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Abstract—Multi-instance learning (MIL) is an area of machine
learning that handles data that is organized into sets of instances
known as bags. Traditionally, MIL is used in the supervised-
learning setting and is able to classify bags which can contain
any number of instances. This property allows MIL to be
naturally applied to solve the problems in a wide variety of real-
world applications from computer vision to healthcare. However,
many traditional MIL algorithms do not scale efficiently to
large datasets. In this paper we present a novel Primal-Dual
Multi-Instance Support Vector Machine (pdMISVM) derivation
and implementation that can operate efficiently on large scale
data. Our method relies on an algorithm derived using a multi-
block variation of the alternating direction method of multipliers
(ADMM). The approach presented in this work is able to scale
to large-scale data since it avoids iteratively solving quadratic
programming problems which are generally used to optimize
MIL algorithms based on SVMs. In addition, we modify our
derivation to include an additional optimization designed to
avoid solving a least-squares problem during our algorithm; this
optimization increases the utility of our approach to handle a
large number of features as well as bags. Finally, we apply our
approach to synthetic and real-world multi-instance datasets to
illustrate the scalability, promising predictive performance, and
interpretability of our proposed method. We end our discussion
with an extension of our approach to handle non-linear decision
boundaries. Code and data for our methods are available online
at: https://github.com/minds-mines/pdMISVM.jl.

Index Terms—multi-instance learning, support vector machine,
alternating direction method of multipliers, scalability

I. INTRODUCTION

Multi-instance learning (MIL) is a sub-area of machine

learning in which training and testing data are organized in

sets called bags. What makes MIL challenging is that labels

associated with these data are frequently provided at the bag-

level, but not the instance-level. This is also known as weakly
supervised learning in the literature. Algorithms that adhere to

this type of weakly supervised learning paradigm are naturally

suited to a wide variety of real world problems that contain

limited labeled data. For example, images can be represented
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Fig. 1. An illustrative comparison of the single instance and multi-instance
learning paradigms. Algorithms that operate on multi-instance data must
contend with the fact that instances are rarely individually-labeled. Instead,
labels are generally provided at the bag-level. Thus, the goal of a multi-
instance learning algorithm is to learn to identify instances, within a given
bag, that indicate a particular class membership.

by a bag of patches, documents can be organized into sen-

tences, patients can be represented by a collection of medical

records, to name a few. However, since each bag can have

an arbitrary number of instances, standard machine learning

approaches that rely on fixed-length vector representations

cannot be applied to the data directly. Significant research

efforts have been made to design algorithms that can handle

this type of data.

In the past twenty years, a large number of MIL algorithms

[1]–[8] have been proposed. These approaches have been

applied to many different topics ranging from drug activity

prediction [9], content-based image retrieval [10], medical im-

age analysis [11], document classification [12], among many

other application areas [13]. Recently, deep learning-based

MIL methods [14]–[16] have also been proposed to handle

multi-instance data. While these methods have demonstrated

their effectiveness in solving a variety of real-world problems

by multi-instance learning, their limitations have also been

discussed in literature [17], [18]. For example, a recent survey
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paper [18] notes that current state-of-the-art MIL approaches

are sensitive to the construction of instances within a bag.

Specifically, they determine that the performance of MIL

methods are sensitive to witness rate, e.g., the proportion of

positive instances in positive bags, as well as whether the

algorithm operates on the instance or bag level. This has also

been observed in older MIL survey papers [17] and requires

that new algorithms be tested on a range of different datasets

and applications. In addition to dataset-specific performance,

the authors of these survey papers highlight that performance

improvements in the training time of MIL algorithms, es-

pecially those that rely on instance-level information, are

necessary for further adoption.

In this work, we focus specifically on scaling SVM-based

MIL algorithms, as they have shown consistent performance

and can be further extended to non-linear decision boundaries

via the kernel trick. Popular SVM-based MIL approaches such

as miSVM/MISVM [1], NSK [19], and sMIL/sbMIL [2] have

been proposed to handle multi-instance data and have demon-

strated promising performance, even when compared against

modern MIL deep-learning architectures such as miNet/MINet

[20]. While these approaches have performed well, and can

be extended to solve a variety of real-world problems, they

are not widely used in practice as they do not scale well

to large datasets. Furthermore, many of these approaches are

not equipped with capabilities to interpret the results of their

predictions. These two shortcomings, speed of model training
and model interpretability of multi-instance learning methods,

are the focus of this work.

For the remainder of this manuscript we present a novel

method that extends a multi-instance SVM to large scale

data. Our approach uses the multi-block alternating direction

method of multipliers (ADMM) to avoid iteratively solving

the quadratic programming problems that arise from standard

SVM-based MIL approaches. The scientific contributions of

this work are as follows:

- A novel MIL algorithm derivation, named the Primal-Dual
Multi-Instance SVM (pdMISVM) method, and an associated

implementation that scales linearly as the number of bags

increases.

- An inexact variation of our approach, based on the optimal

line search method, that scales linearly as the number of

features increases.

- Experimental results showcasing the promising predictive

performance, scalability, and interpretability of our approach

on baseline multi-instance data and real-world image data

compared against other MIL algorithms.

- An extension of our approach that allows for the inclusion

of an arbitrary kernel function and a proof-of-concept ex-

periment on synthetic data verifying our derivation.

II. METHODS

In this section we begin with a sketch for the steps required

for the standard multi-instance SVM (MISVM) derivation

initially presented by Andrews et al. [1]. Then, following the

multi-block ADMM framework [21]–[23], we construct the

augmented Lagrangian which will be used to derive the solu-

tion to the proposed pdMISVM method; this is followed by

a step-by-step derivation to optimize the proposed objective.

Finally, we extend our approach to handle a large number

of features through an application of the optimal line search

method [24].

A. Notation

In this manuscript we represent matrices as M, vectors as

m, and scalars as m. The i-th row and j-th column of M
are mi and mj , respectively. Similarly, mi

j is the scalar value

indexed by the i-th row and j-th column of M. The matrix

Mp corresponds to the p-th column-block of M. Given a

K ×N matrix M, {m, i} = argmaxm′,i′(M) gives the row-

by-column coordinates for the maximum element in M. The

row and column indices are given by argmaxm′,i′(M)m and

argmaxm′,i′(M)i, respectively.

B. Extending the MISVM to K-classes

In the binary multi-instance classification problem, the MIL

algorithm is presented with a collection of bags and labels

represented by the set {Xi, yi} : i ∈ 1, . . . , N where

yi ∈ {−1, 1}, Xi ∈ R
d×ni designates a bag containing ni

instances, and {x1, . . . ,xni} ∈ Xi represent each instance

within the i-th bag. Following the instance-centric approach

advocated by Andrew’s et al. [1] MISVM model, where

a single “witness” instance determines the class of a bag,

we define the decision function for a multi-instance binary

classifier as

yi = sign

(
max
i∈ni

(wTxi + b)

)
, (1)

where w, b are the hyperplane and intercept for the MISVM.

The MISVM objective devised by Andrews et al. is

min
w,b,ξ

1

2
‖w‖22 + C

N∑
i=1

ξi

subject to max
i∈ni

(
wTxi + b

)
yi ≥ 1− ξi,

ξi ≥ 0,

i = 1, . . . , N ,

(2)

where C is a hyperparameter that determines the level of

regularization on the learned hyperplane and ξi are slack

variables. The constraints in Eq. (2) are incorporated via a

Lagrangian function

min
w,b

max
α

L(w, b, α)

subject to αi ≥ 0 ,
(3)

and is solved with respect to the dual variables (αi) using

off-the-shelf quadratic programming solvers or heuristic algo-

rithms like sequential minimal optimization [25] which takes

advantage of a limited number of support vectors. Although

the MISVM formulation from Andrews et al. is widely used

in MIL literature, it is generally limited to binary classification

problems.
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In order to design a method suitable for multi-class multi-

instance classification, we extend the decision function pre-

sented in Eq. (1) to K-classes via

ŷi = argmax
m′,i′

(
WTXi + bT1i

)m
, (4)

where W ∈ R
d×K , b ∈ R

K , ŷi ∈ {1, . . . ,K} represents the

hyperplanes, intercepts, and labels for K classes. Motivated

by the results of [26] where it is argued that all-in-one

formulations for K-class SVMs provide superior predictive

performance, when compared to one-vs-all approaches, we

construct the following Weston & Watkins [27] MISVM

extension to Eq. (2)

min
W,b,ξ

1

2

K∑
m=1

‖wm‖22 + C

N∑
i=1

K∑
m=1

ξmi

subject to
(
1− [

max(wT
mXi + 1bm)−max(

wT
y Xi + 1by)

]
ymi

)
+
≤ ξmi , 0 ≤ ξmi ,

i = 1, . . . , 2, m = i, . . . ,K ,

(5)

where wy , by is the hyperplane-intercept pair associated with

the i-th bag’s class label, (·)+ = max(0, ·) is the hinge loss

function, and ymi ∈ {−1, 1} indicates if the i-th bag belongs

to the m-th class. Similar to Eq. (2), the K-class formulation

above can be transformed into a quadratic programming prob-

lem and solved. Although, this approach is known [26] not to

scale well as the number of bags increases. To address this

issue we propose a novel primal-dual algorithm based on the

multi-block ADMM [23] to optimize Eq. (5).

C. A Primal-Dual Multi-Instance SVM

Incorporating the constraints of Eq. (5) into the objective

gives the unconstrained optimization

min
W,b

1

2

K∑
m=1

‖wm‖22 + C

N∑
i=1

K∑
m=1

(1− [max(wT
mXi

+ 1bm)−max(wT
y Xi + 1by)]y

m
i )+ ,

(6)

which is difficult to solve given the coupling across wk, bm,

and the max(·) operations. Following the multi-block ADMM

approach we introduce the following constraints, inspired by

[24], [28], and rewrite Eq. (6) as

min
W,b,E,
Q,R,T,U

1

2

K∑
m=1

‖wm‖22 + C

N∑
i=1

K∑
m=1

(ymi emi )+

subject to emi = ymi − qmi + rmi ,

qmi = max (tmi ) ,

tmi = wT
mXi + 1bm,

rmi = max (um
i ) ,

um
i = wT

y Xi + 1by ,

(7)

to decouple the primal variables. Then, the augmented La-

grangian function of Eq. (7) is

Lμ =
1

2

K∑
m=1

‖wm‖22 +
N∑
i=1

K∑
m=1

C (ymi emi )+

+
μ

2

N∑
i=1

K∑
m=1

[
(emi − (ymi − qmi + rmi − λm

i /μ))
2

+ (qmi −max (tmi ) + σm
i /μ)

2

+
∥∥tmi − (

wT
mXi + 1bm

)
+ θm

i /μ
∥∥2
2

+ (rmi −max (um
i ) + ωm

i /μ)
2

+
∥∥um

i − (
wT

y Xi + 1by
)
+ ξmi /μ

∥∥2
2

]
,

(8)

where W,b,E,Q,T,R,U are the primal variables,

Λ,Σ,Θ,Ω,Ξ are the dual variables, and μ > 0 is a tuning

parameter. Equation (8) is then differentiated with respect to

each primal variable to derive Algorithm 1. The primal-dual

updates terminate when the total difference between the

constraints incorporated via the augmented Lagrangian terms

are less than a predefined tolerance.
W & b update. Removing all terms from Eq. (8) that do

not include W and decoupling across columns of W gives

the following K problems

wm = argmin
wm

1

2
‖wm‖22 +

μ

2

N∑
i=1

[∥∥tmi − (
wT

mXi

+ 1bm
)
+ θm

i /μ
∥∥2
2

]
+

N ′∑
i′=1

K∑
m′=1

[μ
2

∥∥um′
i′ − (

wT
mXi′

+ 1bm
)
+ ξm

′
i′ /μ

∥∥2
2

]
,

(9)

where i′ indicates the column blocks in X (and the corre-

sponding columns of U and Ξ) that belong to the m-th class

and N ′ is the total number of bags belonging to the m-th

class. Taking the derivative of Eq. (9) with respect to wm and

setting the result equal to zero gives the closed form solution

wT
m =

(∑N
i=1

[
(tmi − 1bm + θm

i /μ)XT
i

]
+
∑N ′

i′=1

∑K
m′=1

[
(um′

i′ − 1bm + ξm
′

i′ /μ)XT
i′
])

∗
(
I/μ+

∑N
i=1 XiX

T
i +K

∑N ′

i′=1 Xi′X
T
i′

)−1

,

(10)

which can be calculated via a least-squares solver to avoid an

inverse calculation. Similarly, differentiating Eq. (9) element-

wise with respect to bm, setting the result equal to zero, gives

the update

bm =
( N∑

i=1

[
tmi −wT

mXi + θm
i /μ

]
+

N ′∑
i′=1

K∑
m′=1

[
um′
i′

−wT
mXi′ + ξm

′
i′ /μ

])
/
(
N +KN ′

)
.

(11)

E update. Dropping terms from Eq. (8), that do not contain

E and decoupling element-wise gives K ×N problems

emi = argmin
emi

C (ymi emi )+ +
μ

2
(emi − nm

i )
2

, (12)
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where nm
i = ymi − qmi + rmi − λm

i

μ . Equation (12) can be

differentiated with respect to emi via the sub-gradient method,

and solved in three cases

emi =

⎧⎪⎨
⎪⎩
nm
i − C

μ y
m
i when ymi nm

i > C
μ

0 when 0 ≤ ymi nm
i ≤ C

μ

nm
i when ymi nm

i < 0

. (13)

Q & R update. Keeping only terms with Q in Eq. (8) and

decoupling element-wise gives K ×N problems

qmi = argmin
qmi

(emi − ymi + qmi − rmi + λm
i /μ)

2

+ (qmi −max (tmi ) + σm
i /μ)

2
.

(14)

Taking the derivative of Eq. (14) with respect to qmi , setting

the result equal to zero, and solving for qmi gives the update

qmi =

(
ym
i −emi +rmi −λm

i /μ+max
(
tmi

)
−σm

i /μ
)

2 . (15)

Following the same steps for each rmi ∈ R we derive the

element-wise updates

rmi =

(
emi −ym

i +qmi +λm
i /μ+max

(
um

i

)
−ωm

i /μ
)

2 . (16)

T & U update. Keeping terms in Eq. (8) containing T and

decoupling across K and N gives the following

tmi = argmin
tmi

(qmi −max (tmi ) + σm
i /μ)

2

+
∥∥tmi − (

wT
mXi + 1bm

)
+ θmi /μ

∥∥2
2

,

(17)

which can be further decoupled element-wise for each tmi,j ∈
tmi giving K × (n1 + · · ·+ nN ) problems

tmi,j = argmin
tmi,j

⎧⎪⎨
⎪⎩
(
qmi − tmi,j + σm

i /μ
)2

+
(
tmi,j − φm

i,j

)2
when tmi,j = max (tmi ) ,(
tmi,j − φm

i,j

)2
else ,

(18)

where φm
i = wT

mXi + 1bm − θm
i /μ. Taking the derivative of

Eq. (18) with respect to tmi,j , setting the result equal to zero,

and solving for tmi,j , gives the updates

tmi,j =

{
max(φm

i )+qmi +σm
i /μ

2 if j = argmax(φm
i )

φm
i,j else

. (19)

This same strategy is applied to derive the element-wise

updates of U, giving

um
i,j =

{
max(ψm

i )+rmi +ωm
i /μ

2 if j = argmax(ψm
i )

ψm
i,j else

. (20)

where ψm
i = wT

y Xi + 1by − ξmi /μ. The associated dual

variable updates are provided in Algorithm 1.

D. Scaling to a Large Number of Features

Although the updates derived in Section II-C provide a

suitable algorithm as the number of bags increase, the least-

squares solver used to update W in Eq. (10) has computational

complexity O
(
(n1 + · · ·+ nN ) · d2) and scales quadratically

as the number of features increase; this limits the scalability

of our approach to bags only. Additionally, since μ is updated

every iteration, the least-squares solver must be invoked at

every iteration. To handle this issue, we propose an alternative

optimal line search method [24] to update W instead.

W Update, inexact. The partial derivative of Eq. (9) with

respect to wk gives

∇T
wm

= wT
m − μ

N∑
i=1

[tmi −wT
mXi − 1bm + θm

i /μ]XT
i

− μ

N ′∑
i′=1

K∑
m′=1

[um′
i′ −wT

mXi′ − 1bm + ξm
′

i′ /μ]XT
i′ ,

(21)

which can be used to create the minimization

sm = argmin
sm

1

2

∥∥wT
m − sm∇T

wm

∥∥2
2
+

μ

2

N∑
i=1

[∥∥tmi
− (wT

m − sm∇T
wm

)Xi − 1bm + θmi /μ
∥∥2
2

]
+

N ′∑
i′=1

K∑
m′=1[μ

2

∥∥um′
i′ − (wT

m − sm∇T
wm

)Xi′ − 1bm + ξm
′

i′ /μ
∥∥2
2

]
,

(22)

in terms of sm instead of wm. Differentiating Eq. (22) with

respect to sm, setting the result equal to zero, and solving for

sm gives

sm =

(
wT

m−μ
∑N

i=1 t̂mi XT
i −μ

∑N′
i′=1

∑K
m′=1

ûm′
i′ XT

i′
)
∇wm

∇T
wm(I+μ

∑N
i=1 XiXT

i +μK
∑N′

i′=1
Xi′XT

i′)∇wm

,

(23)

where t̂mi = tmi −wT
mXi − 1bm + θm

i /μ and ûm′
i′ = um′

i′ −
wT

mXi′ −1bm + ξm
′

i′ /μ. Recognizing that the denominator of

Eq. (23) is equivalent to

‖∇wm
‖22+μ

N∑
i=1

∥∥∇T
wm

Xi

∥∥2
2
+μK

N ′∑
i′=1

∥∥∇T
wm

Xi′
∥∥2
2

, (24)

allows for Eq. (23) to be calculated efficiently in

O ((n1 + · · ·+ nN ) · d) time. Combining, Eq. (21) and

Eq. (23) can then be used to update wm via

wm = wm − sm∇wm . (25)

This “inexact” update option avoids solving the least squares

problem present in Eq. (10) and is provided as an option on

Line 6 of Algorithm 1 to extend our method to handle a large

number of features.

III. EXPERIMENTS

In this section we explore the performance of our exact and

inexact pdMISVM implementations. We first test our method

against an array of standard MIL benchmarks to explore how

our implementations compare against other MIL methods.
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MUSK-2 Elephant Fox Tiger MNIST-Bags
Model ACC BACC TT ACC BACC TT ACC BACC TT ACC BACC TT ACC BACC TT

SIL 0.657±0.136 0.711±0.105 17.55 0.695±0.056 0.694±0.063 1.67 0.575±0.050 0.579±0.064 1.77 0.695±0.070 0.697±0.053 0.47 0.420±0.156 0.495±0.078 0.88
miSVM 0.657±0.136 0.696±0.103 278.07 0.790±0.043 0.784±0.036 13.72 0.595±0.087 0.602±0.089 28.03 0.760±0.082 0.762±0.083 12.25 0.401±0.104 0.502±0.074 1.50
MISVM 0.794±0.081 0.768±0.107 252.16 0.840±0.052 0.844±0.045 21.11 0.570±0.037 0.569±0.044 31.92 0.790±0.091 0.792±0.092 17.09 0.499±0.099 0.489±0.073 8.99
NSK 0.814±0.058 0.808±0.063 1.38 0.854±0.081 0.855±0.072 1.55 0.535±0.099 0.539±0.102 0.99 0.795±0.113 0.787±0.118 0.87 0.640±0.166 0.641±0.167 1.21
sMIL 0.725±0.127 0.732±0.128 21.09 0.500±0.057 0.500±0.000 1.44 0.529±0.115 0.529±0.086 1.25 0.670±0.065 0.660±0.068 0.79 0.609±0.069 0.510±0.073 0.21
sbMIL 0.657±0.141 0.592±0.130 27.82 0.665±0.036 0.663±0.055 2.13 0.599±0.093 0.587±0.090 3.42 0.626±0.064 0.627±0.046 1.64 0.539±0.066 0.501±0.066 0.63
miNet 0.853±0.104 0.847±0.121 17.79 0.844±0.081 0.849±0.068 23.62 0.561±0.056 0.563±0.060 23.85 0.805±0.067 0.805±0.058 24.33 0.608±0.137 0.556±0.109 15.05
MINet 0.882±0.064 0.864±0.070 19.61 0.860±0.053 0.864±0.050 23.88 0.585±0.120 0.585±0.089 24.20 0.820±0.083 0.805±0.087 24.48 0.591±0.139 0.511±0.075 15.35
Ours 0.794±0.152 0.802±0.160 0.72 0.825±0.053 0.822±0.062 0.23 0.590±0.103 0.586±0.097 0.30 0.795±0.084 0.798±0.081 0.21 0.616±0.180 0.582±0.135 3.30
Ours (inexact) 0.804±0.080 0.811±0.085 0.83 0.830±0.047 0.837±0.042 0.14 0.640±0.047 0.647±0.045 0.20 0.780±0.063 0.780±0.064 0.16 0.672±0.105 0.645±0.100 0.45

TABLE I
CLASSIFICATION PERFORMANCE AND TRAIN-TIME (SECONDS) OF OUR METHOD AND EIGHT OTHER MIL LEARNING METHODS ON FIVE BENCHMARK

DATASETS. THE REPORTED ACCURACY AND STANDARD DEVIATIONS ARE CALCULATED ACROSS TEN SIX-FOLD CROSS VALIDATION EXPERIMENTS. BEST

RESULTS ARE MARKED IN BOLD, SECOND BEST in italics.

Algorithm 1 The pdMISVM method to optimize Eq. (8)

1: Data: X ∈ R
D×(n1+···+nN ) and Y ∈ {−1, 1}K×N .

2: Hyperparameters: C > 0, μ > 0, ρ > 1 and tolerance > 0.
3: Initialize: primal variables W,b,E,Q,R,T,U and dual vari-

ables Λ,Σ,Θ,Ω,Ξ.
4: while residual > tolerance do
5: for m ∈ K do
6: Update wm ∈ W by Eq. (10), or Eq. (25) inexact
7: Update bm ∈ b by Eq. (11)
8: end for
9: for (p,m) ∈ {N,K} do

10: Update emp ∈ E by Eq. (13)
11: Update qmp ∈ Q by Eq. (15)
12: Update rmp ∈ R by Eq. (16)
13: for j ∈ np do
14: Update tmp,j ∈ T by Eq. (19)
15: Update um

p,j ∈ U by Eq. (20)
16: end for

17:

Update λm
p , σm

p , ωm
p ,θm

p , ξm
p by λm

i = λm
i + μ(emi

− (ymi − qmi + rmi ));σm
i = σm

i + μ(qmi −max

(tmi ));ωm
i = ωm

i + μ(rmi −max(um
i ));θm

i = θm
i

+ μ(tmi − (wT
mXi + 1bm)); ξm

i = ξm
i + μ(um

i −
(wT

y Xi + 1by)).
18: end for
19: Update μ = ρμ
20: end while
21: return (wm, . . . ,wK) ∈ W and (b1, . . . , bK) ∈ b.

We follow the baseline experiments with an investigation

into increasingly complex natural scene data to determine the

performance characteristics of our approach. Then, we conduct

experiments with synthetic data to illustrate the scalability of

our approach and experimentally verify the expected computa-

tional complexity/performance characteristics of our approach

compared to others. We follow with a discussion of the

interpretability of our method on three multi-instance datasets

derived from two well-known baseline datasets. Finally, we

present an extension of our primal-dual derivation to handle

arbitrary kernel functions. We experimentally verify this ex-

tended derivation on synthetic data and identify a limitation

of our approach to be addressed in future work.

A. Settings & Data

We compare our method against eight MIL learning al-

gorithms: (1) a single-instance learning (SIL) approach that

assigns the bags’ labels to all instances during training and

returns the maximum response for each bag/class-pair at test

time for the testing bags’ instances; (2) the miSVM and (3)

MISVM algorithms [1] that assume that at least one instance

per bag is positive to classify a bag as positive; (4) the NSK

algorithm [19], a bag-based method, that maps the entire bag

to a single-instance by way of a kernel function; (5) the sMIL

and (6) sbMIL [2] algorithms which expect that only a small

number of instances within a bag are classified as positive and

combine instance-level and bag-level relationships to make a

prediction. We also compare our approach against two end-to-

end MIL algorithms, (7) miNet and (8) MINet [20], based on

deep neural-network (DNN) architectures.

These methods are compared against the proposed

pdMISVM (Ours) method, and the inexact variation, described

in Algorithm 1. The grid search and performance calculations

for each method-dataset pair are conducted using the MLJ

library [29] and are included with our code.1 All experiments

were run on an Intel Xeon processor running at 2.20GHz using

126GB of RAM, running Ubuntu 18.04.4 LTS. The competing

SVM-based methods are implemented using a library2 written

by Doran et al. [30] while the DNN methods are implemented

using the code3 provided as a companion to the paper by

Wang et al. [20]. Methods that take longer than one-thousand

seconds to train during a single cross-validation are considered

“timed-out” (T/O) and their performance metrics are not

provided.

Each method is compared against a synthetic dataset and

ten multi-instance datasets that are normalized to have zero

mean and unit variance. The synthetic dataset contains 10

to 1,000 bags with three to five instances per bag and 10

to 1,000 features per instance. The first instance per bag

is constructed from two normally-distributed clusters with a

standard deviation of one; the second to fifth instances per

bag contain uniform random noise.

The MUSK-2 [9], Elephant, Fox, and Tiger [1] datasets are

standard small scale MIL evaluation datasets and are widely

cited in the MIL literature. The MUSK-2 dataset is designed

to classify chemical compounds as either “musk” or “non-

1https://github.com/minds-mines/pdMISVM.jl
2https://github.com/garydoranjr/misvm
3https://github.com/yanyongluan/MINNs
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SIVAL-3 SIVAL-5 SIVAL-10 SIVAL-25 SIVAL-25-deep
Model ACC BACC TT ACC BACC TT ACC BACC TT ACC BACC TT ACC BACC TT

SIL 0.433±0.167 0.474±0.144 26.19 0.140±0.057 0.000±0.000 72.65 – – T/O – – T/O – – T/O
miSVM 0.856±0.062 0.858±0.053 469.83 – – T/O – – T/O – – T/O – – T/O
MISVM 0.909±0.058 0.908±0.066 457.65 – – T/O – – T/O – – T/O – – T/O
NSK 0.633±0.070 0.634±0.085 1.44 0.547±0.088 0.551±0.089 6.27 0.462±0.042 0.469±0.053 50.2 – – T/O – – T/O
sMIL 0.544±0.119 0.541±0.121 7.52 0.443±0.112 0.441±0.131 68.51 – – T/O – – T/O – – T/O
sbMIL 0.767±0.123 0.775±0.128 44.08 – – T/O – – T/O – – T/O – – T/O
miNet 0.644±0.066 0.672±0.038 72.49 0.203±0.104 0.240±0.101 72.49 0.100±0.020 0.102±0.024 203.93 – – T/O – – T/O
MINet 0.589±0.066 0.558±0.043 78.91 0.253±0.043 0.261±0.063 78.91 0.135±0.037 0.135±0.019 226.43 – – T/O – – T/O
Ours 0.911±0.058 0.917±0.059 0.48 0.840±0.051 0.846±0.047 1.02 0.732±0.057 0.742±0.057 7.88 0.487±0.041 0.489±0.039 24.01 – – T/O
Ours (inexact) 0.767±0.067 0.763±0.069 0.74 0.730±0.065 0.733±0.057 1.67 0.577±0.061 0.581±0.055 13.57 0.388±0.045 0.383±0.044 36.17 0.888±0.04 0.887±0.036 977.66

TABLE II
CLASSIFICATION AND TRAIN-TIME (SECONDS) PERFORMANCE OF OUR METHOD AND EIGHT OTHER MIL LEARNING METHODS ON VARIANTS OF THE

SIVAL DATASET ACROSS A DIFFERENT NUMBER OF CLASSES AND PREPROCESSING PIPELINES. THE REPORTED ACCURACY AND STANDARD DEVIATIONS

ARE CALCULATED ACROSS TEN SIX-FOLD CROSS VALIDATION EXPERIMENTS. BEST RESULTS ARE MARKED IN BOLD, SECOND BEST in italics.

Fig. 2. Confusion matrix of the pdMISVM tested on the original SIVAL-
25 dataset with 30 features per-instance. Results are derived from a six-fold
cross-validation experiment across all 1,500 bags.

musk” which describes the chemical properties of a given

compound; bags within this dataset are representative of the

possible conformations of the labeled compound. The MUSK-

2 dataset contains 39 positive and 63 negative bags with 166

features per instance. The Elephant, Fox and Tiger datasets are

derived from the Corel image dataset [31] and each contain

100 positive and 100 negative bags with 143 non-zero features

per instance.

The MNIST-bags [15] dataset contains 100 positive and 100

negative bags where a bag is made up of a random number of

28 × 28 greyscale images taken from the MNIST dataset. A

bag is given a positive label if it contains a ‘9’ and negative

label if it does not. For our experiments the average number

of bags is ten, thus the witness rate for positive bags is 10%,

on average. This low witness rate makes this a challenging

dataset for the chosen MIL algorithms.

The SIVAL dataset was specifically designed for content-

based image retrieval (CBIR) and contains natural scene

images consisting of 25 categories with 60 images per category

Fig. 3. Confusion matrix of the inexact pdMISVM approach tested on
the SIVAL-25-deep dataset created from the patch-wise application of a
convolutional neural network as a pre-processing step. Results are derived
from a six-fold cross-validation experiment across all 1,463 bags.

for a total of 1,500 bags. In this work we use the processed

dataset provided in the initial work of Rahmani et al. [32]

and create a novel dataset derived from the raw SIVAL

images. In the original processed SIVAL dataset, the images

are segmented into 30 or 31 instances, depending on the

picture, consisting of 30 features each. In total there are

47,414 instances across the entire SIVAL dataset. In order

to explore the prediction and runtime performance of the

compared methods, we construct a few subsets of this dataset

containing a predetermined number of classes. Specifically,

we construct the SIVAL-3, SIVAL-5, SIVAL-10, and SIVAL-

25 datasets each containing three, five, ten, and twenty-five

classes from the SIVAL dataset, respectively.

In addition, we construct the “SIVAL-25-deep” dataset,

which is inspired by the “hybrid” approach detailed by

Zheng et al. [33] which investigates the ongoing shift

from SIFT-based descriptors [34] to convolutional neural

networks for generating image descriptors. To create this

multi-instance dataset we extract patches from the raw
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Fig. 4. Time to train our method and other MIL methods on synthetic multi-
instance data where the number of bags increase. Both the exact and inexact
methods end up training faster than the competing methods once the number
of synthetic bags is greater than eight-hundred.

SIVAL images using the EdgeBox [35] proposal generator

(eta=0.2, minScore=0.04, maxBoxes=200) provided

in the OpenCV library.4 These extracted patches are fed into

a pre-trained AlexNet [36] convolutional neural network where

the second to last fully-connected layer (F10) is used to

represent each instance by 4,096 features. We note that more

complex/newer deep neural architectures, and other proposal

generators, could be used to create this patch-level embedding

but leave this to future work. This process is repeated for

every image (where object proposals are detected by EdgeBox)

and results in 1,463 bags for a total of 80,561 instances. The

SIVAL-25-deep dataset is our attempt at a modernization of

the standard SIVAL dataset; the pipeline used to generate this

benchmark is provided with our code.

B. Classification Performance

In Tables I and II we provide the classification performance

of our approach compared against the other MIL algorithms.

Our goal is to verify that our approach matches the per-

formance of the other MIL algorithms. For each dataset-

method pair we report the accuracy (ACC) and balanced

accuracy (BACC) results across ten six-fold cross validation

experiments. We can see from Table I that our method

gives comparable performance on the MUSK-2, Elephant, and

Tiger datasets; this applies for both the exact and inexact

implementations. Interestingly, the inexact implementation of

our approach outperforms all other methods on both the Fox

and MNIST-Bags datasets. In Table II the exact method only

slightly outperforms the next best performing method on the

SIVAL-3 dataset; this impressive performance result does not

hold for the inexact version. Although, the inexact method per-

forms better (in comparison) when the number of classes/bags

increase. The inexact method shows surprisingly impressive

results on SIVAL-25-deep dataset which are recorded just

within the time-budget; this significant performance improve-

ment can be seen very clearly in the comparison between the

4https://github.com/opencv/opencv

Fig. 5. Elapsed time to train the exact and inexact methods on synthetic
multi-instance data as the number of features is varied. As expected, the exact
approach performs poorly as the number of features increases but the inexact
method continues to scale linearly.

confusion matrices in Figures 2 and 3. It’s clear from these

results that both the exact and inexact methods are capable

of providing competitive performance results on a variety of

multi-instance datasets.

C. Bag/Feature Scalability

The key contribution of this work is that the derived

algorithms described in Section II-C and Section II-D scale

to large datasets. This can clearly be seen in the SIVAL-25

column of Table II where our methods are the only ones that

are able to fit a model within one-thousand seconds. In order

to further validate this finding, in Figure 4 we report training

time results on a synthetic multi-instance dataset where we

increase the number of bags as described in Section III-A. Our

approach scales well with respect to the number of bags which

illustrates the importance of our primal-dual derivation. This

conclusion is especially clear when our method is compared

against SVM-based MIL methods which rely on repeatedly

solving quadratic programming problems.

Although the initial pdMISVM derivation scales well with

respect to bags, it does not scale to the number of features

when it is large. This is due to the fact that the update for

each wk in Eq. (10) requires solving a least squares problem

which scales quadratically as the number of features increase.

To address this limitation, we proposed an optimal line search

method to improve the scalability of our approach in Eq. (25).

We conduct a timing experiment between the exact and inexact

methods using synthetic data where the number of features

are increased to see if our inexact variation provides improved

runtime performance. We can see in Figure 5 that the proposed

inexact method significantly reduces the training time of our

approach as the number of features increase.

D. Model Interpretability

In addition to the promising predictive performance and

scalability of our method, we note that instance-based methods

such as ours come with an additional benefit: interpretability.

Instance-based methods such as miSVM, MISVM, and the
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Fig. 6. Learned class-specific hyperplanes of the pdMISVM method on the
MNIST-bags dataset plotted in a 28× 28 grid. Left: Learned coefficients for
predicting whether a bag contains the MNIST handwritten digit ‘9’. Right:
The learned coefficients for predicting whether a bag does not contain the
MNIST digit ‘9’.

Fig. 7. Instance identification results on the first five testing bags of our
method on the MNIST-bags dataset with the detectors in Figure 6. Our
approach correctly classifies the first, second and third bags. Although the
first bag is classified correctly the “9”s are not properly identified.

proposed pdMISVM method, identify an explicit instance

within a bag that is responsible for the predicted label. We

use this phenomenon to explore the limitations of our method

on the MNIST-bags dataset and showcase patches identified

during the SIVAL experiment across a number of different

classes.

For the MNIST-bags dataset we plot the learned positive

and negative class coefficients associated with the two learned

hyperplanes in Figure 6 (e.g. w1 and w2). In addition, we

plot four randomly chosen testing bags and what instance

was chosen by the multi-instance decision function for the

positive class hyperplane in Figure 7. On the left-hand side

of Figure 6, we can see that our method can roughly detect

the loop at the top of the ‘9’ although it is clear from this

interpretation that the our approach will not be able to handle

even moderate translation or rotation if it is only provided

with raw-pixel values. Additionally, even though our method

correctly classifies the first bag, it incorrectly identifies the

‘4’ as the witness instance; we can see that a ‘4’ appears to

be contaminating the learned coefficients displayed in Figure

6. In order to solve this problem it is likely that additional

preprocessing will be required to extract more descriptive

features from instances within the MNIST-bags dataset beyond

raw pixels for our method to be effective.

In order to illustrate how effective feature extraction can aid

Fig. 8. Instance identification on the SIVAL-25 dataset across different
classes. In each set of three pictures the leftmost is the original image, the
middle shows the bag of patches extracted by the original authors [10], and
the final image highlights the patch identified by our approach for classifying
the image.

in the interpretability of our method, we extend our discussion

to the SIVAL-25 and SIVAL-25-deep datasets. In Figure 8, we

provide image patches identified by our approach on images

chosen from the SIVAL-25 dataset. We can see that our

method identifies distinctive visual characteristics in each of

the classes. For example, the bag representing a “Banana” is

identified by a distinctive patch along the length of the fruit

while in the “Apple” image our approach identifies the round

patch on top of the fruit. Similarly, in Figure 9 we present the

neural-network embedded patches extracted via the EdgeBox

detection algorithm and the identified patches. We can clearly

see in Figure 9 that our approach is able to accurately localize

the most distinctive parts of the object, at the patch-level,

within the image. For example, the medal is recognized by

the “gold” part while the “bowl” of the spoon is recognized.

Remarkably, the results in Figures 8 and 9 show that when

our method is given a set of sufficiently descriptive object

proposals/patches, paired with a bag-level label, our method

can accurately locate objects within an image. This is one

of the significant advantages of instance-based MIL methods

over traditional single-instance learning methods that require

all instances to be labeled. We anticipate that this framework

could be extended to investigate and interpret the effectiveness

of pre-trained neural networks on an assortment of datasets

that can be formulated as MIL problems. We plan to further

investigate different aspects of our approach under different
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Fig. 9. Instance identification on the SIVAL-25-deep dataset across different
classes. In each set of three pictures the leftmost is the original image, the
middle shows the bag of patches extracted by the EdgeBox detector [35], and
the final image highlights the patch identified by our approach for classifying
the image.

object proposal methods [37], [38], neural architectures [39],

and applications [12], [13], [40].

E. A Kernel Extension

Although the proposed pdMISVM formulation and imple-

mentations are shown to work well on a variety of MIL

datasets, they are limited to classifying data that is linearly

separable. In order for our method to be able to handle non-

linear decision boundaries, it requires the addition of a kernel.

To this end, we briefly sketch out a kernel extension to the

W variable update proposed in Section II-C. We verify this

addition in an experiment with synthetic data that can only be

correctly classified by a nonlinear method.

W update (with kernel) Starting with Eq. (9) and replacing

all columns of Xi with feature vectors calculated by an

arbitrary kernel function φ(Xi) = Φi, taking its derivative

with respect to wm, and solving for wm gives

wT
m =

( [
(tm − 1bm + θm/μ)ΦT

]
+
∑K

m′=1

[
(um′

′

− 1bm + ξm
′

′ /μ)ΦT
′
]) ∗

(
I/μ+ΦΦT +KΦ′ΦT

′

)−1

(26)

where the Φ = [Φ1 . . .ΦN ] and Φ′ = [Φ1′ . . .ΦN ′ ] contains

the N ′ column blocks from Φ that belong to the m-th class.

Equation (26) can be written in matrix form

wT
m = smDΦ̂T ∗

(
I/μ+ Φ̂DΦ̂T

)−1

, (27)
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Fig. 10. Linear and kernel (radial basis function) pdMISVM predictions
on synthetic multi-instance data. Each bag in the training dataset X has
up to three instances, where only the first instance determines the correct
classification. The kernel extension of our approach is able to correctly learn
a nonlinear decision boundary to separate the two classes.

where sm = [tm−1bm+θm/μ 1/K
∑K

m′=1(u
m′
′ −1bm+

ξm
′

′ /μ)], D = [I 0; 0 KI] and Φ̂ = [Φ Φ′ ]. Since the kernel

function applied to each Xi may return feature vectors that are

infinitely long, it may be impossible to calculate the inverse

required to express wm in Eq. (27). In order to solve this issue

we use the following trick [41]

(P−1 +mTR−1m)−1mTR−1 = PmT (mPmT +R)−1

to rewrite wT
m equivalently, as

wT
m = sm(Φ̂T Φ̂+D−1/μ)−1Φ̂T . (28)

The updated wm in Eq. (28) can then be used to update

wT
mφ(Xi) and ‖wm‖22 = tr

(
wT

mwm

)
directly, as the kernel

function occurs as an inner product in both cases and can be

computed. We implement the kernel version of the pdMISVM

method and compare it against the linear version in Figure 10;

we can see this extension successfully extends our approach to

correctly classify data that is not linearly separable. Unfortu-

nately, the update in Eq. (28) is computationally expensive as

it requires a least squares calculation that scales quadratically

with respect to the total number of bags in the training dataset.

We plan to address this limitation in our future work.

IV. CONCLUSION

In this work we propose a Primal-Dual Multi-Instance SVM
method that is able to scale to large multi-instance datasets.

Our SVM-based approach is able to handle data that grows

in terms of bags as well as features since it avoids solving

a quadratic programming problem that limits the adoption

of traditional SVM-based MIL techniques. Throughout the

manuscript, we provide detailed derivations, implementations,

and experimental results which illustrate the utility of our
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approach on both synthetic and real-world datasets. In addi-

tion, we provide analyses that investigate the interpretability of

our method on benchmark multi-instance datasets and develop

an extension to the SIVAL dataset as part of this study.

Finally, using the same primal-dual framework, we derive and

implement a kernel extension of our approach that is able

to learn non-linear decision boundaries on synthetic multi-

instance data and identify areas for future work.
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