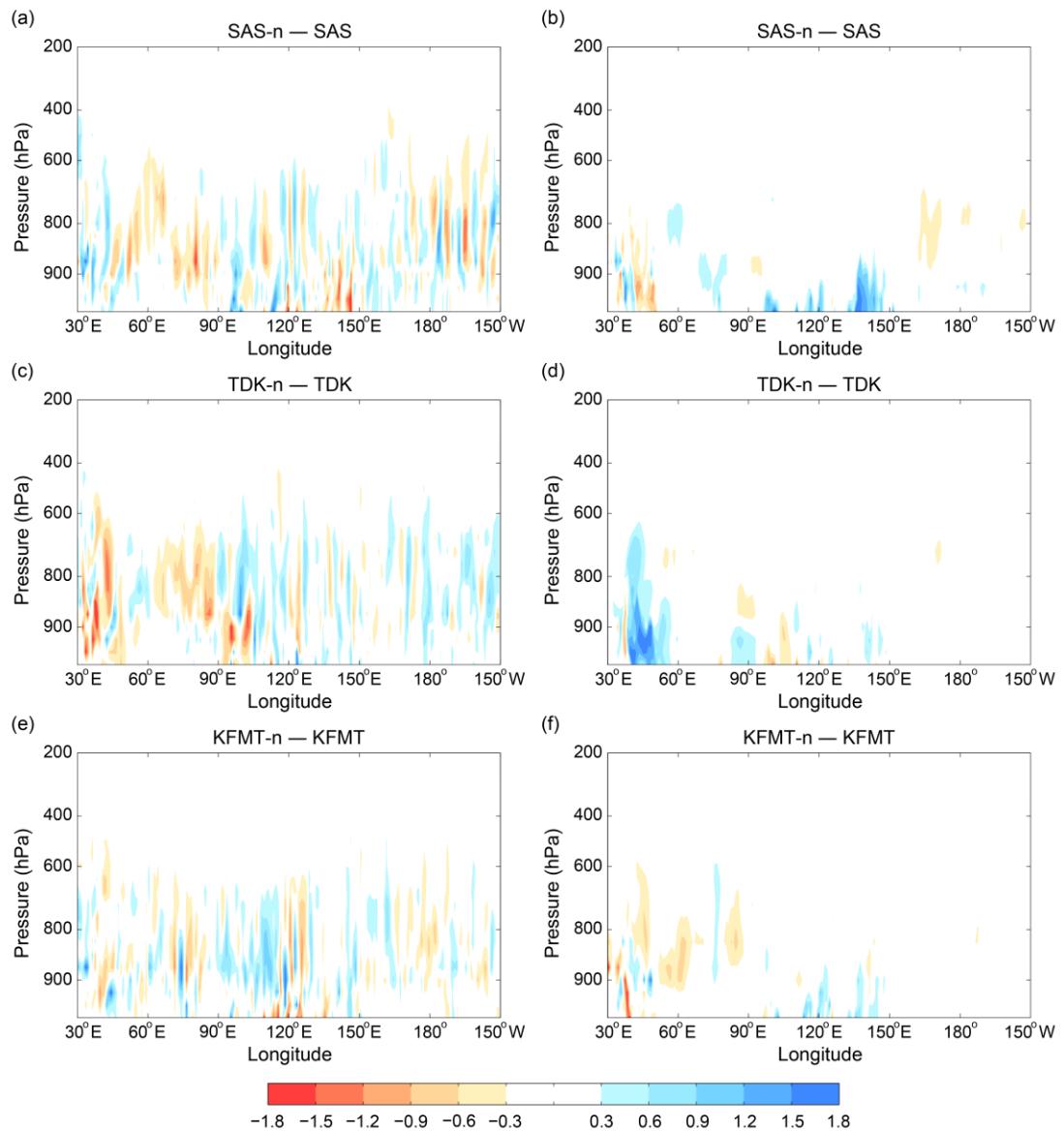
837


838 **Figure 10.** Horizontal patterns of moisture convergence ($10^{-6} \text{ g kg}^{-1} \text{ s}^{-1}$) and horizontal
 839 wind anomalies calculated by zero lag-regression of 20-100 day band-pass-filtered
 840 anomalous 925-hPa moisture convergence and 850-hPa horizontal wind against Indian
 841 Ocean precipitation (80-90°E; 5°S-5°N). (a) is for observation and (b)-(g) are for
 842 simulations with different CP schemes. Regression is scaled to 3 mm d^{-1} precipitation
 843 rate.

844

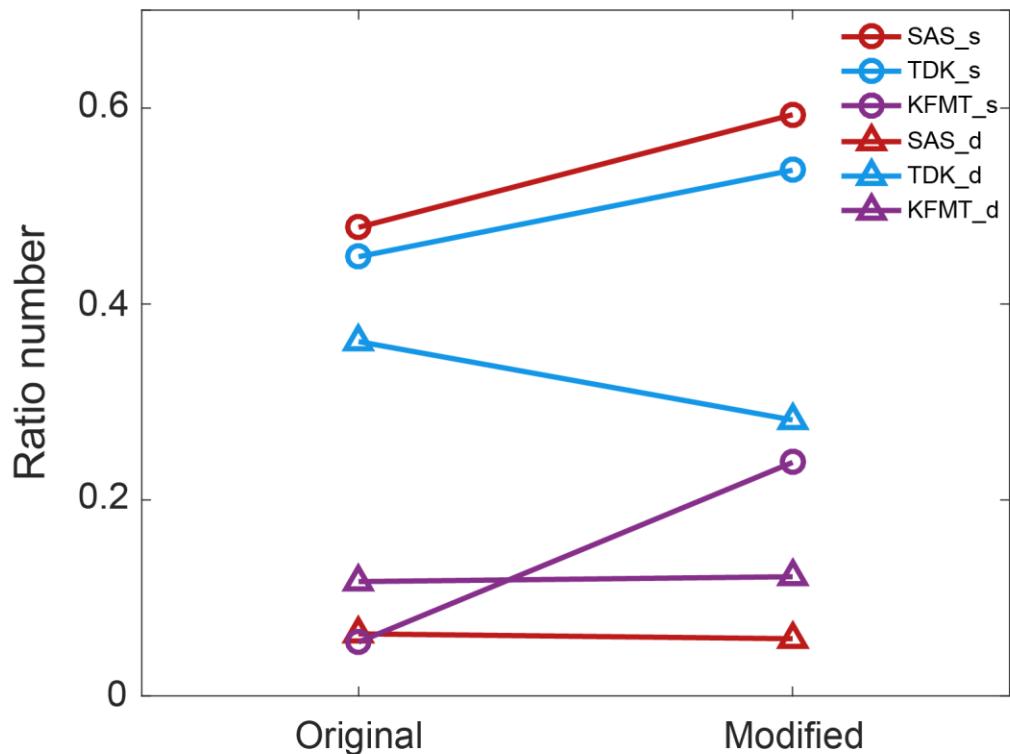

846 **Figure 11.** Longitude-height structures of specific humidity (g kg^{-1}) calculated by zero
847 lag-regression of 20-100 day band-pass-filtered anomalous specific humidity against
848 Indian Ocean precipitation ($80\text{-}90^\circ\text{E}$; $5^\circ\text{S}\text{-}5^\circ\text{N}$). (a) is for observation and (b)-(g) are
849 for simulations with different CP schemes. Regression is scaled to 3 mm d^{-1}
850 precipitation rate. Fields are averaged between 10°S and 10°N .

851



852

853 **Figure 12.** Horizontal patterns of the differences of moisture convergence terms (10^{-6}
 854 $\text{g kg}^{-1} \text{ s}^{-1}$) between 3 pairs of simulations with different CP schemes, calculated by zero
 855 lag-regression of 20-100 day band-pass-filtered anomalous 925-hPa mass convergence
 856 (a, c, e) and moisture advection (b, d, f) against Indian Ocean precipitation (80-90°E;
 857 5°S-5°N). Regression is scaled to 3 mm d^{-1} precipitation rate.
 858


860 **Figure 13.** Longitude-height structures of moisture advection ($10^{-6} \text{ g kg}^{-1} \text{ s}^{-1}$) calculated
861 by zero lag-regression of 20-100 day band-pass-filtered anomalous horizontal moisture
862 advection against Indian Ocean precipitation (80-90°E; 5°S-5°N). (a) is for observation
863 and (b), (d), (f) are for simulations with SAS, TDK, and KFMT schemes respectively.
864 (c), (e), (g) are the differences between 3 pairs of simulations. Regression is scaled to
865 3 mm d^{-1} precipitation rate. Fields are averaged between 10°S and 10°N.
866

867

868 **Figure 14.** As in Fig. 13 (c), (e) and (g), but for the zonal (a, c, e) and meridional (b, d, f) moisture advection ($10^{-6} \text{ g kg}^{-1} \text{ s}^{-1}$).

870

871

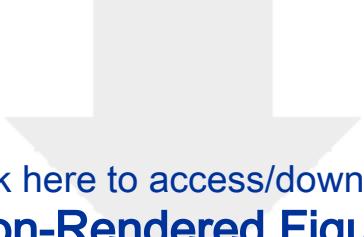
872 **Figure 15.** Ratio number (occurrence times averaged by total time steps and the number
 873 of horizontal grids in the region of 60-180°E, 15°S-15°N) change for shallow (circle)
 874 and deep (triangle) convection in 3 pairs of simulations with different CP schemes.
 875

Click here to access/download
Non-Rendered Figure
Fig1.pdf

Click here to access/download
Non-Rendered Figure
Fig2.pdf

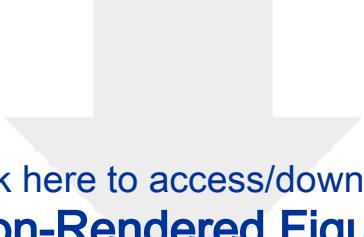
Click here to access/download
Non-Rendered Figure
Fig3.pdf

Click here to access/download
Non-Rendered Figure
Fig4.pdf


Click here to access/download
Non-Rendered Figure
Fig5.pdf

Click here to access/download
Non-Rendered Figure
Fig6.pdf

Click here to access/download
Non-Rendered Figure
Fig7.pdf



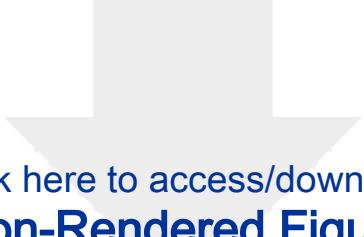
Click here to access/download
Non-Rendered Figure
Fig8.pdf



Click here to access/download
Non-Rendered Figure
Fig9.pdf

Click here to access/download
Non-Rendered Figure
Fig10.pdf





Click here to access/download
Non-Rendered Figure
Fig11.pdf

Click here to access/download
Non-Rendered Figure
Fig12.pdf

Click here to access/download
Non-Rendered Figure
Fig13.pdf

Click here to access/download
Non-Rendered Figure
Fig14.pdf

Click here to access/download
Non-Rendered Figure
Fig15.pdf