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Reconstructions of Common Era sea level are informative of rela-
tionships between sea level and natural climate variability, and the 
uniqueness of modern sea-level rise1. Kench et al.2 recently recon-
structed Common Era sea level in the Maldives, Indian Ocean, 
using corals, and reported periods of 150–500 years when sea 
level fell and rose at average rates of 2.7–4.3 mm yr−1, which they 
attributed to ocean cooling and warming inferred from reconstruc-
tions of sea-surface temperature (SST) and radiative forcing (Fig. 2  
of ref. 2). We challenge their interpretation, using principles of 
sea-level physics to argue that pre-industrial radiative forcing and 
SST changes were insufficient to cause thermosteric sea-level (TSL) 
trends as large as reported for the Maldives2. Our results support the 
paradigm that modern rates and magnitudes of sea-level rise due to 
climate change are unprecedented during the Common Era3,4.

Radiative forcing (for example, related to solar activity5 and vol-
canic eruptions6) varies over a broad range of timescales, and influ-
ences global climate and sea level7,8. For example, models show that 
major volcanic eruptions during the twentieth century drove rapid 
interannual falls in global-mean sea level (on the order of milli-
metres per year) that were followed by gradual decadal rises (on 
the order of tenths of millimetres per year) as the climate system 
recovered7. To determine whether variability in radiative forcing 
on centennial and longer timescales in the Common Era was suf-
ficient to drive TSL trends as large and sustained as those inferred 
for the Maldives2, we express trends in TSL in terms of their equiva-
lent net surface heat flux (see Supplementary Information; unless 
otherwise indicated, ‘trend’ indicates an average rate of change). 
Using a thermal expansion coefficient characteristic of tropical sur-
face ocean waters (3.1–3.4 × 10−4 °C−1), we estimate that a net flux 
of 1.0–1.8 W m−2 is required for a TSL trend of 2.7–4.3 mm yr−1.  
The required flux is stronger than centennial-scale variations in 
reconstructions of radiative forcing5,6, which can be uncertain, but 
exhibit magnitudes <0.3 and <0.1 W m−2 over timescales of 150 and 
500 years, respectively (95% confidence; Fig. 1a and Supplementary 
Information). Therefore, radiative forcing probably accounts 
for <19% (<8%) of the forcing required to produce 150-year 
(500-year) TSL trends of 2.7–4.3 mm yr−1 (Fig. 1c, purple).

We also estimate what SST trend is required to generate a given 
trend in TSL (Supplementary Information). We assume that magni-
tudes of ocean temperature changes decay exponentially from the 
surface to the bottom over an e-folding depth scale of 750–1,250 m. 
This translates to 45–61% (83–94%) of ocean heat storage occurring 
in the upper 700 m (2,000 m), similar to estimates from model-data 
syntheses9,10 of changes in global ocean heat content over the past 
140–270 years. Using a reasonable global-ocean, volume-averaged 

thermal expansion coefficient (1.6–1.9 × 10−4 °C−1), we find that 
TSL trends of 2.7–4.3 mm yr−1 require attendant SST trends of 
1.2–3.6 °C per century (Fig. 1b). This estimate is supported by 
long integrations of an empirical ocean circulation model11, which 
suggest that TSL trends of 2.7–4.3 mm yr−1 sustained for 150 and  
500 years require SST trends of 1.8–2.9 and 0.9–1.4 °C per century, 
respectively (Fig. 1b and Supplementary Information). These model 
results are consistent with the basic expectation that, on longer tim-
escales under sustained climate forcing, relatively more heat pene-
trates the deep ocean, requiring a comparatively smaller SST change 
to produce a given TSL trend.

The required SST trends are larger than observed in ten 
reconstructions of Common Era SST12 in the Indian Ocean and 
Indonesian Throughflow, which show trends of <0.8 and <0.2 °C 
per century on timescales of 150 and 500 years, respectively (95% 
confidence; Fig. 1b and Supplementary Information). Although 
they are not from the Maldives, these SST reconstructions are infor-
mative of the range of reconstructed centennial SST trends over the 
tropical Indian Ocean during the Common Era. We find that SST 
reconstructions probably account for <37% and <7% of the tem-
perature trends needed to explain TSL trends of 2.7–4.3 mm yr−1 
on timescales of 150 and 500 years, respectively, assuming expo-
nential vertical structure (Fig. 1c, blue). Using the empirical ocean 
circulation model, we estimate corresponding percentages of <33% 
and <13% (Fig. 1c, orange). Even making the extreme assumption 
that ocean temperature trends are vertically uniform, which is unre-
alistic given the long adjustment timescales in the deep ocean11, we 
find that SST trends required for trends in TSL of 2.7–4.3 mm yr−1 
(Fig. 1b) are generally larger than are inferred from SST reconstruc-
tions, especially for periods >300 years (Fig. 1c, green).

Kench et al.2 reconstructed a sea-level trend of 4.2 mm yr−1 in 
the Maldives for the modern industrial interval between 1807 and 
2018 ce. Comparable trends of 3.2–4.7 mm yr−1 are seen in two 
tide-gauge sea-level records13 in the Maldives for the past 25–30 
years (Supplementary Table 1). However, smaller sea-level trends 
of 0.6–1.5 mm yr−1 are seen for the past 80–140 years in four long 
tide-gauge records along the Indian coast (Supplementary Table 1). 
This underscores that sea-level trends are timescale dependent and 
can be influenced by stochastic processes that tend to decrease in 
magnitude with increasing timescale (Supplementary Information). 
Moreover, the Indian tide gauges show good correlation with, and 
similar trends to, the tide gauges from the Maldives for the overlap-
ping interval since ~1990 ce (Fig. 2 and Supplementary Table 1). 
This means that the tide gauges in India are informative of sea-level 
variability more broadly across the region through time. Thus, the 
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average rate of sea-level rise since 1807 ce reconstructed by Kench 
et al.2 in the Maldives from coral microatolls is faster than the 
quasi-centennial rates measured by nearby tide gauges.

To address a paucity of near-continuous Common Era sea-level 
reconstructions in the Indian Ocean, Kench et al.2 reconstructed sea 
level in the Maldives over the past two millennia using fossil corals. 
We suggest that the 0.6–1.4-m centennial sea-level changes in the 
Maldives are too large to have resulted from the thermal contrac-
tion and expansion of seawater related to large-scale climate forcing 
alone. We quantify how exceptional ocean cooling or warming near 
the Maldives would have been in a larger context were they sufficient 
to drive centennial sea-level trends as large as those determined 
by Kench et al.2. We agree with Kench et al.2 that it is also unlikely 
that these centennial sea-level changes reflect surface ice and water 
mass redistribution14, as similar coeval changes are not supported 
by other intermediate- and far-field Common Era sea-level recon-
structions3,4. We hypothesize that the corals used to reconstruct sea 
level experienced erosion, which could render them biased (low) 
sea-level recorders (Supplementary Information), effecting appar-
ent sea-level lowstands. Images of example corals from the Maldives 
shown by Kench et al.2 (Supplementary Fig. 3 of ref. 2) feature planar 
surfaces without concentric growth rings, which may indicate ero-
sion. If the corals used for reconstructing sea level in the Maldives 
were eroded, then sea-level variability, radiative forcing and ocean 
physics might be reconciled, suggesting that the records of Kench 
et al.2 should not be interpreted as a Common Era precedent for 
modern rates of sea-level rise related to climate. More proxy  

reconstructions from the Maldives and the wider tropical Indian 
Ocean are necessary to replicate the Maldives sea-level reconstruc-
tion, and more comprehensively quantify local, regional and global 
changes in sea level during the Common Era.

Online content
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Fig. 2 | Post-industrial sea-level changes near the Maldives. Tide-gauge relative sea-level records13 from India (Cochin, Chennai, Mumbai, Visakhapatnam) 
are correlated with those from the Maldives (Gan, Male) for the overlapping interval since ~1990 ce. The records from India show long-term trends of  
0.6–1.5 mm yr−1, which is smaller than the value of 4.2 mm yr−1 reported by Kench et al.2 for the Maldives between 1807 and 2018 ce using coral 
microatolls. Tide-gauge time series are centred on their average value during 1990–2013 ce. For relative sea-level trends computed over all possible 
periods, see Supplementary Fig. 5.
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Fig. 1 | Pre-industrial radiative forcing and SST changes. a, Surface heat flux required for TSL trends of 2.7–4.3 mm yr−1 (purple) exceeds radiative forcing 
magnitudes during 0–1800 ce on timescales of 150–500 years (yellow; Supplementary Information). b, SST trends needed for TSL trends of 2.7–4.3 mm 
yr−1 assuming ocean temperature trends decay exponentially with depth (blue) and an empirical model11 (orange) exceed SST trends during 0–1800 ce on 
timescales of 150–500 years (yellow; Supplementary Information). For vertically uniform ocean heating, required SST trends (green) overlap with observed 
values only for timescales <300 years. c, Ratio of observed to required values from a and b. The model output used to create this figure can be found in 
Supplementary Data 1.
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Data availability
Temperature-sensitive Common Era proxy records from the PAGES2k project12 
were taken from the current data version available from the National Climatic Data 
Center website on 22 Jan 2020 (www1.ncdc.noaa.gov/pub/data/paleo/pages2k/page
s2k-temperature-v2-2017/). Only low-resolution oceanic data (‘O2kLR’) covering most  
of the Common Era in the study area were used. Numerical codes for the circulation 
model from ref. 11 are available for download from G.G.’s website (https://www2. 
whoi.edu/staff/ggebbie/). Total solar irradiance during the Holocene from ref. 5  
was downloaded from the National Climatic Data Center server on 3 Feb 2020  
(https://www.ncei.noaa.gov/pub/data/paleo/climate_forcing/solar_variability/
steinhilber2009tsi.txt). The estimates of volcanic aerosol forcing from ref. 6 are as 
provided in the online version of the paper as of 3 Feb 2020 (https://doi.org/10.1038/
nature14565). The tide-gauge sea-level data were extracted from the Permanent Service 
for Mean Sea Level database13 on 24 Feb 2020 (https://www.psmsl.org/data/obtaining/). 
Source data are provided with this paper.
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