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Abstract. The recurrent mechanism has recently been introduced into
U-Net in various medical image segmentation tasks. Existing studies have
focused on promoting network recursion via reusing building blocks. Al-
though network parameters could be greatly saved, computational costs
still increase inevitably in accordance with the pre-set iteration time.
In this work, we study a multi-scale upgrade of a bi-directional skip
connected network and then automatically discover an efficient architec-
ture by a novel two-phase Neural Architecture Search (NAS) algorithm,
namely BiX-NAS. Our proposed method reduces the network compu-
tational cost by sifting out ineffective multi-scale features at different
levels and iterations. We evaluate BiX-NAS on two segmentation tasks
using three different medical image datasets, and the experimental results
show that our BiX-NAS searched architecture achieves the state-of-the-
art performance with significantly lower computational cost. Our project
page is available at: https://bionets.github.io.

Keywords: Semantic Segmentation · Recursive Neural Networks · Neu-
ral Architecture Search.

1 Introduction

Deep learning based methods have prevailed in medical image analysis. U-Net
[14], a widely used segmentation network, constructs forward skip connections
(skips) to aggregate encoded features in encoders with the decoded ones. Recent
progress has been made on the iterative inference of such architecture by exploit-
ing the reusable building blocks. [15] proposed a recurrent U-Net that recurses
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a subset of paired encoding and decoding blocks at each iteration. BiO-Net [17]
introduces backward skips passing semantics in decoder to the encoder at the
same level. Although this recurrent design could greatly slim the network size,
the computational costs still increase inevitably in accordance with its pre-set it-
eration time. Meanwhile, the success of multi-scale approaches [20,4] suggests the
usage of multi-scale skips that fuse both fine-grained traits and coarse-grained
semantics. To this end, introduction of forward/backward skips from multiple
semantic scales and searching efficient aggregation of multi-scale features with
low computational cost is of high interest.

Neural Architecture Search (NAS) methods automatically perceive the opti-
mal architecture towards effective and economic performance gain. Classic evo-
lutionary NAS methods [13,12] evolve by randomly drawing samples during
searching and validating each sampled model individually. Differentiable NAS
algorithms [10,3] relax the discrete search space to be continuous and delegate
backpropagation to search for the best candidate. Auto-DeepLab [9] applied dif-
ferentiable NAS into image segmentation tasks to determine the best operators
and topologies for each building block. Concurrently, NAS-Unet [16] applied an
automatic gradient-based search of cell structures to construct an U-Net like
architecture. Despite the success on feature fusions at same levels, [18] intro-
duced a multi-scale search space to endow their proposed MS-NAS with the
capability of arranging multi-level feature aggregations. However, architectures
searched by the above NAS algorithms only bring marginal improvements over
hand-designed ones and their searching process is empirically inefficient.

In this paper, we present an efficient multi-scale (abstracted as ’X’) NAS
method, namely BiX-NAS, which searches for the optimal bi-directional archi-
tecture (BiX-Net) by recurrently skipping multi-scale features while discarding
insignificant ones at the same time.

Our contributions are three-fold: (1) We study the multi-scale fusion scheme
in a recurrent bi-directional manner, and present an effective two-phase Neu-
ral Architecture Search (NAS) strategy, namely BiX-NAS, that automatically
searches for the optimal bi-directional architecture. (2) We analyze the bottle-
neck of the searching deficiency in classic evolution-based search algorithms, and
propose a novel progressive evolution algorithm to further discover a subset of
searched candidate skips and accelerate the searching process. (3) Our method
is benchmarked on three medical image segmentation datasets, and surpasses
other state-of-the-art counterparts by a considerable margin.

2 Methods

We first discuss the effectiveness of introducing multi-scale skip connections to
BiO-Net as an intuitive upgrade (Sec 2.1), then we demonstrate the details of
each phase of BiX-NAS (Sec 2.2), and eventually, we present the skip fairness
principle which ensures the search fairness and efficiency (Sec 2.3).
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Fig. 1. Overview of BiO-Net, BiO-Net++, and BiX-Net with 4 levels and 2
iterations. Encoder and decoder blocks at the same level are reused [17].

2.1 BiO-Net++: A Multi-scale Upgrade of BiO-Net

BiO-Net [17] triggers multiple encoding and decoding phases that concatenate
skipped features at the same level (Fig. 1 left). We optimize the feature fusion
scheme as element-wise average for an initial reduction on the total complexity.
For better clarity, we denote (1) A sequential encoding or decoding process as an
extraction stage. There are four extraction stages in a BiO-Net like network with
two iterations. (2) Any blocks in a non-first extraction stage as searching blocks.
To fuse multi-scale features, precedent encoded/decoded features at all levels
are densely connected to every decedent decoding/encoding level through bi-
directional skips. We align inconsistent spatial dimensions across different levels
via bilinear resizing. The suggested BiO-Net++ is outlined in Fig. 1 middle.

Although the above design promotes multi-scale feature fusion and shrinks
network size, empirically we found that such dense connections bring a mere
marginal improvement in terms of the overall performance but with an increase of
computational costs (Table 1). We are interested in seeking a sparser connected
sub-architectures of BiO-Net++ which could not only benefit from multi-scale
fusions but also ease computation burdens to the greatest extent.

2.2 BiX-NAS: Hierarchical Search for Efficient BiO-Net++

To this end, we present BiX-NAS, a two-phase search algorithm, to find a
sparsely connected sub-architecture of BiO-Net++, where a trainable selection
matrix is adopted to narrow down the search space for differentiable NAS in
Phase1, and evolutionary NAS is introduced to progressively discover the op-
timal sub-architecture in Phase2. To spot an adequate candidate, dense skip
connections between every pair of extraction stages are further sifted for better
efficiency. Suppose there are N incoming feature streams in a desired searching
block (N = 5 for BiO-Net++), we anticipate that in a sparser connected ar-
chitecture, only k ∈ [1, N − 2] candidate(s) of them could be accepted to such
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Fig. 2. Overview of progressive evolutionary search. (a) Phase1 searched Super-
Net N can be divided into head network and tail network. (b) Proposed forward and
backward schemes. (c) Only the searched skips at the Pareto front of P are retained.

blocks, which results in a search space of ≈
∑(N−2)

k=1

(
N
k

)L(2T−1)
in the Super-

Net BiO-Net++ with L levels and T iterations. When L = 4 and T = 3 [17],
the search space expands to 540, escalating the difficulty to find the optimal
sub-architectures.
Phase1: Narrowing down search space via selection matrix. To alleviate
such difficulty, we determine k candidate skips from N incoming skips in each
searching block by reducing the easy-to-spot ineffective ones. Intuitively, one-to-
one relaxation parameters α [10] for each skip connection x could be registered
and optimized along with the SuperNet. The skip with the highest relaxation
score α is then picked as the output of Φ(·), such that Φ(·) = xargmaxα, where
x = {x1, · · · , xN} and α = {α1, · · · , αN} denote the full set of incoming skips,
and their corresponding relaxation scores, respectively.

However, the above formulation outputs a fixed number of skips rather than
flexible ones. We continuously relax skips by constructing a learnable selection
matrix M ∈ RN×(N−2) that models the mappings between the N incoming skips
and k candidates, and formulate Φ(·) as a fully differentiable equation below:

Φ(x,M) = Matmul(x, Gumbel Softmax(M)), (1)

where the gumbel-softmax [5] forces each of the (N − 2) columns of M to be
an one-hot vector that votes for one of the N incoming skips. Our formulation
generates (N − 2) selected skips with repetition allowed, achieving a dynamic
selection of candidate skips, where the unique ones are further averaged out and
fed into subsequent blocks. Differing from [10,9], we design Φ(·) to unify the
forward behaviour during both network training and inference stages.
Phase2: Progressive evolutionary search. To further reduce potential re-
dundancies among the candidate skips obtained in Phase1, we perform an addi-
tional evolutionary search to find an evolved subset of skips for better network
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Algorithm 1 Progressive evolutionary search

Input: Iteration T, sampling number s, randomly initialized SuperNet weights W,
Phase1 searched candidate skips {C1→2, · · · ,C2T−1→2T}, criterion L.

Output: BiX-Net with evolved skips {E1→2, · · · ,E2T−1→2T}
1: for t = 2T− 1, · · · , 1 do
2: for i = 1, · · · , s do
3: for each searching block b do
4: Randomly sample n skips from Cb

t→t+1: Cb
i , 1 ≤ n ≤ |Cb

t→t+1|.
5: end for
6: end for
7: for data batch X, target Y do
8: Forward head network with candidate skips C1→2, · · · ,Ct−2→t−1.
9: for i = 1, · · · , s do

10: Forward tail network with sampled skips Ci,Et+1→t+2, · · · ,E2T−1→2T.
11: Calculate loss li = L(X, Y)
12: end for
13: Optimize W with the average loss 1

s

∑s
i=1 li.

14: end for
15: Get Pareto front from {C1, · · · , Cs} and determine Et→t+1.
16: end for

compactness and performance. Specifically, we search the candidate skips for all
levels between a certain pair of adjacent extraction stages at the same time, and
then progressively move to the next pair once the current search is concluded.
As the connectivity of adjacent extraction stages depends on the connectivity
of precedent ones, we initiate the search from the last extraction stage pair and
progressively move to the first one.

The most straightforward strategies [12,13] optimize the SuperNet with each
sampling skip set in a population P individually, and then update P when all
training finish. However, there are two major flaws of such strategies: first, op-
timizing SuperNet with sampling skips individually may result in unfair out-
comes; second, the searching process is empirically slow. Assuming the forward
and backward of each extraction stage takes IF and IB time, training all |P|
sampling architectures individually for each step takes 2T|P|(IF + IB) in total.

2.3 Analysis of Searching Fairness and Deficiency

To overcome the first flaw above, we define the concept of skip fairness and
claim that all skip search algorithms need to meet such principle. Note that each
sampled architecture Ai (with a subset of skips Ci) is randomly drawn from the
progressively updated SuperNet N , which makes up with the population P at
each iteration.

Definition 1. Skip Fairness. Let F = {f1, · · · , fm} be the skipped features to
any searching blocks in each sampled architecture Ai within a population P. The
skip fairness requires f1A1 ≡ · · · ≡ f1A|P| , · · · , fmA1 ≡ · · · ≡ fmA|P| ∀f i ∈ F,∀Ai ∈ P.

王辛夷
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The above principle yields that, when searching between the same extrac-
tion stage pair, any corresponding level-to-level skips (e.g., f1A1 , f1A2 , f1A3) across
different sampled architectures (e.g., A1, A2, A3) are required to carry iden-
tical features. Otherwise, the inconsistent incoming features would impact the
search decision on the skipping topology, hence causing unexpected search un-
fairness. Gradient-based search algorithms (e.g. Phase1 search algorithm) meet
this principle by its definition, as the same forwarded features are distributed to
all candidate skips equally. However, the aforementioned straightforward strat-
egy violates such principle due to the inconsistent incoming features produced
by the individually trained architectures.

Our proposed Phase2 search algorithm meets the skip fairness by synchroniz-
ing partial forwarded features in all sampling networks. Specifically, suppose we
are searching skips between the tth and t+1th extraction stages (t ∈ [1, 2T−1]):
network topology from the 1st to t − 1th stages is fixed and the forward pro-
cess between such stages can be shared. We denote such stages as head network.
On the contrary, network topology from the tth to 2Tth stages varies as the
changes of different sampled skips. We then denote such unfixed stages as tail
networks, which share the same SuperNet weights but with distinct topologies.
The forwarded features of head network are fed to all sampling tail networks
individually, as shown in Fig. 2. We average the losses of all tail networks, and
backward the gradients through the SuperNet weights only once. Besides, our
Phase2 searching process is empirically efficient and overcomes the second flaw
above, as one-step training only requires IB +

∑2T−1
t=1 (tIF + (2T− t)IF · |P|).

After search between each extraction stage pair completes, we follow a multi-
objective selection criterion that retains the architectures at the Pareto front [19]
based on both validation accuracy (IoU) and computational complexity (MACs).
The proposed progressive evolutionary search details are presented in Algorithm
1 and the searched BiX-Net is shown in supplementary material Fig. 1.

3 Experiments

3.1 Datasets and Implementation Details

Two segmentation tasks across three different medical image datasets were adopted
for validating our proposed method including MoNuSeg [8], TNBC [11], and
CHAOS [6]. (1) The MoNuSeg dataset contains 30 training images and 14 test-
ing images of size 1000 × 1000 cropped from whole slide images of different
organs. Following [17], we extracted 512× 512 patches from the corners of each
image. (2) The TNBC dataset was used as an extra validation dataset [17,2],
consisting of 512 × 512 sub-images obtained from 50 histopathology images of
different tissue regions. (3) We also conducted 5-fold cross-validation on MRI
scans from the CHAOS dataset to evaluate the generalization ability of BiX-Net
on the abdominal organ segmentation task, which contains 120 DICOM image
sequences from T1-DUAL (both in-phase and out-phase) and T2-SPIR with a
spatial resolution of 256× 256. We pre-processed the raw sequences by min-max
normalization and auto-contrast enhancement.

王辛夷
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Table 1. Comparison on MoNuSeg and TNBC with three independent runs.

MoNuSeg TNBC

Methods mIoU(%) DICE(%) mIoU(%) DICE(%) Params(M) MACs(G)

U-Net [14] 68.2±0.3 80.7±0.3 46.7±0.6 62.3±0.6 8.64 65.83
R2U-Net [1] 69.1±0.3 81.2±0.3 60.1±0.5 71.3±0.6 9.78 197.16
BiO-Net [17] 69.9±0.2 82.0±0.2 62.2±0.4 75.8±0.5 14.99 115.67

NAS-UNet [16] 68.4±0.3 80.7±0.3 54.5±0.6 69.6±0.5 2.42 67.31
AutoDeepLab [9] 68.5±0.2 81.0±0.3 57.2±0.5 70.8±0.5 27.13 60.33
MS-NAS [18] 68.8±0.4 80.9±0.3 58.8±0.6 71.1±0.5 14.08 72.71

BiO-Net++ 70.0±0.3 82.2±0.3 67.5±0.4 80.4±0.5 0.43 34.36
Phase1 searched 69.8±0.2 82.1±0.2 66.8±0.6 80.1±0.4 0.43 31.41

BiX-Net 69.8±0.1 82.2±0.1 68.2±0.2 81.0±0.1 0.43 28.60

Searching Implementation. We utilized MoNuSeg only for searching the op-
timal BiX-Net, and the same architecture is then transferred to all other tasks.
We followed the same data augmentation strategies as in [17]. In Phase1, the
BiO-Net++ SuperNet was trained with a total of 300 epochs with a base learn-
ing rate of 0.001 and a decay rate of 3e−3. The network weights and the selection
matrices were optimized altogether with the same optimizer, rather than opti-
mized separately [10]. Our Phase1 searching procedure took only 0.09 GPU-Day.
In Phase2, there were total 5 searching iterations when T = 3. At each iteration,
for each retained architecture from the preceding generation, we sampled s = 15
different skip sets to form the new population P that were trained 40 epochs
starting from a learning rate of 0.001 and then decayed by 10 times every 10
epochs. Due to GPU memory limitation, we only retained |P| < 3 architectures
with highest IoU at the Pareto front. Our Phase2 searching process consumed
0.37 GPU-Day.
Retraining Implementation. Adam optimizer [7] was used across all experi-
ments to minimize cross entropy loss in both network searching and retraining.
Batch size was set to be 2 for MoNuSeg and TNBC, and 16 for CHAOS. We
retrained the constructed BiX-Net and all competing models with the same
implementation as Phase1, which was identical across all experiments for fair
comparisons. Mean intersection of Union (mIoU) and Dice Coefficient (DICE)
were reported to evaluate accuracy while Multiplier Accumulator (MACs) was
reported to measure computational complexity.

3.2 Experimental Results

Nuclei Segmentation. Our method was compared to the vanilla U-Net [14],
state-of-the-art recurrent U-Net variants [1,17], and homogeneous state-of-the-
art NAS searched networks [16,9,18]. All models were trained from scratch with
final results reported as the average of three independent runs. Table 1 shows
that our plain BiX-Net outperforms the state-of-the-art NAS counterparts con-
siderably, and achieves on par results to BiO-Net [17] with significantly lower

王辛夷



8 Wang et al.

Table 2. Comparison on CHAOS (MRI) with 5-fold cross validation.

Liver Left Kidney Right Kidney Spleen

Methods mIoU(%) DICE(%) mIoU(%) DICE(%) mIoU(%) DICE(%) mIoU(%) DICE(%)

U-Net 78.1±2.0 86.8±1.8 61.3±1.1 73.8±1.2 63.5±1.1 76.2±1.1 62.2±2.1 74.4±2.3
BiO-Net 85.8±2.0 91.7±1.8 75.7±1.1 85.1±1.2 78.2±1.0 87.2±1.1 73.2±2.3 82.8±2.3

NAS-UNet 79.1±1.8 87.2±1.8 65.5±1.5 75.0±1.3 66.2±1.2 77.7±1.0 64.1±1.3 75.8±1.6
AutoDeepLab 79.8±1.9 88.1±1.8 66.7±1.6 75.0±1.7 61.9±0.9 75.7±1.1 63.9±1.2 75.5±1.4
MS-NAS 72.6±2.3 82.6±2.1 71.0±1.3 81.9±1.3 70.1±1.9 81.1±1.8 62.5±2.1 74.0±2.3

BiX-Net 82.6±1.5 89.8±1.5 71.0±1.0 82.1±1.1 71.9±0.8 82.7±1.0 66.0±1.7 76.5±2.0

Macs
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Fig. 3. Qualitative comparison of different segmentation results. Relative pa-
rameter (left) and computation overheads (right) compared to BiX-Net are also shown.

network complexity. Noteworthy, our results are much higher than all others on
TNBC, which indicates superior generalization ability. Qualitative comparisons
on all datasets are shown in Fig. 3.

Multi-class Organ Segmentation. CHAOS challenge aims at the precise seg-
mentation of four abdominal organs separately: liver, left kidney, right kidney,
and spleen in a CT or MRI slice. Instead of training networks on each class
as several independent binary segmentation tasks [18], we reproduced all mod-
els to output the logits for all classes directly. Similar to the nuclei segmenta-
tion, Table 2 indicates that BiX-Net achieves the best performance of all classes
among state-of-the-art NAS searched networks [16,9,18] with much lower com-
putational complexity. Although the hand-crafted BiO-Net outperforms all com-
parison methods, it suffers from the computation burdens, which are a 4.0 times
of computational complexity, and a 34.9 times of trainable parameter number.
Additionally, BiX-Net produces much better segmentation mask when all organs
are presented in a single slice (Fig. 3).
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Ablation Studies. In addition, we conducted two ablation studies by training
the presented SuperNet BiO-Net++ (the multi-scale upgrade of BiO-Net) and
the Phase1 searched architecture (has not been searched by Phase2) directly on
nuclei datasets. As shown in Table 1, our Phase1 search algorithm provides a
8.6% MACs reduction compared to BiO-Net++, and our BiX-Net eventually
achieves a 17% MACs reduction, which validates the necessity of Phase1 and
Phase2 search of BiX-NAS. Unlike prior NAS works, our finally searched BiX-
Net follows the recurrent bi-directional paradigm with repeated use of the same
building blocks at different iterations. Note that there is no building block that
has been skipped at all iterations (supplementary material Fig. 1.), resulting in
no reduction in the total network parameters.

For all metrics, BiX-Net obtains higher scores than competing NAS counter-
parts on all datasets and achieves on-par results with our proposed BiO-Net++
with fewer computations. Additionally, we perform two tail paired t-test to an-
alyze the statistical significance between our method and other competing NAS
methods. BiX-Net achieves p-values < 0.05 on the nuclei datasets and < 0.1 on
the CHAOS dataset, validating the significance of our method.

4 Conclusion

In this work, we proposed an efficient two-phase NAS algorithm that searches for
bi-directional multi-scale skip connections between encoder and decoder, namely
BiX-NAS. We first follow differentiable NAS with a novel selection matrix to
narrow down the search space. An efficient progressive evolutionary search is then
proposed to further reduce skip redundancies. Experimental results on various
segmentation tasks show that the searched BiX-Net surpasses state-of-the-art
NAS counterparts with considerably fewer parameters and computational costs.
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11. Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology
images by deep regression of the distance map. IEEE Transactions on Medical
Imaging 38(2), 448–459 (2018)

12. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the AAAI conference on artificial in-
telligence. vol. 33, pp. 4780–4789 (2019)

13. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Ku-
rakin, A.: Large-scale evolution of image classifiers. In: International Conference
on Machine Learning. pp. 2902–2911. PMLR (2017)

14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI). pp. 234–241. Springer (2015)

15. Wang, W., Yu, K., Hugonot, J., Fua, P., Salzmann, M.: Recurrent U-Net for
resource-constrained segmentation. In: The IEEE International Conference on
Computer Vision (ICCV) (2019)

16. Weng, Y., Zhou, T., Li, Y., Qiu, X.: NAS-Unet: Neural architecture search for
medical image segmentation. IEEE Access 7, 44247–44257 (2019)

17. Xiang, T., Zhang, C., Liu, D., Song, Y., Huang, H., Cai, W.: BiO-Net: Learning
recurrent bi-directional connections for encoder-decoder architecture. In: Interna-
tional Conference on Medical Image Computing and Computer-Assisted Interven-
tion (MICCAI). pp. 74–84. Springer (2020)

18. Yan, X., Jiang, W., Shi, Y., Zhuo, C.: MS-NAS: Multi-scale neural architecture
search for medical image segmentation. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention (MICCAI). pp. 388–397.
Springer (2020)

19. Yang, Z., Wang, Y., Chen, X., Shi, B., Xu, C., Xu, C., Tian, Q., Xu, C.: CARS:
Continuous evolution for efficient neural architecture search. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
1829–1838 (2020)

20. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: A nested u-net
architecture for medical image segmentation. In: Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support (DLMIA), pp.
3–11. Springer (2018)


	BiX-NAS: Searching Efficient Bi-directional Architecture for Medical Image Segmentation

