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Abstract—Alzheimer’s Disease (AD) is a progressive memory
disorder that causes irreversible cognitive declines, therefore
early diagnosis is imperative to prevent the progression of
AD. To this end, many biomarker analysis models have been
presented for early AD detection. However, these models may
not realize the full data potential due to their failure to integrate
longitudinal (dynamic) phenotypic data with (static) genetic data.
Sometimes, they may not fully utilize both labeled and unlabeled
samples either. To overcome these limitations, we propose a
semi-supervised enrichment learning method to learn a fixed-
length vectorial representation for each participant, by which
the static data record can be integrated with the dynamic data
records. We have applied our new method on the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) cohort and achieved
75% accuracy on multiclass AD progression prediction by one
year in advance.

Index Terms—Alzheimer’s Disease, Representation Enrich-
ment, Longitudinal Learning, Semi-Supervised Learning

I. INTRODUCTION

Alzheimer’s Disease (AD) is a chronic neurodegenerative
disease that impairs patients’ thinking, memory, and behavior.
More than 30 million people worldwide suffer from AD, and
with the increase in life expectancy this figure is projected to
triple by 2050 [1]. AD typically advances from a pre-clinical
level to mild cognitive impairment (MCI) and eventually
to AD, along a time scale. Early identification of at-risk
individuals is crucial in slowing disease progression and many
researchers have dedicated their efforts to identify AD relevant
biomarkers and develop a computer-aided system to accurately
predict AD onset. Neuroimaging has sparked interest among
researchers seeking to characterize AD progression due to its
widespread availability that takes advantage of high spatial
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resolution and good contrast between different soft tissues [2]—
[6].

To take full advantage of heterogeneous longitudinal data,
we propose a novel semi-supervised learning method to learn
an enriched biomarker representation for each participant
in a studied cohort. The proposed model consists of two
autoencoders [7], including a deep neural network autoen-
coder and an LSTM autoencoder, each of which learns the
vectorial representation from static genetic data and dynamic
phenotypic data respectively. The enriched representation of
dynamic data is in a fixed-length vector format, which can be
readily integrated with the enriched representation of static
data. We have conducted the experiments to evaluate the
proposed model on the real world dataset in the ablation study
and comparison with the other prediction models, in which
promising results have validate the effectiveness of our new
method.

II. OUR METHOD

In the following of this paper, we denote a vector as a bold
lower case letter, and a matrix as a bold upper case letter.
For a matrix X, we use [X]", [X]., [X]% to denote the r-th
row, c-th column, an element at the r-th row and c-th column
respectively. We use ¢ and j to index the participant and record
respectively. We describe the records of the ¢-th participant as
X = {x0,x3,X;, M, t;} as follows:

e x? € RP is a vector of basic demographic information
(age and gender, D, = 2), and x; € RP: is a vector of
SNPs (Dg = 1223);

o X; = [x};xZ;;x] € R™*Prare the longitudinal
records collected across the n; time points. We note that
n; vary across the participants;

e M; = m};m?; - ;ml"] € {1,0}"*D are the binary
masks of longitudinal records X, where 1 and 0 indicates
the observed and unobserved entry;

o t; = [th;td;--- ;1] € R™ are the time stamps of n;

records.
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Fig. 1. In the proposed semi-supervised learning model, Encoder, Decoder, and Predictor are trained jointly for the labeled samples, while only the Encoder

and Decoder are trained for the unlabeled samples.

Each longitudinal record at the j-th time point x{ 1<35<
n;) is the concatenation of multi-modal neuroimagings and
cognitive assessments, such that x! = [xiVBM, xiFS, o
and the missing entries are filled with the constant 0. The target
label y; € RPv of the i-th participant is given for training if
that participant is in training set, such that i € Q4. The
target label is one-hot encoded, such that [1,0,0], [0,1,0],
and [0,0, 1] represent AD, MCI, and HC respectively. The
overview of the proposed model is described in Fig. 1.

We use the autoencoder [7] to learn the intrinsic represen-
tations of the genotypic biomarkers. The autoencoder consists
of two deep neural networks: an encoder ¢pgyp : RPs — R
that encodes a vector of SNPs into the enriched representation
dsnp(x5; 05) = z5, and an decoder gy p : RY +— R that
decodes the enriched representation into reconstructed vector
of SNPs ¢ysnp(zf; 0%) = X, where 03, and 03, is set of
trainable weights matrices and bias vectors for encoder and
decoder respectively. The deep neural network is defined as
the K consecutive fully connected layers where the output of
the k-th layer is:

hy = o(hg—1 Wy + by), (D

where o is the activation function. The input hy of the network
is then forwarded to the last layer hg x;, which is
the output of the network. The encoded representation z;
preserves as much information as possible while removing
the redundant noises in SNPs x; by updating 63, or 6% to

minimize the following reconstruction loss:

2

Lotaric (x5, %55 05,05) = [|Ix; — %5(|%,
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where squared Frobenious norm || - || is the summation of all
the entries squared.

LSTM encoder ¢aynamic : Rnix (2Di+1) Ly pdi summarizes
the longitudinal records X; in the fixed-length vector zl.
The time stamp of each record is crucial in learning the
temporal relation (e.g. temporal locality) between records
especially when the time intervals between the records are
uneven,. The pattern of missing entries aids the encoder to
interpret the input. Thus we provide the concatenation of
longitudinal records, masks, and time stamps, [X;, M, t;]
KL %25 %M = X; € ®RXCPrth) | gs an input of the
LSTM encoder such that daynamic(Xi, My, ti; 0%) = zt.

‘The concatenated longitudinal record at the j-th time step
x! (1 < j < n;) is processed by the following LSTM
architecture [8]:

k] = o(x] Wy + bl "Wy + ¢ "Wo +by),  3)

fij = a(fchxf + hf_lwhf + cZ‘chf +by), @

¢ =t oc 4k Otanh(x) W, +h) "W, +b.), (5)
o = o(]]Wao +hI ' Wi, + c/We, +b,),  (6)

(7

where kf, 03, fij are the input, output, and forget gate of the
j-th time step respectively; {Wai, Wi, W, Wor, Wiy,
Wer, Wae, Wi, Woo, Wi, Wit C 9% are trainable
weight matrices and {by,bs, b, b,} C ¢!, are trainable
bias vectors; ¢! and h] denote the cell state and hidden
representation. The hidden representation h'* at the last time
step n; represents a summary of whole longitudinal records

h! = o] ® tanh(c}),



X, such that h* = z! € % Since the hidden representation
at the j-th time point aims to summarize the records from the
first time step to the j-th time step, it refers to the cell state ¢’
containing information of the previous records. In Eq. (5), the
cell state ¢} is guided by the input gate k] and forget gate f7,
which control how much information from the previous step
should be preserved, therefore cell state cg enables the hidden
representation'hf to learn the long term temporal trends. The
output gate o] in Eq. (6) and Eq. (7) refers to the cell state
¢! and generates the hidden representation h! conveying the
useful information for reconstruction of previous records and
prediction. Here the time stamps play an important role, and
if the drastic change in the participant’s records has been
observed in a short period of time, it indicates the significant
changes in the disease status and the output gate will reflect
it in the learned representation h). For example, the LSTM
encoder can capture the cognitive decline from the temporal
trends in the scores of cognitive assessments. The LSTM
encoder may have more than one LSTM layer stacked on each
other. In stacked LSTMs, the hidden states across time points
[h!, b2, --- h!“] of previous LSTM layer is passed to the next
LSTM layer.

We propose a decoder for dynamic data enrichment with
the fully connected layers instead of another LSTM which
is traditionally used. A previous study [9] that attempted to
enrich longitudinal records with a recurrent neural network,
did so by using RNNs for both the encoder and decoder, where
the output (reconstructed record) of the decoder at each time
step depends on the output at the previous time step. However,
since no additional information is provided to the decoder
other than a time stamp and a learned representation that is no
longer longitudinal, there should not be dependencies between
the output records of the decoder. Therefore the decoder
Vagnamic © R4 — RP should be able to reconstruct
the j-th record x;] given time stamp t] without the records
previously reconstructed, such that Ygynamic(2t,t7; 05) =
%] ~ x]. To recover the original record at the specific time
point, the decoder needs to be provided with that time point.
Thus the input of the decoder is the concatenation of the
enriched representation z. and the time stamp t], which is
[z!,t]] € R4+, By forwarding the input to the decoder’s fully
connected layers, we can generate the reconstructed record
5(3 , and we have the stack of reconstructed records of the i-th
participant: X; = [%};%?;--- ;%/]. We update 0%, and 6%, to
minimize the difference between the reconstructed and original
records for the observed entries:
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where X; € R %Dt is the stack of reconstructed n; records
of ¢-th participant.

From the enriched representations z! and z$ of dynamic
and static data, additional fully connected layers 1p,eq
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RdstditDo) y RPy predicts the target label y;, such that
Vprea(zt, 25, %05 OF) yi. We design the loss function
inducing the enriched representation to convey the useful
information to reconstruct the original records and predict the
target label:

0%7 019)7 ai’ﬂa alDa oF =

arg min
03,,0%,,0%,.,0%, .07
("Ylﬁpredict (y“ yi; 0;0) + ’)/2£static(xz"sv ifa 98E7 9;))
+ '73£dynamic(Xi7 Xia Mi; 9lEa 9lD))7

where 71, 2, and 3 are hyperparameters to adjust the impact

of each loss. We emphasize that all the components and losses

optimized simultaneously through the labeled and unlabeled

samples both as described in Fig. 1. We choose the cross

entropy for prediction loss Lpredict (yi, Vi 9%) defined as:
0

1 ¢ Qtraina
—|lyi ©log(y:) + (1 —yi) ©log(1 = yi)ll; @ € Qrain,
where 1 is a vector of 1’s and log is an element-wise logarithm
function. The high capacity unsupervised autoencoder may
suffer from the tendency to learn trivial identity mapping and
memorize the input [9] which is not useful for predicting
the target label. In our semi-supervised learning model, the
addition of the prediction loss can prevent this memorization
problem.

©))

III. EXPERIMENTS

We obtained the data used in this experiment from the ADNI
database [10], by which we compare the prediction perfor-
mance of the proposed model to the widely used prediction
models. We use AD progression in AD, MCI and HC as
predictive targets in our studies.

A. Competing models

To evaluate the effectiveness of proposed semi-supervised
autoencoder (SAE), we compare our new method against the
following competing models:

o Baseline LSTM (BLSTM) by removing decoders ¥syp
and Ygynamic from SAE for comparison between super-
vised vs. semi-supervised approaches,

o SAE-woS (SAE without static data) by removing static
data enrichment ¢syp and gy p to observe the impact
of inclusion of static data,

« Non-longitudinal models, such as Random Forest [11]
(RF) with 34 max depth, Ridge Classifier (RC) with reg-
ularization parameter of 1000, and deep neural network
(DNN) with 5 fully connected layers (the number of units
are 150, 125, 100, 50, and 25) to assess the benefits of
longitudinal approaches.

For the non-longitudinal models, we provide the concatenation
of the most recent record [x?, x5, x}""]. SAE and SAE-woS are
trained with the training and test sets both in a semi-supervised
manner, while the other competing models are trained only
with training set. Although the order of participants is ran-
domly shuffled to avoid bias, we use the same training and test
data across all the competing methods for a fair comparison.



B. Hyperparameters of proposed model

For our model SAE, the static encoder ¢gnyp and decoder
sy p have 2 fully connected layers (FC) with tanh activation
function. The dynamic decoder qynamic has 3 FCs with a
leaky rectified linear unit (alpha = 0.1) activation function at
the first layer and tanh at the second and third layer. The
dynamic encoder @gynamic is the single LSTM with 64 units
and tanh activation function. We set v; = 100, v» = 10,
v3 = 1 in Eq. (9). To minimize the loss function in Eq. (9), we
adapt the Adam optimization policy [12] at a learning rate of
0.0003. We do not use any regularization or dropout techniques
as they degrade the performance, but we prevent overfitting
by early stopping the training when the prediction loss does
not decrease during the last three epochs. The accuracy on
the validation set in 5-fold cross validation scheme is used
as a criterion for selecting hyperparameters of our model and
competing models.

C. Result and Evaluation

From the results reported in Fig. 2, the proposed model SAE
generally outperforms the other competing models across the
different proportions of training set. To be specific, the semi-
supervised approaches SAE and SAE-woS show the better
predictions compared to the supervised approaches especially
when proportion of training set is small. We suspect this
is due to our semi-supervised learning approach that allows
our model to learn from unlabeled samples while still fully
utilizing the benefits of labeled samples. In addition, the
predictions of the semi-supervised model are more stable (with
a smaller standard deviation) when compared to the supervised
learning models possibly due to their supervised nature that
rely on labels of the partial dataset.

When SAE is compared to SAE-woS, the inclusion of
static (genetic) data improves the predictions. This comparison
shows that the integrated representation of static and dynamic
data improves predictions on the disease status of participants.
Overall, the longitudinal models SAE, SAE-woS, and BLSTM
perform better than non-longitudinal models RF, DNN, and
RC. These results validate the usefulness of the proposed lon-
gitudinal semi-supervised learning approach integrating static
and dynamic data, and show our model’s promise in the early
diagnosis of AD.

IV. CONCLUSION

We present a semi-supervised enrichment learning method
that integrates the longitudinal multi-modal dataset and is clin-
ically applicable for use in real-time, automatic AD diagnosis.
The novel LSTM autoencoder compresses longitudinal records
with missing data into a fixed-length vectorial representation.
Armed with this enriched representation, one can fully utilize
the genotypic and phenotypic data. We have conducted experi-
ments on the ADNI dataset and the results show that our model
outperforms competing predictive models and semi-supervised
longitudinal enrichment learning improves the prediction.
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Fig. 2. Micro and macro receiver operating characteristic curves (ROC)
averaged across the classes and their area under the curve (AUC). The
proportion of training set is 80% and the AUC shows SAE outperforms the
other competing models.
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